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Abstract: Pan-sharpening aims at integrating spectral information from a multi-spectral (MS) image
and spatial information from a panchromatic (PAN) image in a fused image with both high spectral
and spatial resolutions. Numerous pan-sharpening methods are based on intensity-hue-saturation
(IHS) transform, which may cause evident spectral distortion. To address this problem, an IHS-based
pan-sharpening method using ripplet transform and compressed sensing is proposed. Firstly, the IHS
transform is applied to the MS image to separate intensity components. Secondly, discrete ripplet
transform (DRT) is implemented on the intensity component and the PAN image to obtain multi-scale
sub-images. High-frequency sub-images are fused by a local variance algorithm and, for low-frequency
sub-images, compressed sensing is introduced for the reconstruction of the intensity component so as
to integrate the local information from both the intensity component and the PAN image. The specific
fusion rule is defined by local difference. Finally, the inverse ripplet transform and inverse IHS
transform are coupled to generate the pan-sharpened image. The proposed method is compared with
five state-of-the-art pan-sharpening methods and also the Gram-Schmidt (GS) method through visual
and quantitative analysis of WorldView-2, Pleiades and Triplesat datasets. The experimental results
reveal that the proposed method achieves relatively higher spatial resolution and more desirable
spectral fidelity.

Keywords: remote sensing; image fusion; ripplet transform; intensity-hue-saturation transform;
sparse representation

1. Introduction

Remote sensing (RS) is a general approach for the knowledge extraction of the Earth’s surface
structure and content through acquiring and interpreting the spectral characteristics from a great
distance [1]. However, the well-known trade-off between spatial resolution and spectral resolution
has always precluded the further application of RS products. Pan-sharpening is a desirable solution
to settle such dilemma. In fact, most of the Earth observation satellite images, such as IKONOS,
QuickBird, and the WorldView family (including WorldView-2/3/4), can only provide a panchromatic
(PAN) image with high spatial resolution but low spectral resolution together, with a multi-spectral
(MS) image with low spatial resolution but high spectral resolution, respectively [2]. Pan-sharpening,
a special case of image fusion, is capable of obtaining an image with both high spatial and high spectral
resolutions. In other words, the technique provides a fused image with the same spectral response as
the MS image and with the spatial resolution of the PAN image. The pan-sharpened images have been
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proved to possess great potential for multiple applications, including land use/land cover (LULC)
classification, land change detection and environment monitoring [3–8].

Generally, pan-sharpening methods can be classified into three main categories: component
substitution (CS)-based methods, multi-resolution analysis (MRA)-based methods, and model-based
methods. In addition, there are a number of subcategories of pan-sharpening methods.
Detailed information regarding these subcategories has been investigated in the references [1,9–11].
Specifically, CS-based methods include intensity-hue-saturation (IHS) [12–14], the Gram-Schmidt
(GS) method [1,15], and principle component analysis (PCA) [16,17]. CS-based methods firstly
separate components into other color space by spectral transform (such as IHS, GS, and PCA).
Secondly, the component with sufficient spatial details is substituted by the PAN image to
enhance spatial resolution. Finally, the pan-sharpened MS images are obtained by performing
an inverse spectral transform. The second group (MRA-based methods) usually applies digital
filters, covering wavelet transform [18,19], contourlet transform [20], curvelet transform [21],
Laplacian pyramids [22] and ripplet transform [23] to obtain the multi-scale representation of
the MS images. The MRA-based approaches [24] firstly employ MRA transforms to decompose
PAN images into multi-scale components. Then, the equivalent spatial information contained in
the high-frequency component is injected into an up-sampled MS image. Detailed illustrations
of CS- and MRA-based methods are well documented [24]. In addition, the edge-preserving
filters are frequently integrated with MRA transforms [25]. The third category is model-based
methods, such as compressed sensing-based methods [26,27] and sparse matrix factorization
technique-based methods [28]. The compressed sensing-based methods perform pan-sharpening
by reconstructing high-resolution MS images using image patches extracted from both source PAN
and MS images. Each category of pan-sharpening method possesses inherent superiorities and
limitations. CS-based methods, especially the IHS method, can improve the spatial resolution of MS
images significantly while preserving high convenience and efficiency for implementation. However,
CS-based methods result in spectral distortion in the substitution of components due to the ignorance of
local differences and the spectral mismatch that exists between the PAN image and the corresponding
MS image [12,29,30]. Compared to CS-based methods, MRA-based methods achieve superior spectral
fidelity but the improvement of spatial resolution is limited. The characteristics of model-based
methods will not be discussed as the merits and demerits of such methods vary with the specific
model applied. For further knowledge, multiple studies are available for inspection [1,4,9,31–35].
In addition, the spectral characteristics of the PAN image is claimed to have impacts on the quality of
pan-sharpened image [36].

The exploration of compressed sensing in improving pan-sharpening performance is well
documented [37,38]. Compressed sensing is able to reconstruct the sparse signal (e.g., digital
image) [39–41] in a linear combination of sparse and low-dimensional projection. Pan-sharpening
methods based on compressed sensing are claimed [38,42,43] to perform better than conventional
methods. For instance, the method proposed by Yang and Li [43] utilizes a slide window algorithm to
obtain image patches. Then, a discrete cosine transform (DCT) dictionary and orthogonal matching
pursuit (OMP) algorithm are integrated to fuse the images. Li and Yang [26] conduct pan-sharpening
based on compressed sensing by randomly selecting basis atoms in a trained dictionary extracted from
the PAN and MS images. Ghahremani and Ghassemian [23] propose the compressed-sensing-injection
(CSI) method using a dictionary consisting only of the spatial details extracted from the PAN images
by ripplet transform. Furthermore, an iterative method improving on the basis of the CSI method is
proposed by Ghahremani and Ghassemian [27] to implement image pan-sharpening with the aim
of preserving original spectral information. In such a method, a dictionary extracted only from the
PAN images is used to reconstruct the high spatial resolution intensity images. This method is more
efficient and effective for the reconstruction of high-resolution MS images compared with other studies,
while only using high-resolution intensity and its sparsest coefficient. In addition, Wang et al. [44]
construct the dictionary by using several sub-dictionaries composed of image patches. The patches
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are directly extracted from each spectral channel of an MS image. The dictionary construction takes
the correlation between PAN and MS images into consideration to transform pan-sharpening into
image restoration.

