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Abstract: Energy Harvesting (EH) is a promising paradigm for 5G heterogeneous communication.
EH-enabled Device-to-Device (D2D) communication can assist devices in overcoming the disadvan-
tage of limited battery capacity and improving the Energy Efficiency (EE) by performing EH from
ambient wireless signals. Although numerous research works have been conducted on EH-based D2D
communication scenarios, the feature of EH-based D2D communication underlying Air-to-Ground
(A2G) millimeter-Wave (mmWave) networks has not been fully studied. In this paper, we considered
a scenario where multiple Unmanned Aerial Vehicles (UAVs) are deployed to provide energy for
D2D Users (DUs) and data transmission for Cellular Users (CUs). We aimed to improve the network
EE of EH-enabled D2D communications while reducing the time complexity of beam alignment for
mmWave-enabled D2D Users (DUs). We considered a scenario where multiple EH-enabled DUs
and CUs coexist, sharing the full mmWave frequency band and adopting high-directive beams for
transmitting. To improve the network EE, we propose a joint beamwidth selection, power control,
and EH time ratio optimization algorithm for DUs based on alternating optimization. We iteratively
optimized one of the three variables, fixing the other two. During each iteration, we first used a
game-theoretic approach to adjust the beamwidths of DUs to achieve the sub-optimal EE. Then, the
problem with regard to power optimization was solved by the Dinkelbach method and Successive
Convex Approximation (SCA). Finally, we performed the optimization of the EH time ratio using
linear fractional programming to further increase the EE. By performing extensive simulation ex-
periments, we validated the convergence and effectiveness of our algorithm. The results showed
that our proposed algorithm outperformed the fixed beamwidth and fixed power strategy and could
closely approach the performance of exhaustive search, particle swarm optimization, and the genetic
algorithm, but with a much reduced time complexity.

Keywords: D2D communication; energy harvesting; mmWave networks; beamwidth selection;
power optimization

1. Introduction

Recently, UAV-assisted communication-network-supporting energy transfer has gained
significant attention. With the advantages of flexible deployment and low-cost deployment,
UAVs can quickly establish A2G links and transmit information and energy to ground
users [1,2]. UAVs have been widely used in emergency communications to quickly re-
store ground equipment communications in disaster-stricken areas or improve the quality
of service for degraded users in overloaded ground areas. UAV Base Stations (UAV-
BSs) equipped with large-scale antenna arrays can provide directional transmission of
information and energy, thereby avoiding interference between UAVs caused by strong
Line-of-Sight (LoS) paths.

As predicted by Cisco, there will be 14.7 billion Machine-to-Machine (M2M) connec-
tions and on average 1.8 connections for each member of the global population by 2023 [3].
M2M communication or D2D communication is playing a more important role in the
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industry of the Internet of Things (IoT), by providing a variety of services, such as smart
manufacturing, home automation, video surveillance, etc. In addition, D2D communica-
tion can offload traffic for base stations by directly establishing a transmission link from
the source to the destination [4]. In mmWave-enabled 5G networks, the high directional
beams can improve the link quality and boost the system capacity. However, mmWave
networks operating at 30–300 GHz are susceptible to high path loss and are easily blocked
by obstacles, which limits the long-distance propagation of signals [5]. D2D devices can
act as relays for the blocked mmWave link by establishing multi-hop communication or
directly deliver the pre-cached content to the destinations [6,7]. In this case, integrating D2D
communication into UAV networks can overcome the problem of the coverage limitation
and alleviate the burden of UAVs.

In 5G networks, the transmission based on high directional beams will be widely used,
thanks to the wide deployment of mmWave antenna arrays [8]. At the same time, a huge
energy consumption caused by large-scale antenna arrays is also incurred, especially for
D2D links. Different from ground BSs or UAV-BSs, which have a stable energy supply,
D2D devices equipped with massive antenna arrays are prone to suffer energy shortage. In
addition, with the rapid increase of data traffic, the energy consumption of D2D devices has
become a major concern in the industry, and the Energy Efficiency (EE) of D2D links needs
to be urgently optimized. In this case, EH emerges as a promising way to increase the EE of
D2D links by providing continuous energy supply for devices and sustaining the stability
of links. Equipped with Radio-Frequency (RF) energy harvesters, D2D links are capable of
harvesting energy from ambient RF signals while receiving information data. Not only the
desired signal, but the interference and noise can be utilized to perform energy harvesting.
This extends the battery life for devices and prolongs the communication period for D2D
links, which is also beneficial to the improvement of the network EE.

In this paper, we considered an EH-enabled D2D underlying UAV-assisted network
scenario, where Simultaneous Wireless Information and Power Transfer (SWIPT) is adopted
at the UAVs to enable the transmission of information and energy for ground devices. High
directional beams were adopted for Air-to-Ground (A2G) and D2D transmission. While
the CUs are receiving the information from the UAV-BSs, D2D transmitters are capable of
harvesting energy from the A2G signal. We adopted the EH-BA-DT protocol [9,10] for DUs
in EH-enabled scenarios. The system time was divided into the EH phase, Beam Alignment
(BA) phase, and Data Transmission (DT) phase. As known to all, the network EE is closely
related to the user rate and energy consumption. Therefore, to achieve the maximal EE, a
tradeoff between increasing the data rate and decreasing the consumed energy is required.
In our scenario, the interference issue was complex, which greatly affects the network EE.
Misaligned beams will cause severe interference among users, which will also impact the EE
of D2D links. In addition, due to the proliferation of mobile devices and the ever-increasing
network traffic, data transmission and signaling exchange quickly consume the energy of
D2D links, which makes the limited battery capacity of D2D devices easily depleted. To
tackle this problem, an effective method is to alleviate the interference and increase the
network EE by performing the joint optimization of beamwidths, transmit power, and EH
time ratio for D2D pairs.

The beamwidth of the DU is an important factor affecting the user rate and energy
efficiency. For the beam-enabled D2D users, the beam alignment process is first executed to
determine the best-matched beam pair at the transmitting and receiving side before the
transmission process [11], which means a long beam alignment time will shorten the time
for EH and DT, and vice versa. Especially for high-speed mobile users, the process of beam
alignment needs to be performed repeatedly. Therefore, controlling the time complexity of
beam alignment is helpful to improve the transmission efficiency of the system. Although
Exhaustive Search (ES) and Particle Swarm Optimization (PSO) can achieve excellent
performance in beam alignment, the time complexity of the algorithms is too large to be
effectively applied to the actual network. Therefore, to fully unleash the potential of the
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mmWave D2D link, it is of great significance to obtain the optimal/sub-optimal beamwidth
in a short time to improve the network performance.