However, most IHS-based algorithms utilize MRA transforms to improve spectral fidelity without
the aid of a compressed sensing technique, which limits the local information preservation of the
pan-sharpened image [16,18,45,46]. A few methods utilize MRA tools and compressed sensing,
e.g., the method based on wavelet transform and compressed sensing proposed by Cheng et al. [47].
Nevertheless, most existing studies possess intrinsic limitations in the extraction and reconstruction
of spatial details using conventional MRA tools. Conventional MRA tools (e.g., discrete wavelet
transform and à trous wavelet transform), have limited capability to resolve one-dimensional (1D)
singularities or two-dimensional (2D), isotropic singularities. Hence, the pan-sharpened images
usually suffer from Gibbs phenomena. Furthermore, curvelet transform is suggested as representing
2D singularities more efficiently. However, the scaling rule to achieve anisotropic directionality has
not yet been thoroughly demonstrated.

In recent years, the shift invariant ripplet transform (RT) [48] has been proposed and
extensively adopted in feature extraction. RT is able to represent 2D singularities (e.g., edges and
textures) more efficiently at multiple scales and in multiple directions along a family of curves.
Several studies [23,48,49] demonstrate that RT is superior to wavelet- and curvelet-based MRA
transforms in terms of the effectiveness and efficiency of edge and texture extraction and reconstruction.
In view of this, an IHS-based pan-sharpening method combining the high spectral fidelity of discrete
ripplet transform (DRT) [49] and desirable local information preservation of compressed sensing [42,50]
is proposed in this paper. Specifically, IHS transform is firstly performed on MS images to obtain the
intensity component. Then, smoothing filter-based intensity modulation (SFIM) [51] is introduced
to modulate spatial information contained in the intensity component without altering its spectral
characteristic. The ripplet transform [23] is implemented on the intensity component and the PAN
images to extract high-frequency (HF) and low-frequency (LF) sub-images. Subsequently, compressed
sensing technique is applied to reconstruct the LF sub-images. Various fusion rules are adopted for
the HF sub-images and LF sub-images according to their specific characteristics. The local variance
algorithm [39] and local difference weighted algorithm are respectively selected as the fusion rules for
HF and LF coefficients. Finally, the pan-sharpened image is obtained by inverse ripplet transform and
inverse IHS transform. Experiments on WorldView-2, Pleiades and Triplesat datasets corroborate that
the proposed method ensures superior spectral fidelity compared to several state-of-the-art approaches.

The reminder of the paper is structured as follows. Section 2 briefly reviews the related works.
The proposed method is introduced in Section 3. The experimental results implemented on multiple
RS images and discussion are provided in Section 4. Section 5 draws a brief conclusion of this paper.

2. Related Work

The four relevant techniques utilized in pan-sharpening are briefly reviewed here. Section 2.1
discusses the principle of the IHS-based pan-sharpening method and the cause of spectrum distortion.
Section 2.2 introduces discrete ripplet transform. Sparse representation of images and the compressed
sensing theory are briefly illustrated in Section 2.3.

2.1. IHS Transform and Spectral Distortion

The framework of IHS and IHS-like pan-sharpening methods is firstly presented in [12] and
thoroughly illustrated in [52] as:

Mb
F = Mb

UP + Gb·(PHM − IUP), b = 1, · · · , B (1)

where MF is the pan-sharpened image, M denotes the original MS image, I is the intensity component
separated by IHS transform, G represents the vector modulating the gains of spatial details injection,
B is the number of bands in the MS image, and b denotes the bth band of the pan-sharpened or MS
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image. The subscript “UP” denotes the up-sampling process. In practice, the up-sampled image is
produced by cubic convolution interpolation for operational convenience. It is noteworthy that this
process can be implemented more properly by integrating with up-sampling, a low-pass filter and
modulate transfer function (MTF) [53,54]. PHM is the histogram-matched PAN image. The up-sampled
I component is generated by:

IUP =
B

∑
b=1

wb Mb
UP (2)

where w is the weight vector which can be empirically set as 1
B [13] and can be experimentally chosen

to weigh the spectral overlapping between PAN and MS images [24].
According to reference [12], in the inverse IHS transform for obtaining a pan-sharpened image,

the input hue (H) and saturation (S) components remain unchanged, while the input (I) component is
replaced by PHM, essentially. We denote intensity variation (δ) occurs in the IHS-based pan-sharpening
method which can be measured as:

δ =
B

∑
b=1

Mb
F −Mb

UP = PHM − IUP (3)

Due to the sensor type, local dissimilarities, and spectral mismatch between the PAN and MS
images [12,29,30], δ is not equal to zero. Furthermore, the variation of I leads to a distorted S component
of the pan-sharpened image. Thus, under the prerequisite of instrumentally and temporally identical
pan-sharpening, spectral distortion can be remitted by decreasing δ by means of reconstructing a new
intensity component that combines spectral characteristics of I and the PAN image. The proposed
method is developed based on this concept. Remarkably, the maximization of image quality score index
Q4 [52] is an ideal approach for distortion minimization, which is proved superior in extensive practice.

2.2. Discrete Ripplet Transform (DRT)

Ripplet transform [49] is proposed to address the problem that 2-D singularities along arbitrarily
shaped curves cannot be resolved by conventional wavelet transform. RT generalizes the curvelet by
introducing two parameters, i.e., support, c, and degree, d. The two parameters empower RT with the
anisotropic capability to represent singularities along arbitrarily shaped curves.