Besides, EH emerges as a promising technology to increase the EE of users relying
on wireless charging. In traditional low-frequency scenarios, wireless charging has not
shown great performance due to the low received signal strength. In 5G mmWave links,
multi-antenna system can be employed at the transmitter to achieve effective RF energy
harvesting through the enhanced transmission gain brought by beamforming. The authors
in [12–14] verified the feasibility of the combination of EH and mmWave technology.
Although the optimization of the network EE in EH-enabled low-frequency scenarios has
been widely studied, there still is a lack of an effective method to improve the network EE
in mmWave scenarios. Hence, in this paper, we applied EH to mmWave D2D links and
aimed to enhance the battery life of the links by increasing the network EE.

When a D2D link selects a large transmitting and receiving beamwidth, the beam-
sweeping process is carried out in a large-angle manner, which will reduce the beam
alignment time and increase the time for EH and DT. However, a large transmitting
beamwidth will possibly degrade the performance of other links, and a large receiving
beam will suffer more serious interference. On the contrary, reducing the transmitting and
receiving beamwidth is beneficial to mitigate potential interference, but the time of the BA
phase will be greatly prolonged because a huge number of pilot signals are needed to align
the beams, which will shorten the time for energy harvesting and data transmission and
degrade the system performance.

Moreover, for D2D links, the power and EH time ratio have a significant impact on
the network EE. The transmit power not only affects the user’s achievable rate, but also
the rate of other D2D links and the overall energy consumption. Therefore, the transmit
power for DUs will have a complex impact on the network EE and needs to be optimized.
Similarly, the network EE is also closely related to the EH time ratio. Fixing the BA time
ratio and increasing the EH time ratio can increase the energy harvested, but this will also
reduce the effective transmission time, and vice versa. Moreover, the performance of CUs
should be protected by controlling the interference from DUs to CUs.

In this case, to improve the network EE, the three coupling variables, beamwidth,
transmit power, and the EH time ratio, need to be considered comprehensively. In this
paper, we propose a joint optimization of beamwidth selection, power control, and the
EH time ratio to iteratively optimize the variables while fixing the other two. First, a
low-complexity beamwidth selection scheme was designed to allow users to find the
optimal/sub-optimal beamwidth in a short time. Specifically, DUs first form coalitions
to choose different beamwidths. Then, the coalitions are continuously updated along the
direction of improving the network utility (i.e., EE) until the final Nash equilibrium is
reached. Next, a power control method was designed to suppress the interference and
improve the EE. The power levels of D2D transmitters were optimized using the Dinkelbach
method and SCA to obtain the sub-optimal power for DUs. Finally, the optimization of the
EH time ratio was executed to further improve the EE. The EH time ratio was optimized by
solving the convex linear fractional programming. The network EE was iteratively updated
until reaching the convergence point.

In conclusion, the main contributions of this paper can be summarized as follows:

• Different from existing research, we considered a downlink scenario of EH-enabled
D2D underlying a UAV-assisted mmWave network and took into consideration the
complex interference issue. We built an efficient framework for improving the EE of
D2D links by jointly optimizing the beamwidth, transmit power, and EH time ratio of
the D2D links using alternating optimization, while guaranteeing the rate requirements
of CUs and DUs. The proposed algorithm has low computation complexity and is
applicable to large-scale mmWave networks;

• We constructed a coalition game model to solve the beamwidth selection problem
for D2D users, which can explore the potential beamwidth combinations of DUs and
converge to the beamwidth structure with sub-optimal utility. A low-complexity
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beamwidth selection algorithm was proposed to adjust the beamwidths of DUs for
increasing the network EE;

• The transmit power of D2D links was optimized to further improve the system EE.
The original non-convex problem with regard to power optimization was solved
by non-fractional programming and successive convex approximation. Specifically,
we first transformed the non-convex fractional programming into a non-fractional
problem using the Dinkelbach method. Next, we eliminated the non-convexity in the
formula by approximating the non-convex part with its first-order Taylor expansion.
Along with the power, we also optimized the EH time ratio. The problem with regard
to the EH time ratio was proven to be a convex linear fractional programming, and
hence, the optimal solution is readily obtained;

• We validated the convergence and effectiveness of the proposed algorithm by per-
forming numerical experiments with different settings for the network parameters.
The proposed algorithm can converge to the optimal EE after finite iterations and
effectively improve the network EE compared with the Fixed Beamwidth and Fixed
Power (FBFP) scheme. Our proposed algorithm can achieve performance close to
ES and PSO, but with much reduced complexity. The factors that potentially affect
the network EE, such as the number of DUs, the number of CUs, the maximal power
for DUs, the minimum harvested energy, and the minimum rate for CUs, are also
thoroughly discussed and analyzed.

The rest of this paper is organized as follows: The related works are given in Section 2.
In Section 3, the EH-enabled D2D underlying the UAV network model and problem
formulation are presented in detail. In Section 4, the alternating optimization method is
employed to jointly optimize the beamwidth, transmit power, and EH time ratio to obtain
the sub-optimal EE with a low time complexity. The simulation results are shown and
discussed thoroughly in Section 5. Finally, the conclusions are drawn in Section 6.

2. Related Works

Under the mmWave network architecture, energy harvesting is capable of providing
reliable and sustainable energy coverage and shows better performance than conventional
low-frequency scenarios [12–14]. The authors of [15,16] investigated the performance of
energy harvesting in UAV-assisted mmWave technology. The authors of [15] derived the
energy and SINR coverage probability under the UAV mmWave network enabled by energy
harvesting. In [16], the authors analyzed the energy and SINR coverage probability in a
hybrid network where sub-6G transmission and mmWave transmission coexist. In [17], the
trajectories of two UAVs for data gathering and energy transferring were optimized using
the deep reinforcement learning approach to reduce the system energy consumption and
improve the timeliness of service for users. The trajectory optimization was performed
in [18] to minimize the energy consumption of the UAV and guarantee the user rate. In [19],
the authors considered the effect of beam alignment error in an EH-enabled mmWave
network and derived the energy coverage probability by assuming a non-linear EH process.

Moreover, energy harvesting can provide new possibilities for improving the perfor-
mance of D2D communication [20], which has been the focus of academia [21–26]. In [21],
the authors considered a non-linear energy harvesting model and classified the users into
the EH group and the non-EH group based on the minimum harvested power threshold.
Then, the resource allocation and power control were iteratively optimized to maximize
the sum-EE using non-fractional programming and the Lagrange method. The authors
of [22] proposed a power control and time scheduling algorithm to improve the capacity of
the system under a time splitting architecture, where each BS was equipped with a single
antenna, and they further reformed the algorithm and applied it to the scenario where the
BSs were equipped with multiple antennas in [23]. The authors in [24] used a stochastic
model to derive the ergodic capacity of EH-enabled D2D communication and proposed an
effective mode selection method to improve the system EE. The outage issue of EH-based
D2D communication has also been widely studied [25,26]. In [25], the outage probability
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of D2D links was analyzed considering the spectrum sharing between DUs and CUs. A
power control scheme for DUs while ensuring the outage probability for CUs below the
threshold was proposed in [26].

In mmWave networks, another issue that attracts the attention of academia is the opti-
mization of the beamwidth. To achieve the tradeoff between alleviating interference and
reducing beam alignment complexity, there have been many research works on beamwidth
selection in mmWave networks [9–11,27–33]. In [11], we proposed an coalition-game-based
beamwidth selection algorithm for mmWave-enabled D2D links. In [27], the authors pro-
posed two joint beamwidth selection and scheduling schemes. The authors exploited the
method of interference estimation rather than precise calculation to measure the beam-level
interference among the users, which achieved much improved throughput compared with
existing standards [34]. In [28], the authors revealed the relationship between latency
and overhead in the beam alignment process, which indicated that multi-beam simultane-
ous scan can provide the best tradeoff between latency and overhead. A recent research
work [29] used the geometry model to characterize the beamwidth selection and obtained
the near-optimal solution for the beamwidths of users in mmWave networks. In [30],
the authors considered a simple full-duplex mmWave wireless network architecture and
exploited the numerical solution to obtain the optimal beamwidth for the users to max-
imize the network energy efficiency. In D2D communication, the beamwidth design for
devices is also a research hotspot. In [9,10], the authors considered a single D2D pair in a
mmWave network without considering the inter-user interference. The throughput and
EE were maximized in [9,10], respectively, by optimizing the beamwidth and EH ratio of
the D2D pair. To overcome the complexity of ES, PSO has also been applied in beamwidth
optimization of V2V communication [31] and D2D communication [32,33] to obtain the
sub-optimal solution.

3. System Model and Problem Formulation
3.1. Network Topology

As shown in Figure 1, we considered an EH-enabled D2D underlying the mmWave
network consisting of multiple mmWave UAV-BSs (UBSs). M cellular users and N D2D
users were randomly distributed in the considered area. Each D2D link was composed of a
D2D Transmitter (DT) and D2D Receiver (DR). There exist two kinds of communication
links in the network: A2G links and D2D links. A2G links denote the transmission from the
UAV to ground users, including cellular users and the D2D transmitter. D2D links denote
the direct transmission from the DT to the DR. It was assumed that both the A2G links and
D2D links adopt narrow beams for transmission. We denote the set of CUs and DUs as
C = {C1, C2, . . . , CM} and D = {D1, D2, . . . , DN}, respectively. For the nth D2D link, we
denote its DT and DR as DT

n and DR
n . In our scenario, both A2G links and D2D links reuse

the full mmWave frequency band and adopt narrow beams for transmission. The UAVs
are connected to the ground gateway to transmit the backhauling data. In addition, we
assumed that data collection and algorithm execution were performed at the Operation
And Management (OAM) in the gateway. We assumed that the coverage of the UAV is
determined based on the path loss threshold [35], and the association between UAVs and
users was established based on minimum path loss criterion. In addition, we ignored the
movement of UAVs and users and assumed all the UAVs hovered at a fixed horizontal
position and fixed altitude. However, our algorithm can also be utilized in a dynamic
and fast-changing environment since the time frame can be approximately divided into
multiple snapshots, in which our system model and algorithm can be applied.
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Figure 1. Network architecture.

In our paper, we did not focus on the energy consumption of the UAVs, since they
have a larger battery capacity and can be charged by a charging station. In our scenario, we
incorporated EH technology into the system and assumed that each DT can harvest energy
from the ambient RF signals to prolong the transmission time. We assumed that the A2G
links, including signal and interfering signals, are utilized by the DTs to harvest energy
and restore the energy of the battery. As shown in Figure 2, we adopted the EH-BA-DT
protocol for D2D links, where the total transmission time for Dn with duration T is divided
into three phases: (1) energy harvest phase with a duration of τeT: DTs harvest the energy
from the ambient environment and store it in the battery; (2) beam alignment phase with a
duration of τba

n T, during which the DUs perform beamwidth alignment for the transmitter
and receiver; (3) data transmission phase with a duration of (1− τe − τba

n )T: after EH and
BA, the DT starts transmitting data to its associated DR, where τe is the unified time ratio
of EH for all the DUs, and τba

n is the time ratio of BA for Dn, respectively.

Figure 2. Time frame paradigm for the EH-BA-DT protocol, where the actual time ratio for EH, BA,
and the DT is determined by the proposed algorithm.

3.2. Alignment Delay

In our model, we only considered the optimization of beamwidths for D2D links,
assuming that the beamwidths of A2G links have been determined and vary with time.
According to [7], to avoid the high time complexity of narrow beam search in the whole
angle range, a sector-level alignment with a large angle sweeping was first performed.
Then, the beam-level alignment with a much more refined beam search was conducted



Entropy 2022, 24, 300 7 of 22

in the aligned sector, which obtained the best matched beam pair at the transmitting and
receiving side. Hence, the beam alignment time ratio for D2D link DT

n → DR
n is:

τba
n = (θt

n,nθr
n,n/φt

n,nφr
n,n)Tp/T (1)

where θt
n,n and θr

n,n denote the sector-level beamwidth at DT
n and DR

n and Tp denotes the
pilot transmission time. For analytical tractability, we assumed the beamwidths for DT

n
and DR

n were equal: φn = φt
n,n = φr

n,n, which is beneficial to speed up the beam alignment
process. In addition, we assumed that θ = θt

n,n = θr
n,n, ∀n ∈ N , which means the sector-

level beamwidths for all the DUs are also equal. Let BW denote the feasible beamwidth set,
which contains all the feasible beamwidths that each D2D pair can select, then the range of
BW is denoted as follows:

max(ceil(
√

θ2Tp/T), φmin) ≤ BW i ≤ θ, ∀n ∈ N (2)

where ceil(x) denotes the ceiling function, BW i is an element in the feasible beamwidth set
BW , and φmin is the minimum beamwidth for D2D pairs.

3.3. Channel Modeling

We assumed that both D2D links and A2G links had full access to the whole mmWave
bandwidth and the interference can be avoided to a great extent thanks to high directional
beams. However, once the beams of interferers and receivers are accidentally aligned,
severe interference is introduced. Moreover, there also exists sidelobe interference in the
network, which is trivial, but not negligible.