The discretized representation of RT (i.e., DRT) is actually based on the discretization of the
parameters of ripplets, which is similar to discrete curvelet transform [55]. In reference [48,49], DRT is

defined at scale aj = 2−j, orientation θl =
2Π
c ·2−bj(1−1/d)c·l, and position

→
x

j,l
→
k
= R−1

θl
(c2−jk1, 2−j/dk2),

where
→
k = [k1, k2]

T , j, k1, k2, l ∈ Z, d ∈ R, m, n ∈ N, and d = n
m . In the frequency domain, we can

represent the frequency response of the ripplet function as:

ρ̂j(r, w) = c−
1
2 a

m+n
2n W(2−j·r)V(c−1·2−bj

m−n
n c·w− l) (4)

where the radial window W and the angular window V satisfy the following admissible conditions:

+∞

∑
j=0
|W(2−j·r)|2 = 1 (5)

+∞

∑
i=−∞

∣∣∣V(c−1·2−b1−d−1c·w− l
)∣∣∣2 = 1 (6)

given c, d and j. The “wedge” corresponding to the ripplet function in the frequency domain is as follows:

Hj,l(r, θ) =
{

2j ≤ |r| ≤ 22j,
∣∣∣θ − 2−b1−d−1c·l

∣∣∣ ≤ π

2
2−j
}

(7)

The DRT of an M× N image f (n1, n2) will be in the form of
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R
j,
→
k ,l

=
M−1

∑
n1=0

N−1

∑
n2=0

f (n1, n2)ρ
j,
→
k ,l
(n1, n2) (8)

The image can be reconstructed through inverse discrete ripplet transform (IDRT):

f̃ (n1, n2) = ∑
j

∑
→
k

∑
l

R
j,
→
k ,l

ρ
j,
→
k ,l
(n1, n2) (9)

2.3. Compressed Sensing and Sparse Representation

The basic assumption of images in sparse representation (SR) is that each original image can be
represented as a linear combination of small number of atoms from a specific dictionary [42,56,57].
The main information, including local spatial features and internal structure of original images, can be
concentrated in the atoms using SR. With the assumption that an original image patch s has a consistent
structure, the sparse representation α of the original image patch using a specific dictionary D can be
modeled as:

α̂ = min ‖α‖0s.t.‖Dα− s‖2
2 = 0 (10)

where ‖·‖d=0,2 denotes the Ld-norm, and ‖α‖0 is the number of non-zero components in α.
Practically, directed by compressed sensing theory [42,50], we decimate a few measurements of
y using decimation matrix M as:

y = Ms (11)

where M ∈ Rn×k, k is the number of atoms in the dictionary, and n� k. Combining with the sparse
representation of images and compressed sensing [27], the sparsest α ensures that image patch s can
be recovered from y through the optimization process as:

α̂ = min ‖α‖0s.t.‖y−MDα‖2
2 ≤ ε (12)

where s = Dα, and ε is a fairly small constant that denotes the error tolerance. The optimization
of Equation (12) is a Non-deterministic Polynomial (NP)-hard problem [26,27]. According to
references [26,58], Equation (12) can be converted into the L1-norm minimization problem as:

α̂ = min ‖α‖1s.t.‖y−MDα‖2
2 ≤ ε (13)

The basis pursuit (BP) algorithm [59] is the well-known and most commonly used optimization
method to solve Equation (13). The image patches reconstruction using the BP algorithm can be
represented in the standard linear formation as:

mincTθs.t.Aθ = b, θ ≥ 0 (14)

where θ = (α+, α−), c = (1; 1), A = (MD; −MD), b = y, and α+ and α− are the positive and
negative value vectors of α, respectively. α̂ in Equation (12) is obtained by α̂ = α+ − α−. The sparsely
reconstructed image is obtained by ŝ = Dα̂.

3. Proposed Method

Based on the concept introduced in Section 2.1, the proposed method focuses on reducing spectral
distortion δ by obtaining a reconstructed I component with spatial details and spectral characteristics
from the PAN and MS images, respectively. We perform SFIM on the I component and the PAN image
at first, and then utilize DRT to obtain HF and LF sub-images of the I component. The local variance
algorithm is adopted as the fusion rule for the HF coefficient containing spatial information such as
textures and edges. The LF coefficient is reconstructed using a compressed sensing technique and
consequently fused according to local differences.
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3.1. Spectral Fidelity Improvement of Intensity Component Using Sfim

In the proposed method, SFIM is performed on the PAN images and the I component to generate
the new I component (ISFIM) with modulated spatial details while spectral diversity is maintained.
SFIM has two advantages which encourage its adoption for improving the spectral fidelity of ISFIM.
On one hand, the smoothing filter kernel of SFIM leads to a reduction of co-registration accuracy
sensitivity. On the other hand, SFIM can be performed on individual color components. The smoothing
filter kernel is an average function to obtain a local average on each pixel in a high-resolution PAN
image. A smoothing filter kernel with size of s× s can be represented as:

1
s

 1 · · · 1
...

. . .
...

1 . . . 1


SFIM can be represented as:

ISFIM(x, y) =
I(x, y)·P(x, y)

PMean(x, y)
(15)

where I(x, y) is a pixel of the I component, P(x, y) is the corresponding pixel in the PAN image,
and PMean is the smoothed mean image of the PAN image. The size of the kernel is dependent on the
ratio of resolution between the PAN and MS images, which generally equals 4 for most high resolution
satellite images [51], e.g., WorldView-2, Pleiades-1A, or Triplesat (Table 1). The kernel size of the
smoothing filter is not constant but changes with the experiment data. The optimization of kernel size
of SFIM is experimentally discussed in Section 4.3.1.

3.2. Intensity Component Reconstruction Using DRT and Compressed Sensing

DRT and compressed sensing are combined to obtain a reconstructed I component (IR) so as to
adequately integrate the local spatial details and spectral information of the I component and the PAN
image while minimizing the local dissimilarities and spectral mismatch between the two [12,29,30].
Specifically, DRT is advantageous to preserve the spectral features and spatial structures of source
images. Compressed sensing is effective in extracting local spatial information by using image
pairs [47]. In this study, two-level DRT with c = 1 and d = 4 is applied to obtain the HF and LF
sub-images of the I component and the PAN image; note that c = 1 and d = 4 are shown to be
sufficiently high for DRT to capture 2-D anisotropic details in high spatial resolution satellite images,
such as IKONOS and QuickBird [23].