We adopted the sectored antenna model presented in [36] to calculate the antenna gain
of mmWave links, where the antenna gain of the beam-steered transmitter and receivers
is constant for all the angles in the mainlobe, and the antenna gain in the sidelobe was
also regarded as a small constant 0 < z� 1. Let ϕt

a,b and ϕr
a,b denote the alignment error

angle at the transmitter and receiver, and the transmitting beam gain at transmitter a is
calculated as:

gt
a,b =


2π − (2π − φt

a,b)z

φt
a,b

, i f ϕt
a,b ≤ φt

a,b.

z, otherwise.

(3)

where φt
a,b is the mainlobe beamwidth selected by transmitter a. Similarly, the receiving

beam gain at receiver b is calculated as (4), where φr
a,b is the receiving beamwidth at

receiver b:

gr
a,b =


2π − (2π − φr

a,b)z
φr

a,b
, i f ϕr

a,b ≤ φr
a,b.

z, otherwise.

(4)

For A2G links, the channel gain between the UAV m and receiver k (CU or DT) is
calculated as gc

Um ,k = 10−PLUm ,k/10, where PLUm ,k is the path loss between UAV Um and user
k, which follow the free-space path loss model due to the high probability of the LoS path:

PL(dUm ,k)(dB) = d0/d2
Um ,k (5)

where d0 is the channel gain of reference distance 1m and dUm ,m is the distance between
user m and UBS Um. Hence, the total channel gain between Um and k is:

hUm ,k = gt
Um ,kgc

Um ,kgr
Um ,k (6)
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For ground links, the channel gain of link a (DT) → b (DR or CU) is calculated as
gc

a,b = 10−PLa,b/10, where PLa,b denotes the path loss of link a → b, which is modeled
as [36]:

PLa,b(dB) = 20 log10(
4πd0

λ
) + 10A lg(da,b/d0) + χSF (7)

where da,b is the horizontal distance from the transmitter a to the receiver b of each link. λ
and A denote the wavelength and the path loss exponent. χSF is the shadow fading factor,
which follows a Gaussian distribution χSF ∼ N (0, σ2

SF).
Hence, the total link gain from a→ b is calculated as the product of the transmitting

gain, channel gain, and receiving gain:

ha,b = gt
a,bgc

a,bgr
a,b (8)

For cellular user Cm, the interference comes from the other UBSs and D2D transmitters
in the network, and its Signal-to-Interference-plus-Noise Ratio (SINR) is calculated as:

SINRC
m =

PUBSm hBSm ,m

Im
C + Im

D + N0
(9)

where PUBSm is the transmit power of UBSm, which is the serving UBS of Cm. Im
C =

∑i∈M\Um ∑j∈Ci
PUBSi hUBSi,j ,m denotes the interference from other UBSs in the network,

where Ci is the set of serving CUs of UAV i. hUBSi,j ,m is the channel gain between the transmit
beam of UAV i for the j-th user and the receive beam of D2D receiver m. Im

D = ∑i∈N pihDt
i ,m

denotes the interference from D2D transmitters, where pi is the transmit power of DT
i . N0

is the noise power.
For D2D pair Dn, its SINR can be calculated as:

SINRD
n =

pnhDT
n ,DR

n

In
C + In

D + N0
(10)

where In
C = ∑i∈M ∑j∈Ci

PUBSi hUBSi,j ,Dr
n and In

D = ∑i∈N\n pihi,n denote the interference from
cellular links and other D2D transmitters, respectively.

For EH-enabled DTs, assuming the energy harvesting efficiency is γ, the harvested
energy at DT

n is calculated as:

EHn = γτeT( ∑
i∈M

∑
j∈Ci

PUBSi hUBSi,j ,Dt
n
+ N0) (11)

Then, the total consumed power during the transmission time T for Dn is:

Pcon
n = 2PcirT + pn(1− τba

n − τe)T − EHn (12)

where Pcir is the circuit power consumption at Dt
n and Dr

n. For simplicity, we omitted the
power consumption for DUs in the BA phase as it is trivial when compared to the amount
of harvested energy and consumed energy for transmitting data.

According to the Shannon formula, the achievable rate of CUs and DUs is expressed
as (13) and (14), respectively:

RC
m = log2(1 + SINRC

m) (13)

RD
n = (1− τe − τba

n ) log2(1 + SINRD
n ) (14)

Under these assumptions, we can formulate our target problem. Without loss of
generality, we express the network EE as the ratio of the sum of the user rate and the sum
of the energy consumed by DUs. Let φ = {φn, ∀n ∈ N} and p = {pn, ∀n ∈ N} denote the
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beamwidth vector and power vector of D2D links, then the problem of maximizing the EE
of D2D links by optimizing φ, p, and τe is formulated as:

maximize
φ,p,τe

η =
∑n∈N RD

n

∑n∈N Pcon
n

(15)

s.t. C1 : RD
n ≥ RD

min, ∀n ∈ N
C2 : RC

m ≥ RC
min, ∀m ∈ M

C3 : max(ceil(
√

θ2Tp/T), φmin) ≤ φn ≤ θ, ∀n ∈ N

C4 : 0 ≤ pn ≤ pmax
D , ∀n ∈ N

C5 : τba
n + τe ≤ 1, ∀n ∈ N

C6 : τe ≥ 0

C7 : EHn ≥ EHmin, ∀n ∈ N

where C1 and C2 guarantee the minimum rate requirements for DUs and CUs, respectively.
C3 indicates the feasible range for the transmitting and receiving beamwidths of the D2D
links. C4 is the power constraint for the DUs. C5 and C6 ensure that the time ratios for
beam alignment, energy harvesting, and data transmission are all positive. C7 indicates
that the harvested energy for each DU should exceed the minimum amount to activate the
EH process.

4. Proposed Algorithm

The problem (15) is difficult to solve and computationally hard, especially when a
huge number of D2D links and CUs exist in the network. In this section, we resorted to the
alternating optimization, also known as the block coordinate descent method, to alternately
optimize one of the variables given the other two. To be specific, we first optimized the
beamwidths φ, fixing p and τe. Next, we applied the Dinkelbach method and successive
convex approximation to obtain the sub-optimal solution of the transmit power p, fixing
the beamwidth φ and time ratio τe. Finally, we optimized τe by solving the standard linear
fractional programming, given the beamwidth φ and transmit power p.

4.1. Coalition-Game-Based Beamwidth Selection Algorithm

Given transmit power p and EH time ratio τe, the problem (15) can be reduced to the
following problem:

maximize
φ

η =
∑n∈N RD

n

∑n∈N Pcon
n

(16)

s.t. C1, C2, C3, C5 and C7

However, due to the huge number of feasible beamwidths for DUs, Problem (16) is
still hard to solve. Although Exhaustive Search (ES) can solve the problem optimally, its
time complexity is unbearable; thus, its practicability is limited. When the number of DU
grows, the time complexity of ES grows exponentially, which incurs unacceptable overhead.
Hence, we resorted to a coalition game to obtain the sub-optimal solution of Problem (16),
which is time efficient and can achieve performance close to ES.

To solve the original problem, we formulated a coalition game G = {P ,X , U}, where
P = N denotes the player set formed by DUs, X is the strategy space, which contains
all the strategies that players can adopt, and U is the transferable utility. In the proposed
game, multiple players (i.e., D2D pairs) forming a coalition can be regarded as choosing the
corresponding beamwidth; thus, a coalition structure is established, which also corresponds
to a beamwidth strategy. The number of coalitions is the same as the number of feasible
beamwidths, i.e., |BW|, and each coalition consists of a group of players that select the
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same beamwidth. The ultimate goal of the coalition game is to find the Nash-stable coalition
structure with the optimal/sub-optimal system utility.

Let F = {F1, F2, . . . , F|BW|} denote the coalition structure that all the players form
and Fc ∈ F be a coalition that a group of players forms, which indicates these DUs
select the same beamwidth. The coalitions are non-overlapping, and the entire coalition
structure should contain all the DUs, which means that Fi ∩ Fj = ∅, for any i 6= j, and

∪
i∈{1,2,...,|BW|}

Fi = N .

Aiming at improving the EE while guaranteeing the performance of the CU, the utility
under structure F is calculated as the overall EE of the D2D links:

U(F ) =
{

η, i f C1, C2, C3, C5 and C7 are met.
−in f , else.

(17)

It can be seen from (17) that our ultimate goal was to maximize the overall EE of the D2D
links rather than focusing on the individual utility. In addition, any beamwidth structure
that fails to satisfy the constraints in (16) will be given a utility of negative infinity as
a penalty.

Definition 1 (preference order ). For player Dn ∈ N , the preference order .n is defined as a
complete, reflexive, and transitive binary relation over all the coalitions that Dn can possibly join.
For player Dn ∈ N , given two coalition structures F and F ′ and two coalitions Fc ∈ F and
Fc′ ∈ F ′, Fc .n Fc′ indicates that Dn prefers being a member of Fc to form structure F than being a
member of another coalition Fc′ to form structure F ′, i.e., Dn prefers selecting beamwidth Fc rather
than Fc′ to improve the network EE. The switch rule that determines the preference order for the
players is defined as:

Fc .n Fc′ ⇔ U(F ) > U(F ′) (18)

This switch rule (18) demonstrates that: to improve the network EE, player Dn prefers being a
member of coalition Fc than being a member of Fc′ .

Definition 2 (switch operation ). GivenacoalitionstructureF = {F1, F2, . . . , Fc . . . , Fc′ . . . , F|BW|},
if player Dn chooses to leave its current coalition Fc and switch to another coalition Fc′ , the coalition
structure will be updated: F ′ = {F\(Fc, Fc′) ∪ (Fc − Dn) ∪ (Fc′ + Dn)}.

At the initialization stage of the alternating optimization, the coalition structure is
initialized satisfying the constraints in Problem (16). In the following iterations, the coalition
structure is first set according to the optimized beamwidth solution of the last iteration.
Then, the players are randomly chosen to perform the switch operation. If the switch
rule (18) is strictly satisfied, the selected player will leave Fc′ and join Fc to form a new
structure. After continuous switch operations performed by players, the coalition structure
will be updated and finally converge to the Nash-stable structure, which implies that there
is no player who has the incentive to change its beamwidth (i.e., coalition) and form a new
coalition structure; thereby, the system utility can no longer be improved. The detailed
illustration of Coalition-Game (CG)-based beamwidth selection algorithm is shown in
Algorithm 1.

The proposed coalition game can converge after a finite number of iterations. The
reason lies in that the number of feasible beamwidths that players can select and the
number of players (D2D pairs) are both finite. Therefore, the cardinality of the beamwidth
strategy space is also finite. In other words, the number of structures that players can form
is limited. Since each switch operation performed by players will possibly visit a new
coalition structure, we can reach the conclusion that the switch process will terminate and
the final coalition structure will be ultimately reached. Next, we prove the stability of our
proposed CG-based beamwidth selection algorithm.
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Algorithm 1 Coalition-game-based beamwidth selection algorithm for D2D pairs during
each iteration

1: Initialize (φ, p, τe) with the output of the last iteration, and initialize Fini = {F1, F2, . . .}
as indicated by φ.

2: Set current coalition structure Fcur = Fini.
Require:

3: Randomly select a player Dn ∈ N , and denote its current coalition as Fc.
4: Dn randomly chooses another coalition Fc′ ∈ Fcur, and denote the temporary structure

after Dn leaves Fc and switches to Fc′ as:
5: Ftemp = Fcur\(Fc, Fc′) ∪ (Fc − Dn) ∪ (Fc′ + Dn).
6: Calculate U(Fcur) and U(Ftemp).
7: if U(Ftemp) > U(Fcur) then
8: Dn leaves Fc and joins Fc′ .
9: Update the coalition structure as: Fcur = Ftemp.

10: else
11: Dn remains in its current coalition Fc.
Ensure: The final Nash-stable coalition structure is reached.
12: Output The optimal beamwidths φ and (p, τe) to the next block.

Theorem 1. The final coalition structure F f in in the proposed algorithm is a Nash-stable coalition
structure.

Proof. The final coalition structure is a Nash-stable structure if the system utility can no
longer be improved by any player changing its beamwidth, i.e., F f in

c = argmax
Fc

U(F ),

∀Fc ∈ F , where F f in = {F f in
1 , F f in

2 , . . . , F f in
c , . . . , F f in

|BW|} is the final coalition structure. To

prove the Nash-stability of F f in, we resorted to a contradiction: if the final formed structure
F f in is not stable, which is equivalent to that there is at least a player Dn ∈ D, who is in
coalition F f in

c , who will switch to another coalition F f in
c′ , due to (F f in

c′ ∪ Dn) .n F f in
c . In this

case, a new coalition structure is formed, which is contrary to our assumption that F f in is
the final coalition structure. So far, the proof that F f in is Nash-stable is complete.