3.2.1. High-Frequency Sub-Images Fusion

The HF sub-images decomposed by DRT contain sufficient spatial details of original images.
The local variation of wavelet energy can represent the abundance of local information contained in the
original images. The local variance of wavelet energy is utilized to fuse the high-frequency sub-images
of the I component (HFI) and high-frequency sub-images of PAN images (HFP) without losing spatial
details or distorting spectral characteristics [60–62]. Following the set-up in [61], we define the local
region Q in the image with size 3× 3, whose centre is (x, y). For every region Q in HFI or HFP,
the principle of HF sub-images fusion rule is defined as:

V(x, y) =
1

3× 3
(

H(x, y)− H
)2 (16)

where V is the local variance value of the pixel, H is the mean value of a specific local region in HFI
or HFP, and H(x, y) is the central pixel value. The fused high-frequency sub-images (HFF) can be
obtained as:

HFF(x, y) =

{
HFI(x, y), VHFI(x,y) > VHFP(x,y)
HFP(x, y), VHFI(x,y) ≤ VHFP(x,y)

(17)
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where VHFI(x,y) and VHFP(x,y) are the local variance values of a specific pixel HFI(x, y) or
HFP(x, y), respectively.

3.2.2. Low-Frequency Sub-Images Fusion

The low-frequency sub-images of the I component (LFI) and the PAN image (LFP) decomposed by
DRT contain the majority of the energy and spectral information of the I component and the PAN image,
which are essential for pan-sharpening. Sparse representation and compressed sensing are introduced to
get the representation of low-frequency sub-images efficiently and precisely. Predefined dictionaries are
usually adopted to reconstruct images in multiple existing studies of image sparse representation and
compressed sensing [43,56,63]. However, spectral characteristics of satellite images vary according to the
sensor type, imaging location and imaging time [47]. Therefore, many pan-sharpening methods based on
sparse representation and compressed sensing establish the dictionaries through image patches extracted
from the original satellite images [23,27,30,43,44,64].

We construct the dictionary D using image patches of LFP sub-images. To combine the local
information of LFI and LFP, we divide LFI and LFP into K small and partially overlapped image
patches with size l × l and overlapping ratio σ using the patch-by-patch strategy. Following the set-up
in the reference [27], all K patches from LFP sub-images are normalized, from which is subtracted the
mean of all patches to form the dictionary D. We denote D = {d1, d2, . . . , dK} is the dictionary to be
calculated, and the Gaussian random matrix is adopted as the decimation matrix M. Thus, each patch
of LFI (i.e., LFIk, k ∈ {1, . . . , K}), should be reconstructed into LFIk

R according to Equation (13) as:

ˆαk
LFI = min ‖αk‖1s.t. ‖yk

LFI −MDαk‖2
2 ≤ ε, k = 1, . . . , K (18)

where yk
LFI is column vector lexicographically rearranged from LFIk. According to Section 2.3,

the estimated kth patch is generated as ˆLFIk
R = D ˆαk

LFI via the BP algorithm.
To ensure the fused patch is capable of integrating both the local wavelet energy and structures

from LFI and LFP, the local difference weighted algorithm [62,65] is adopted to fuse LFIk
R and the

corresponding kth LFP patch (LFPk). The local difference weighted value calculated in the patch with
size l × l can be represented as:

W(x,y) =
∑x+k

i=x−k ∑
y+k
j=y−k

∣∣∣LFIk
R(i, j)− LFPk(i, j)

∣∣∣
l × l

(19)

where k = bl/2c, LFIk
R(i, j) and LFPk(i, j) denote the pixel values of a specific LFIR patch and

corresponding LFPk patch, W(x,y) is the local difference weighted value, and (x, y) is the central
coordinate of this specific patch. The fusion rule is defined as:

LFFk
R(x, y) = λ

[
a× LFIk

R(x, y) + b× LFPk(x, y)
]
+ µ (20)

where LFFk
R(x, y) is the kth fused low-frequency patch, and λ is the credibility of the pixel value

λ ∈ (0, 1]. Furthermore, a, b and µ can be defined as:

a = 1− b (21)

b =
W(x,y)

max
[
LFIk

R(i, j)− LFPk(i, j), 1 ≤ i ≤ M, 1 ≤ j ≤ N
] (22)

µ = (1− λ)×
∑l

i=1 ∑l
j=1 LFPk(i, j)

l × l
(23)

The fused low-frequency patches LFF not only contain the spectral information in LFI but
also preserve the characteristics of LFP, which differs from several pan-sharpening methods based
on sparse representation and compressed sensing that have been recognized as excellent [23,26,47].
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Subsequently, LFF are obtained by rearranging LFFR into image patches with the same size as LFI and
LFP. The procedure of low-frequency sub-images fusion is represented by the flowchart in Figure 1.
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The four main steps of low-frequency sub-images fusion can be briefly summarized as: (1) The
LFI and LFP sub-images are separately divided into K small and partially overlapped image patches.
All the image patches are normalized before the mean of each patch is subtracted. (2) All K patches
from LFP are utilized for the dictionary composition. (3) For each patch from LFI, compressed sensing
is performed by solving Equation (18) to acquire the reconstructed LFI patch. (4) The LFF patch is
fused using a local difference weighted algorithm.

3.3. The Over-All Pan-Sharpening Method

The technical flow of the proposed method is shown in Figure 2. The basic steps of the improved
IHS pan-sharpening method based on ripplet transform and compressed sensing are represented
as follows:

1. Data pre-processing: The MS and PAN images are co-registered precisely at first. In the meantime,
the MS image is up-sampled into the same pixel size and spatial scale as PAN image using
cubic convolution. This step ensures the MS and PAN images have the same pixel size and
geographic coordinates.

2. IHS transform: The MS image is converted into IHS space to obtain the I component according to
Equation (2). The histogram of the I component and of the PAN image are matched.

3. SFIM processing: SFIM is performed on the I component and the PAN image based on Equation
(15) to obtain ISFIM. In SFIM, the smoothing filter size should be defined experimentally.

4. DRT decomposition: The new intensity component (ISFIM) and the PAN image are decomposed
using two-level DRT with c = 1 and d = 4. The high frequency sub-images (HFI, HFP) and low
frequency sub-images (LFI, LFP) are generated by performing DRT.
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5. High-frequency sub-images fusion: HFI and HFP are fused to obtain HFF according to the local
variance algorithm in Section 3.2.1.

6. Low-frequency sub-images fusion: Compressed sensing and the local weighted algorithm
discussed in Section 3.2.2 is performed on LFI and LFP to obtain LFF.

7. IDRT transform: IDRT is performed on HFF and LFF to obtain the reconstructed intensity I
component (IR) following Equation (9).

8. Inverse IHS transform: By inverse IHS transform, we transform the reconstructed intensity
component (IR) and original H component and S component back into multi-band spaces to
obtain the pan-sharpened image.
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4. Results and Discussion

In this study, the proposed method, together with five state-of-the-art existing methods,
is implemented on three datasets (WorldView-2, Pleiades-1A, and TripleSat) each with size 1024× 1024
for comparison. The specific spatial resolution, spectral response, quantization value, and data source
of the three datasets are listed in the Table 1. The datasets cover land objects such as buildings, roads,
bridges, farmlands, rivers, shoreline, etc. To guarantee the generality of the experiment, we only fuse
three spectral channels in the MS image: red (R), green (G), and blue (B). In fact, the proposed method
on the basis of IHS transform has the potential to be extended to fuse four or more spectral bands.

Table 1. Characteristics of three datasets used in this study.

Features
WorldView-2 Pleiades-1A Triplesat

PAN MS PAN MS PAN MS

Spatial Resolution 0.46 m 1.84 m 0.5 m 2 m 0.8 m 3.2 m

Spectral Response 450–800 nm

Costal (C):
400–450 nm

Red (R):
630–690 nm

470–830 nm

Blue (B):
430–550 nm

450–650 nm

Blue (B):
440–510 nm

Blue (B):
450–510 nm

Red Edge
(RE):

705–745 nm

Green (G):
500–620 nm

Green (G):
510–590 nm

Green (G):
510–580 nm

Near IR-1
(NIR-1):

770–895 nm

Red (R):
590–710 nm

Red (R):
600–670 nm

Yellow (Y):
585–625 nm

Near IR-2
(NIR-2):

860–900 nm

Near IR
(NIR):

740–940 nm

Near IR
(NIR):

760–910 nm

Quantization Value 11 Bits 12 Bits or 16 Bits 10 Bits

Imaging Location Huang Long Stadium in Hangzhou, China Xuanen county government in
Enshi, China

Qingpu district in
Shanghai, China

Imaging Time 20 December 2009 13 April 2015 18 September 2017

The proposed method is compared with five state-of-the-art pan-sharpening methods,
including adaptive IHS (AIHS) [13], wavelet transform and sparse representation (WT-SR) [66],
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wavelet based IHS (WT-IHS) [19], curvelet transform and independent component analysis
(CT-ICA) [67], and ripplet transform based on injected details (CSI) [23]. Moreover, GS sharpening [15]
is a well-known method shown to be outstanding on many satellite images for its generality and
effectiveness. For fair comparison, the GS method is utilized as a standard benchmark in this study.
The corresponding performances are evaluated by six quality indices. All the algorithms and indices
used in experiments are implemented in MATLAB 2015b on a macOS 10.13 laptop.

In order to balance the performance and computation time of the proposed method, we empirically
define the averaging filter kernel size as 5× 5 when performing SFIM, and set the image patch size of
7× 7 with an overlapping ratio of 15% in low-frequency sub-images fusion. In Section 4.3.1, we have
a brief discussion on the size of averaging filter kernel selection in SFIM. The effects of the image
patch size and overlap ratio on WorldView-2, Pleiades and Triplesat are analyzed in Section 4.3.2.
To ensure the fairness of the comparison, the overlapping ratio of the CSI method is set to be 50% as
recommended by [27].

4.1. Qualitative Comparison

The source MS and PAN images from the three datasets and corresponding pan-sharpened images
produced by seven individual approaches are presented in Figures 3–5, respectively. The up-sampled
MS images are regarded as ground truth and collaborated with GS sharpened images as benchmarks.
For fairer comparisons, the zoomed images for the local area are provided at the bottom corner of
each image.
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Figure 3. WorldView-2 original images and fusion results of different methods. (a) Original
multispectral image (MS); (b) Original panchromatic image (PAN); (c) Gram-Schmidt [15]
pan-sharpened image (GS); (d) Adaptive IHS [13] pan-sharpened image (AIHS); (e) Wavelet transform
and sparse representation method [66] pan-sharpened image (WT-SR); (f) Wavelet-based IHS [19]
pan-sharpened image (WT-IHS); (g) Curvelet transform and independent component analysis [67]
pan-sharpened image (CT-ICA); (h) Ripplet transform based on injected details [23] pan-sharpened
image (CSI); (i) pan-sharpened image by the proposed method (proposed).
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The pan-sharpening results reveal that the GS method possesses ideal universality for the three
experimental datasets. The GS method is able to enrich spatial information significantly with a tolerable
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spectral distortion. Furthermore, in general, the proposed method outperforms all the other methods
(including the GS method) on the three datasets. It can be seen in Figures 3–5 that the pan-sharpened
image of the proposed method has the closest spectral characteristics of MS images and possesses
more abundant (or approximately equivalent) spatial information than other pan-sharpened images.

From the perspective of spatial details upgrading, AIHS and WT-IHS methods perform better than
WT-SR and CT-ICA. The spatial structures and textures contained in pan-sharpened images output
by AIHS and WT-HIS are more visually cognizable. The AIHS method causes more obvious spectral
distortion on the three datasets, which is deduced by the highest brightness of pan-sharpened images
by AIHS. However, from the perspective of the preservation of spectral information, WT-SR and
CT-ICA results reveal no obvious visual spectral diversity degradation. However, the zoomed images
suggest these methods (especially WT-SR) perform poorly in improving spatial details. It can also be
seen that the CSI method has a remarkable performance on the WorldView-2 and Triplesat datasets.

Since human vision is not sensitive enough to perceive spectral distortion, we calculate the
absolute difference values between the fusion results and the original MS image according to
Equation (24) as:

Di f f erence(x, y) =
1
B

M

∑
x=1

N

∑
y=1

B

∑
b=1
|F(x, y, b)− R(x, y, b)| (24)

where (x, y) is the coordinate of a specific pixel, B is the number of bands, M× N is the size of images,
and F and R denote the pan-sharpened image and referenced MS image. Figures 6–8 are difference
images, which denote the absolute values of spectral information difference between each fused image
and referenced MS image on every pixel for the three datasets. Blue represents finer differences and
red suggests larger differences in spectral information.
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Figures 6–8 demonstrate that the proposed method is superior to other methods in spectral fidelity
improvement. However, when implemented on the Triplesat dataset, the proposed method (Figure 8g)
causes a slight spectral distortion. The difference images of the GS method are generally fine for all
datasets when compared with other methods. In particular, the difference images reveal that the
AIHS and WT-IHS methods lead to more serious spectral degradation, which is in accordance with
visual analyses.