4.2. Power Optimization for D2D Links

Given beamwidth φ and EH time ratio τe, (15) can be written as the problem with
regard to power optimization:

maximize
p

η =
∑n∈N RD

n

∑n∈N Pcon
n

(19)

s.t. C1, C2, C4 and C7

It can be seen that Problem (19) is a fractional programming, which is non-convex and
hard to solve. Thus, we applied the Dinkelbach method [37] to transform Problem (19) into
a non-fractional problem. Given η, let RD = ∑n∈N Rn and Pcon,D = ∑n∈N Pcon

n , then the
original problem (19) can be equivalently transformed into the following problem:

maximize
p

RD − ηPcon,D (20)

s.t. C1, C2, C4 and C7

Theorem 2 ([37]). The optimal η∗ can be obtained if and only if RD∗ − η∗Pcon,D∗ = 0 where:

η∗ = max
p

η =
RD

Pcon,D (21)

RD∗ and Pcon,D∗ are the optimal value of RD and Pcon,D, respectively, when η is maximized.
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The proof of Theorem 2 can be referred to [37], and we omit it here. It can be seen
from Theorem 2 that we can obtain the optimal solution of Problem (19) by solving the
equivalent Problem (20).

However, Problem (20) is still not convex due to the existence of RD = ∑n∈N RD
n . Next,

to eliminate the non-convexity of Problem (20), we first decomposed RD
n in the objective

function into the subtractive form:

RD
n = cn log2(pngn,n + ∑

j∈N ,j 6=n
pjhj,n + In

C + N0)︸ ︷︷ ︸
RD′

n

(22)

− cn log2( ∑
j∈N ,j 6=n

pjhj,n + In
C + N0)︸ ︷︷ ︸

RD′′
n

where cn = 1− τba
n − τe

n denotes the time ratio for data transmission. It can be seen that RD′
n

and RD′′
n are both concave over p; however, the subtraction of two concave functions is not

convexity preserving [38]. Hence, given a local point pl = (pl
1, pl

2, · · · , pl
N), we can exploit

the property that a concave function is upper-bounded by its first-order Taylor Expansion.
For each n ∈ N :

RD′′
n ≤ RD′′

n,ub (23)

= cn

(
∑

j∈N ,j 6=n

loge
2 hj,n(pj − pl

j)

∑m∈N ,m 6=n pl
mhm,n + In

C + N0

+ log2

(
∑

j∈N ,j 6=n
pl

jhj,n + In
C + N0

))

On this basis, we can approximate RD
n as follows:

RD
n ≥RD′

n − RD′′
n,ub (24)

=RD′
n − cn ∑

j∈N ,j 6=n

loge
2 hj,n(pj − pl

j)

∑j∈N ,j 6=n pl
jhj,n + In

C + N0

−cn log2

(
∑

j∈N ,j 6=n
pl

jhj,n + In
C + N0

)
,RD

n,lb

The non-convexity in RD
n was eliminated by approximating it as RD

n,lb, and RD in the
objective function of (20) can also be approximated by RD

lb = ∑n∈N RD
n,lb, which provides a

lower bound of RD.
After approximating each RD

n in RD, C1 can be transformed into the following con-
cave form:

C1 : RD
n,lb ≥ RD

min, ∀n ∈ N (25)

Further, the constraint C2 in (15) can be rewritten as the following form:

C2 : ∑
i∈N

pihi,m + Im
C + N0 ≤

(
PUBSm hUBSm ,m/(2RC

min − 1)

)
, ∀m ∈ M (26)
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Evidently, C2 is concave over p, and the non-convexity of (20) has been eliminated
so far. To obtain the sub-optimal solution, we can iteratively optimize RD

lb by solving the
following approximated problem:

max
p

RD
lb − ηPcon,D (27)

s.t. C1, C2, C4 and C7

Problem (27) is a convex optimization of p and can be readily solved by the interior
point method [39]. The detailed procedure for optimizing p is summarized in Algorithm 2.

Algorithm 2 SCA-based power optimization for D2D links during each iteration

1: Initialize (φ, p, τe) with the output of Algorithm 1. Set the current iteration l = 0 and
the initial local point pl = p.

2: while The improvement of the objective function in (27) is higher than a predefined
threshold ε1 do.

3: Solve Problem (27) for a given η using the interior point method and obtain the
optimal solution pl∗.

4: Update η = RD
lb(pl∗)/Pcon,D(pl∗).

5: Set pl+1 = pl∗ and update l = l + 1.
6: Output the optimal power strategy pl∗ and (φ, τe) to the next block.

4.3. Time Scheduling Optimization

Given φ and p, the optimization of τe is formulated as:

max
τe

η (28)

s.t. C1, C5, C6 and C7

Problem (28) is a standard linear fractional programming and can be written in the
following form:

max
τe

Aτe + B
Cτe + D

(29)

s.t.C1 : τe ≤ min
n∈N

(1− τba
n − Rmin

D / log2(1 + SINRD
n ))

C5 : τe ≤ min
n∈N

(1− τba
n )

C6 : τe ≥ 0

C7 : τe ≥ max
n∈N

(EHmin/γT(Pnhn,n + In
C))

where A = ∑n∈N − log2(1 + SINRD
n ), B = ∑n∈N (1− τba

n ) log2(1 + SINRD
n ), C = ∑n∈N

(−pnT − γT(pnhn,n + In
C)), D = ∑n∈N 2pcirT + pn(1− τba

n )T. Next, we can equivalently
solve the following linear programming using the method in [40]:

max
ή,t

Aή + Bt (30)

s.t.C1 : ή ≤ min
n∈N

(1− τba
n − Rmin

D / log2(1 + SINRD
n ))t

C5 : ή ≤ min
n∈N

(1− τba
n )t

C7 : ή ≥ max
n∈N

(EHmin/γT(pnhn,n + In
C))t

C8 : Cή + Dt = 1

C9 : ή ≥ 0, t ≥ 0
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where ή = τe
Cτe+D and t = 1

Cτe+D . Problem (30) is obviously convex over (ή, t) and can be
solved by the interior point method [39], and finally, the optimal value for τe is calculated
as: τe = ή/t.

4.4. Alternating Optimization and Convergence Analysis

After the solution to each subproblem has been obtained, we give an overall algorithm
for solving Problem (15). The original variables φ, p, τe can be divided into three blocks and
alternately optimized. During each iteration, we iteratively optimized one of the variables
by keeping the other two fixed, and the optimized variable would be delivered as the input
of the next block. The detailed process for the alternating optimization is illustrated in
Algorithm 3.

Algorithm 3 Alternating optimization for solving Problem (30)

1: Initialize iteration index l = 0 and the (φl , pl , τl
e) satisfying the constraints in (15).

2: while The improvement of η is higher than a predefined threshold ε2 do.
3: Solve Problem (16) given (pl , τl

e) and obtain the optimal solution φl+1.
4: Solve Problem (27) given (φl+1, τl

e) and obtain the optimal solution pl+1.
5: Solve Problem (30) given (φl+1, pl+1) and obtain the optimal solution τl+1

e .
6: Update l = l + 1.
7: return The optimal beamwidth φ∗, transmit power p∗, and EH time ratio τ∗e .