4.2. Quantitative Comparison

In quantitative comparison, correlation coefficient (CC) [10], root mean square error (RMSE) [47],
the relative global synthesis error (ERGAS) [10], spectral angle mapper (SAM) [10], image quality score
index (Q4) [68], and quality with no reference (QNR) [69] are adopted to evaluate the performance
of individual pan-sharpening methods. Specifically, the application of CC, RMSE, ERDAS, SAM,
Q4, and QNR with Dλ can assess the spectral correlation between the original MS image and the
pan-sharpened image. The standard deviation (STD) and QNR with Ds reflect the richness of spatial
details in the MS and pan-sharpened images. The ideal values of CC, Q4 and QNR are 1. The smaller
the values for RMSE, ERGAS and SAM, the better. The quantitative results of these different methods
on the three datasets are reported in Tables 2–4, respectively. For better observation, the optimal value
of each quality metric is labeled in bold.

Table 2. Evaluation indices of fusion results for WorldView-2 data.

Index GS
Method

AIHS WT-SR WT-IHS CT-ICA CSI Proposed

Correlation coefficient (CC)

R 0.945 0.896 0.912 0.910 0.938 0.941 0.952
G 0.936 0.879 0.934 0.915 0.924 0.953 0.957
B 0.940 0.925 0.927 0.912 0.947 0.948 0.949

Average 0.941 0.900 0.924 0.912 0.936 0.947 0.953

Root mean square error (RMSE)

R 15.02 16.96 15.67 16.24 14.68 15.17 14.91
G 14.86 16.85 15.94 16.36 14.96 13.82 13.64
B 14.07 17.23 16.07 15.91 15.24 13.94 13.65

Average 14.65 17.05 15.89 16.17 14.96 14.31 14.07

Standard deviation (STD)

R 63.61 59.65 58.34 63.28 62.34 66.24 65.27
G 65.09 61.23 57.97 67.95 57.68 64.16 65.33
B 62.82 57.29 58.26 61.27 58.29 63.90 65.28

Average 63.84 59.39 58.19 64.17 59.43 64.77 65.29

The relative global synthesis error (ERGAS) 2.873 3.681 3.487 3.335 3.015 2.974 2.762

Spectral angle mapper (SAM) 5.096 7.620 8.673 7.241 6.292 3.245 3.271

Image quality score index (Q4) 0.831 0.589 0.534 0.591 0.628 0.896 0.913

Quality with no reference (QNR)
Ds 0.129 0.145 0.132 0.152 0.137 0.125 0.121
Dλ 0.143 0.186 0.174 0.163 0.151 0.134 0.132

Average 0.808 0.669 0.781 0.748 0.795 0.818 0.854
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Table 3. Evaluation indices of fusion results for Pleiades data.

Index GS
Method

AIHS WT-SR WT-IHS CT-ICA CSI Proposed

CC

R 0.833 0.675 0.806 0.713 0.867 0.821 0.875
G 0.802 0.623 0.814 0.756 0.859 0.834 0.861
B 0.799 0.694 0.795 0.697 0.874 0.806 0.868

Average 0.811 0.664 0.805 0.722 0.867 0.820 0.868

RMSE

R 10.14 13.68 10.29 12.40 9.799 10.28 9.014
G 9.996 13.55 10.37 12.52 9.368 9.867 9.257
B 10.11 13.27 11.15 12.70 9.257 10.02 9.119

Average 9.773 13.50 10.60 12.54 9.475 10.05 9.130

STD

R 53.02 56.56 47.92 51.37 52.51 55.69 55.24
G 53.97 52.46 46.58 52.17 53.11 54.72 55.67
B 54.12 53.65 47.14 52.64 52.89 55.02 55.94

Average 53.70 54.16 47.22 52.00 52.84 55.15 55.62

ERGAS 1.709 2.689 2.054 2.337 1.680 1.806 1.547

SAM 1.643 2.081 1.854 1.922 1.725 1.734 1.549

Q4 0.878 0.657 0.762 0.715 0.865 0.890 0.894

QNR
Ds 0.119 0.264 0.181 0.254 0.213 0.157 0.119
Dλ 0.102 0.118 0.097 0.154 0.105 0.094 0.086

Average 0.810 0.675 0.834 0.760 0.798 0.825 0.874

Table 4. Evaluation indices of fusion results for Triplesat data.

Index GS
Method

AIHS WT-SR WT-IHS CT-ICA CSI proposed

CC

R 0.905 0.757 0.852 0.884 0.939 0.961 0.975
G 0.917 0.778 0.867 0.904 0.928 0.963 0.982
B 0.893 0.802 0.840 0.898 0.922 0.975 0.966

Average 0.905 0.779 0.853 0.895 0.930 0.966 0.974

RMSE

R 19.83 30.81 25.42 26.73 22.40 12.42 10.08
G 16.77 29.96 24.36 28.39 22.33 12.18 9.422
B 13.92 30.46 25.05 27.57 20.50 10.75 11.60

Average 16.74 30.41 24.94 27.56 21.74 11.78 10.37

STD

R 59.80 60.06 47.56 57.01 51.66 62.17 63.52
G 61.07 60.61 48.73 57.79 51.86 62.62 62.07
B 60.58 59.59 47.34 56.50 50.14 62.37 62.17

Average 60.48 60.09 47.88 57.10 51.13 62.39 62.59

ERGAS 1.402 3.925 1.875 2.613 1.534 1.394 1.360

SAM 1.996 5.341 3.522 4.898 2.847 2.002 1.987

Q4 0.810 0.675 0.806 0.761 0.861 0.925 0.979

QNR
Ds 0.177 0.329 0.168 0.214 0.175 0.137 0.149
Dλ 0.138 0.205 0.177 0.198 0.154 0.116 0.103

Average 0.810 0.668 0.715 0.694 0.767 0.832 0.869

The quantitative comparison results, as represented in Tables 2–4, reveal the proposed method to
be superior than other methods as it achieves the optimum value for most quality indices. Such a result
is in accordance with our previous qualitative comparison. The CSI method achieves comparable
values for the WorldView-2 dataset (specifically for STD of the red band and SAM) and the Triplesat
dataset (specifically for CC, RMSE, STD of the blue and red bands and Ds) but fails to achieve the
same overall (i.e., average) score for the WorldView-2 and Pleiades datasets. The AIHS method has
relatively higher STD values on the three datasets, and even achieves the highest value of STD of the
red band for the Pleiades dataset. Similar to the WT-IHS method, however, the AIHS method is also
not capable of maintaining spectral information, with inferior values for CC, RMSE ERGAS, SAM and
Q4. After the proposed method, CSI method performs best on the WorldView-2 and Triplesat datasets.