Next, we give the convergence analysis of the proposed algorithm. Let ηl = η(φl , pl , τl
e)

denote the objective value after the lth iteration. First, in the (l + 1)th iteration, there
exist η(φl , pl , τl

e) ≤ η(φl+1, pl , τl
e) after performing beamwidth optimization. The rea-

son lies in that φl is the input of Algorithm 1 fixing (pl , τl
e), and the switch rule of

Algorithm 1 guarantees the non-decreasing property of the objective value. Second, we
have η(φl+1, pl , τl

e) ≤ η(φl+1, pl+1, τl
e) due to the pl being the input local point, and the

optimization of Problem (27) ensures that pl+1 can achieve the non-decreasing objective
value. Third, η(φl+1, pl+1, τl

e) ≤ η(φl+1, pl+1, τl+1
e ) holds since Problem (30) is solved

optimally. Finally, we can conclude that η(φl , pl , τl
e) ≤ η(φl+1, pl+1, τl+1

e ), which means
the objective value of problem (15) is non-decreasing after each iteration. Since the three
variables of (15) are bounded by the constraints and the upper bound of the Problem (15)
exists, we can conclude that the convergence of the proposed algorithm is guaranteed.

4.5. Complexity Analysis

First, we assumed the proposed coalition game in the beam alignment phase needs N1
iterations to converge. During each iteration, 4N times of calculation are needed for DUs to
calculate the throughput, harvested energy, power consumption, and beam alignment ratio,
respectively, and M times of the calculation are needed for CUs to verify the minimum rate
requirement. Hence, the complexity of beam alignment phase is O(N1(4N + M)). In the
power optimization phase, the complexity to solve Problem (27) using the interior point
method [38] is O(N3). Hence, the complexity for power optimization is O(N2N3), where
N2 is the number of iterations for Algorithm 2. Similarly, in the EH time ratio optimization
phase, the complexity is O(1) using the interior point method, due to (ή, t) being the only
two variable to be optimized. Hence, the total complexity of our algorithm is mainly related
to the beam alignment phase and the power optimization phase, which can be calculated
as: O(NOA(N1(4N + M) + N2N3)), where NOA is the number of iteration for the overall
algorithm. It should be pointed out that the practical running time of the algorithm depends
on the settings of specific network parameters and the convergence threshold; hence, we
further evaluate the time complexity in the next section.

5. Numerical Results

In this section, we present our numerical results to verify the convergence and effec-
tiveness of the proposed algorithm. We considered a heterogeneous mmWave air-to-ground
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network scenario, where 10 UBSs were deployed above a circular area with a radius of
200 m [21]. The height of the UAVs was fixed at 100 m [41]. Multiple CUs and EH-enabled
D2D pairs were randomly distributed within the target area. It is worthwhile to note that
we assumed the power for each BS was fixed to 46 dBm, and we also set the maximum
distance for each D2D link DT

n − DR
n to be 50 m. The minimum beamwidth for DU-φmin

was set to 10◦. The convergence criteria ε1 and ε2 were set to 10−3. The other simulation
parameters are shown in Table 1.

To verify the effectiveness of our algorithm, we compared the performance of the
proposed algorithm with the following algorithms:

• ES: exhaustive search, which traverses each possible beamwidth combination of DUs
in the beamwidth selection phase. ES can obtain the optimal solution to beamwidth
selection, but incurs an unbearable time complexity;

• PSO [31]: the particle swarm optimization algorithm, which forms multiple feasible
beamwidth solutions to continuously evolve along the direction of increasing the
utility until reaching the local optimal/global optimal solution. The parameter in the
execution of PSO was the same as in [31];

• GA [42]: the genetic algorithm, which is also a population-based method. The GA
evolves to the optimal/sub-optimal solution using the operations of mutation and
crossover. In the simulation, the parameters including the population size and the
probability for mutation and crossover were set the same as in [42];

• FBFP: the fixed beamwidth and fixed power strategy, in which the beamwidths and
transmit power of all the D2D pairs are both fixed to a constant value and not varied
with time;

• Reference [10]: Joint Optimization of the EH Time Ratio and Beamwidth (JOETRB).
However, the interference between users was ignored, and the power optimization
was not considered.

It is worth noting that ES, PSO, and the GA were only used in the beamwidth selection
phase in our benchmark schemes. In the phase for optimizing p and τe of the two algo-
rithms, our proposed power optimization and time scheduling algorithm were adopted.
The convergence analysis of ES, PSO, and the GA combined with the proposed power
optimization and time scheduling was similar to our proposed algorithm; hence, we omit it
here. It should also be noted that all the following tables and curves are the average result
of 100 independent experiments.

Table 1. Simulation parameters.

Radius of target area [21] 200 m

Carrier frequency [10] 60 GHz

Pilot transmit/slot time [10], Tp/T 0.0001

Sidelobe antenna gain [36], z 0.05

Reference distance [36], d0 1.5 m

Path loss exponent [36], A 2

Shadow fading variance [36], σ2
SF 6 dB

Circuitry power [21], Pcir 20 dBm

Maximum transmit power for DU [21], Pmax
D 23 dBm

Energy harvesting efficiency [23], γ, 0.5

Minimum rate for CU [21], RC
min, 2 bit/s/Hz

Minimum rate for DU [21], RD
min, 1 bit/s/Hz
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In Figure 3, fixing M = 10 and the threshold of convergence ε2 to 10−3, we show the
convergence behavior of the proposed algorithm. Under N = 10, the proposed algorithm
can converged within seven iterations. When the number of DU was increased to two,
the number of iteration to converge was slightly increased to nine. This indicates that
our proposed algorithm can converge within a small number of iterations and the fast
convergence speed of the proposed algorithm is verified.
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Iteration
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Figure 3. Convergence of the proposed algorithm.

In Table 2, we list the time complexity of the posed CG, PSO, GA and ES, where SPSO
and SGA denote the population size for PSO and Ga, NPSO and NGA denote the maximum
number of iterations to converge for PSO and GA. It can be seen that the proposed CG
greatly reduced the complexity compared with ES, which had exponential complexity. Gen-
erally speaking, the execution of PSO and the GA required a large population and number
iterations to converge. Therefore, the complexity of the proposed CG also outperformed
PSO and the GA.

Table 2. Comparison of the time complexity of different algorithms for beamwidth selection.