4.3. Discussion on Independence Factors and Contributions

In this section, we discuss the three independence factors of the proposed method and briefly
conclude the contributions. In Section 4.3.1, the influence of smoothing filter kernel size in SFIM is
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discussed. The dependence of image patch size and overlapping ratio in low-frequency sub-images
fusion is investigated in Section 4.3.2. The contributions are provided in Section 4.3.3.

4.3.1. Discussion on Averaging Filer Kernel Size in SFIM

As mentioned in Section 3.1, the definition of averaging filer kernel size in SFIM depends on the
scale ratio between PAN and MS images. The scale ratio of WorldView-2, Pleiades and Triplesat
is 4 (Table 1), but the kernel size is theoretically odd [51]. Hence, 3 × 3 and 5 × 5 are the two
potential optimal kernel sizes of the experiment datasets. Following the guidance in [51], we derive
the CC between the pan-sharpened images with the original PAN and MS images for the three
datasets. The specific results, as reported in Table 5 (where “PS” represents the pan-sharpened images),
reveal 5× 5 as the optimal kernel size for the study, as the sums of CC between PS with PAN and PS
with MS are relatively higher than that of 3× 3.

Table 5. Impact of smoothing filer kernel size in SFIM on three datasets.

Dataset CC
Kernel Size

3 × 3 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

WorldView-2

PS and
PAN 0.738 0.765 0.776 0.797 0.831 0.841

PS and MS 0.969 0.958 0.935 0.902 0.881 0.867
Sum 1.707 1.723 1.721 1.699 1.712 1.708

Pleiades

PS and
PAN 0.715 0.731 0.742 0.757 0.772 0.791

PS and MS 0.879 0.868 0.847 0.833 0.825 0.802
Sum 1.594 1.599 1.589 1.590 1.577 1.593

Triplesat

PS and
PAN 0.732 0.788 0.805 0.835 0.842 0.846

PS and MS 0.981 0.974 0.955 0.921 0.913 0.902
Sum 1.713 1.762 1.760 1.756 1.755 1.746

Furthermore, we increase the smoothing kernel size from 7× 7 towards 13× 13 to discuss the
influence of kernel size in SFIM. It is noteworthy that the CCs of PS and PAN, and PS and MS become
gradually identical with the increase in kernel size. Such a trend reveals that the large kernel size will
excessively modulate MS images towards PAN images.

4.3.2. Dependence on Image Patch Size and Overlapping Ratio

According to Section 3.2.2, image patch size l × l and the overlapping ratio σ are the only two
parameters in LF sub-images fusion. The formation of dictionary D is dependent on image patch size
and overlapping ratio. There is a trade-off between the completeness (i.e., number of image patches)
and compactness (i.e., size of image patches) of the dictionary [70]. On one hand, a too-large image
patch size accelerates computation but weakens the ability of compressed sensing to reconstruct the
LF component. On the other hand, a too-small image patch size leads to high coherence of atoms in
the dictionary.

We increase image patch size from 5× 5 to 11× 11 and the overlapping ratio from 5% to 20%.
Experimental results on WorldView-2, Pleiades-1A, and Triplesat data are reported in Tables 6–8
(where “Avg” means the average value of the index of all the spectral channels), separately.
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Table 6. Impact of image patch size and overlapping ratio on WorldView-2 image.

Image Patch Size Overlapping Ratio CC
(Avg)

RMSE
(Avg)

STD
(Avg) ERGAS SAM Q4 QNR

(Avg)
Time

(s)

5 × 5 5% 0.887 19.02 55.21 3.330 4.315 0.804 0.751 40.91
5 × 5 10% 0.906 18.27 57.93 3.205 4.298 0.827 0.766 56.43
5 × 5 15% 0.921 17.49 59.66 3.119 4.102 0.840 0.794 82.72
5 × 5 20% 0.934 17.33 60.57 3.012 3.926 0.856 0.801 107.5
7 × 7 5% 0.949 16.21 63.01 2.887 3.614 0.891 0.835 61.25
7 × 7 10% 0.951 14.95 64.67 2.824 3.359 0.907 0.847 85.60
7 × 7 15% 0.953 14.07 65.29 2.762 3.271 0.913 0.854 119.7
7 × 7 20% 0.954 13.65 65.33 2.637 3.153 0.918 0.862 162.1
9 × 9 5% 0.924 14.73 63.29 2.835 3.825 0.882 0.826 72.71
9 × 9 10% 0.930 14.65 63.37 2.829 3.814 0.897 0.833 105.8
9 × 9 15% 0.935 14.58 63.45 2.820 3.802 0.903 0.839 156.1
9 × 9 20% 0.937 14.46 63.58 2.813 3.796 0.909 0.841 182.9

11 × 11 5% 0.918 15.32 62.09 2.964 3.967 0.873 0.811 86.50
11 × 11 10% 0.924 15.24 62.17 2.947 3.956 0.879 0.817 117.1
11 × 11 15% 0.931 15.13 62.22 2.939 3.943 0.885 0.824 165.6
11 × 11 20% 0.935 15.09 62.36 2.932 3.937 0.891 0.829 196.4

Table 7. Impact of image patch size and overlapping ratio on Pleiades-1A image.

Image Patch Size Overlapping Ratio CC
(Avg)

RMSE
(Avg)

STD
(Avg) ERGAS SAM Q4 QNR

(Avg)
Time

(s)

5 × 5 5% 0.788 10.267 44.328 2.339 2.357 0.786 0.781 24.26
5 × 5 10% 0.795 9.901 46.583 2.328 2.340 0.801 0.793 59.67
5 × 5 15% 0.813 9.825 48.772 2.224 2.214 0.815 0.805 80.41
5 × 5 20% 0.821 9.658 49.935 2.107 2.098 0.834 0.829 95.93
7 × 7 5% 0.837 9.246 53.839 1.715 1.772 0.863 0.847 49.47
7 × 7 10% 0.854 9.224 54.348 1.606 1.618 0.879 0.861 80.65
7 × 7 15% 0.868 9.130 55.617 1.547 1.549 0.894 0.874 124.3
7 × 7 20% 0.882 9.067 56.811 1.435 1.421 0.912 0.886 165.7
9 × 9 5% 0.811 9.425 51.267 1.809 1.795 0.851 0.835 50.66
9 × 9 10% 0.820 9.319 51.983 1.775 1.682 0.860 0.842 61.42
9 × 9 15% 0.829 9.221 52.617 1.661 1.607 0.873 0.856 98.71
9 × 9 20% 0.836 9.178 53.209 1.587 1.534 0.889 0.868 174.9

11 × 11 5% 0.805 9.729 50.664 1.924 1.895 0.847 0.822 72.83
11 × 11 10% 0.814 9.633 51.709 1.873 1.862 0.851 0.829 103.6
11 × 11 15% 0.827 9.521 53.105 1.705 1.734 0.864 0.838 138.7
11 × 11 20% 0.833 9.413 54.018 1.582 1.607 0.877 0.845 190.1

Table 8. Impact of image patch size and overlapping ratio on Triplesat image.

Image Patch Size Overlapping Ratio CC
(Avg)

RMSE
(Avg)

STD
(Avg) ERGAS SAM Q4 QNR

(Avg)
Time

(s)

5 × 5 5% 0.883 11.304 51.178 2.016 3.357 0.917 0.798 35.34
5 × 5 10% 0.898 11.295 52.591 1.912 3.102 0.921 0.803 62.40
5 × 5 15% 0.907 11.187 53.834 1.887 2.945 0.925 0.811 105.4
5 × 5 20% 0.924 11.062 54.367 1.654 2.798 0.934 0.826 162.7
7 × 7 5% 0.951 10.563 60.498 1.456 2.223 0.955 0.847 84.64
7 × 7 10% 0.962 10.445 62.067 1.398 2.148 0.968 0.853 125.3
7 × 7 15% 0.974 10.368 62.586 1.360 1.987 0.979 0.869 141.5
7 × 7 20% 0.989 10.017 63.054 1.349 1.905 0.982 0.874 188.4
9 × 9 5% 0.941 10.664 55.392 1.489 2.482 0.940 0.841 94.51
9 × 9 10% 0.952 10.532 56.018 1.447 2.405 0.954 0.849 110.9
9 × 9 15% 0.966 10.467 56.981 1.394 2.349 0.963 0.855 145.2
9 × 9 20% 0.975 10.395 57.765 1.251 2.297 0.977 0.863 191.6

11 × 11 5% 0.933 10.894 56.215 1.664 2.664 0.933 0.832 86.32
11 × 11 10% 0.941 10.752 57.541 1.598 2.615 0.941 0.839 119.7
11 × 11 15% 0.957 10.663 58.165 1.435 2.533 0.956 0.847 158.5
11 × 11 20% 0.969- 10.597 59.085 1.357 2.498 0.968 0.851 200.2
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According to this statistical evidence, we can draw three conclusions:

1. The increase of the overlapping ratio σ is beneficial to performance but leads to large increases in
computation time.

2. For WorldView-2, Pleiades-1A, and Triplesat data, 7× 7 is the optimal image patch size.
3. In our experiments, σ = 15% is the most desirable value to balance performance and computation time.

4.3.3. Contributions

In general, comprehensive evaluations, both visually and by objective indices, reveal the proposed
method as optimal for datasets from WorldView-2, Pleiades, and Triplesat, when compared with
AIHS [13], WT-SR [66], WT-IHS [19], CT-ICA [67], CSI [23] and GS [15]. Notably, the CSI method
also achieved comparable results with the exception of the Pleiades dataset. The results indicate
that the proposed method achieves better spectral fidelity while yielding greater (or equivalent)
spatial information improvement than the other state-of-the-art methods. Furthermore, the results
demonstrate that the integration of DRT and compressed sensing can ensure the balance of spatial
detail reconstruction and spectral diversity preservation.

5. Conclusions

In this paper, an improved IHS-based pan-sharpening method using ripplet transform and
compressed sensing is proposed, which overcomes the spectral distortion that occurs in the original
IHS method. Firstly, SFIM is performed on the PAN image and the I component separated from MS
image to improve spectral fidelity. The proposed method adopts different fusion rules according to
individual characteristics of the HF and LF coefficients obtained by DRT. The fusion rule based on local
variance of wavelet energy is utilized for HF sub-images. For LF information, we use a compressed
sensing technique to maintain the local structures and spectral information. The LF coefficients of
the I component and the PAN image are divided into small patches and a dictionary is constructed
using patches of low-frequency components of PAN. The reconstructed low-frequency components of
the I component and the PAN image are generated using the BP algorithm, and the local difference
weighted algorithm is used to generate new LF components. For the combination of IHS transform,
DRT and compressed sensing, the proposed algorithm can produce pan-sharpened images with both
high spatial and high spectral resolution efficiently and effectively.

The performance of the proposed method and five state-of-the-art methods is comprehensively
evaluated using WorldView-2, Pleiades-1A and Triplesat datasets. The specific evaluation indices
include CC, RMSE, STD, ERGAS, SAM, Q4 and QNR. The experimental results demonstrate that
the proposed method performs better than other fusion methods and overcomes spectral distortion
while improving spatial resolution significantly. In future work, more effort should be dedicated to
improving the efficiency of the proposed method, as the BP algorithm is time-consuming and can
thus be potentially replaced by other reconstruction algorithms. In addition, the practicability of the
algorithm images captured by other remote sensors has yet to be demonstrated.
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