Proposed CG O(NCG(4N + M))

PSO O(NPSOSPSO(4N + M))

GA O(NGASGA(4N + M))

ES O(N|BW|(4N + M))

In Figure 4, we study the MATLAB software running time of the beam alignment
phase of the algorithms under different θ and N, to compare the time complexity of the
proposed algorithm with ES and PSO. Obviously, the total time for the convergence of CG
under different settings was much shorter than PSO and ES. For all the algorithms, when θ
increased from 45◦ to 60◦, the required time to converge increased due to the expansion
of the search range for the beamwidth. The figure also shows that when the number of
DUs increased from 10 to 20, the time to converge for PSO under θ = 60◦ increased from
26.44 s to 82.54 s, the time to converge for the GA increased from 29.36 s to 87.94 s, while
for CG, under θ = 60◦, the convergence time only increased from 8.29 s to 20.63 s. Among
the three algorithms, ES showed the worst-case scenario. As every candidate combination
of beamwidths for the DUs needed to be evaluated, the total running time for ES was
unacceptably long. Moreover, our proposed algorithm could obtain better performance
than PSO. As a great number of candidate solutions needed to be evaluated and updated,
the total time for PSO and the GA to converge was far over CG. Hence, the superiority of
the CG-based beamwidth selection algorithm with regard to time complexity was verified.
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The proposed algorithm can obtain the beamwidths for the DUs in a short time, thus
effectively increasing the transmission time.
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Figure 4. Running time for the algorithms in the beam alignment phase.

Next, we evaluated the EE performance comparing the proposed algorithm with the
benchmark schemes. To find the parameters that may affect the network EE, we compared
the network EE versus the number of DUs N, the number of CUs M, the maximum power
for DU Pmax

D , the minimum harvested power EHmin, and the minimum rate for CU RC
min,

respectively.
In Figure 5, we fix M = 10 and plot the network EE versus the number of D2D

links, comparing the proposed algorithm with the benchmark schemes under different
N. It can be seen that the proposed algorithm can achieve better performance than FBFP
and a performance near PSO and ES. The beamwidth selection and power control in our
algorithm were designed to improve the network EE, and the EH time ratio optimization
could further increase the EE. Another observation is that the network EE decreased with
N. The reason lied in that although the narrow beams were adopted for the DUs, more D2D
transmitters would potentially increase the interference between the DUs, thus degrading
the transmission rate of the DUs, which degrades the network EE. A similar observation
can be found by comparing the EE of the JOETRB [10] and FBFP algorithms under different
N. However, it can be seen that the EE for the JOETRB [10] and FBFP sharply decreased
when N exceeded 15, while our proposed algorithm still maintained a good level thanks to
the dynamic adjustment of the beamwidths, power levels, and EH time ratio for the DUs.
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Figure 5. Network EE versus different N, M = 10.

In Figure 6, we plot the network EE versus different numbers of CUs to compare the
performance of the proposed algorithm with ES and FBFP under different M. It can be seen
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from the figure that the energy efficiency of the proposed algorithm and the benchmark
schemes decreased with the increase of M. The reason was that the growing of M led to
the increased interference from the CU, i.e., In

C. At the same time, in order to meet the
minimum rate constraint for the CUs, the DUs had to strictly control the transmit power,
which degraded the transmission rate for the DUs. Although the growth in the number of
CUs provided more energy for the DUs to harvest, it also led to the decrease of the user
rate, which significantly impacted the EE. Therefore, in a heterogeneous network where
CUs and DUs coexist and share the spectrum resources, the EE performance of the DUs
will be degraded when the number of CUs increases. It can be seen from the figure that
the performance of the proposed algorithm still approached PSO, the GA, and ES and
outperformed the JOETRB [10] and FBFP strategies, which further verified the effectiveness
of the proposed algorithm.
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Figure 6. Network EE versus different M, N = 10.

In Figure 7, we change the maximum transmission power of the DU and plot the
curve of EE. With the increasing of Pmax

D , some users in the network would increase their
power to improve the user rate. Therefore, the EE first increased with Pmax

D . However, due
to the existence of a minimum rate for the CU RC

min, the EE did not always increase, but
was upper bounded by a certain value. When Pmax

D increased from 19 dBm to 23 dBm, the
network EE increased. However, the EE began to fall when Pmax

D was further increased to
25 dBm. In addition, we also set the fixed power under the JOETRB [10] and FBFP to Pmax

D
to find the relationship between the EE and Pmax

D under FBFP, and a similar finding could
be obtained. Hence, we can reach the conclusion that the network EE was closely related to
the transmit power of the DUs and first increased, then decreased with Pmax

D .
In Figure 8, we evaluate the effect of EHmin on the network EE. As EHmin increased,

the network EE gradually increased, which can be seen from the curves of the proposed
algorithm, PSO, and ES. However, with the further growing of EHmin, the network EE no
longer had unlimited growth. The reason was that the increased EHmin required the DUs to
harvest more energy, so the DUs were more inclined to increase the power and increase the
EH time ratio τe. However, the EE will not monotonically increase with the EH time ratio,
because with more energy harvested, less energy will be consumed and the user rate will
decrease at the same time due to the reduction of the effective transmission time. Moreover,
due to the existence of the RC

min, the power of the DUs was also limited. It can be seen that
the proposed algorithm could achieve a performance close to PSO, the GA, and ES.

In Figure 9, we plot the network EE under different RC
min. As RC

min increased, the
EE of all three algorithms decreased. The reason was that when RC

min increased, the DUs
had to decrease their transmission power to reduce the interference to the CUs, so as
to meet the rate requirement of the CUs. By comparing the performance of the three



Entropy 2022, 24, 300 19 of 22

algorithms, a similar conclusion can be drawn that the proposed algorithm can achieve a
close performance to PSO, the GA, and ES.
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6. Conclusions

EH-enabled D2D communication has shown great potential to be applied in the 5G
network and beyond. In this paper, we investigated the energy efficiency of D2D users in
a mmWave A2G network consisting of CUs and DUs served by UAV-BSs. We aimed to
maximize the network energy efficiency, while guaranteeing the rate requirements of the
CUs and DUs. The problem was formulated as the joint optimization of the beamwidth,
transmit power, and EH time ratio of the D2D users. Alternating optimization was adopted
to iteratively optimize one of the variables, fixing the other two. Firstly, a non-cooperative
coalition game model was established to adjust the beamwidths of the DUs. Next, to
tackle the non-convexity in the subproblem of power control, we exploited the methods of
Dinkelbach and successive convex approximation. Finally, the EH time ratio optimization
was performed by using linear fractional programming. The simulation results showed
that our proposed algorithm could achieve better performance compared to the scheme
with a fixed beamwidth and power and achieve a performance close to PSO, the GA and
ES, but greatly reduce the time complexity. Moreover, the convergence of our proposed
algorithm was also validated.
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