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F-18-fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) scans are positive in any condition which increases
metabolism in a mass or tissue and are therefore not specific for neoplastic conditions. The use of an SUV cutoff value of 2.5
may not always help discriminate between benign and malignant cases. For a practicing cytopathologist doing adequacy checks
during an image-guided procedure, it may be of value to be aware that elevated SUV values are not always indicative of a malignant
process, and vice versa.

1. Introduction

Positron Emission Tomography (PET) is a form of nuclear
medicine technology that measures bodily functions, such
as blood flow, oxygen use, and glucose metabolism. The
procedure utilizes a radioactive “tracer” substance, which
is typically injected into the bloodstream. This radioactive
material accumulates in organs and decays by the emission of
gamma rays. These are captured by a PET scanner, and, with
the aid of a computer, an image is generated. Unlike other
imaging modalities, PET studies are less directed toward
depicting anatomy and structure and more concerned with
depicting physiologic processes [1]. This includes the rates
of glycolytic metabolism or levels of other various chemical
activities that are often high in malignancy.

A commonly used tracer substance is the glucose ana-
logue, F-18-fluorodeoxyglucose (FDG). Areas of greater
intensity, called “hot spots,” indicate where large amounts of
the radiotracer have accumulated and where there is a high
level of glucose hypermetabolism. Less intense areas, or “cold
spots,” indicate a smaller concentration of radiotracer. FDG
utilization can be used to semiquantify metabolic activity via
the generation of “standardized uptake values,” or SUVs [2].

These “hot” and “cold” spots correlate to higher or lower
SUVs, respectively.

PET has found wide-spread application in the field of
oncology, where it is used in the differential diagnosis,
staging and therapy monitoring of oncologic disease [3].
However, there are limitations to the procedure. Body
positioning, as well as movement during the procedure, has
been shown to affect the results [4]. Additionally, altered
metabolic rates or chemical balances may yield false results.
A PET scan may be positive in any condition that results
in the elevated metabolism of a mass or tissue. This could
include inflammatory states, as well as other benign processes
[5]. Therefore, PET is not specific for neoplastic states. If a
lesion is identified by a PET scan, it may need to undergo
a biopsy to determine benign nature versus malignancy.
The reported sensitivity and specificity varies greatly among
studies, and, in many instances, there is a lack of histologic
confirmation. The correlation of tissue diagnoses with PET
scan-identified lesions in our institution is unknown. The
aim of our study was to evaluate the overall accuracy of
positive PET scans at detecting malignant lesions (i.e., the
number of positive PET cases confirmed malignant by tissue
diagnosis).
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Table 1: Type of diagnostic procedure.

Procedure Total

Biopsy 30

TBNA 30

CT FNA 22

Superficial FNA 6

US FNA 6

BRUSH/WASH 1

Total 95

FNA: fine needle aspiration, TBNA: transbronchial needle aspiration, CT
FNA: computerized tomography guided FNA, US FNA: ultrasound guided
FNA, BRUSH/WASH: bronchial brush/wash done during bronchoscopy.

2. Study Design

We searched the electronic records of Veteran Affairs Medical
Center, Houston, Texas to identify patients that had a
fine needle aspiration (FNA) or tissue biopsy performed
as a consequence of a PET-positive result, over a twenty-
four-month period. Cases where biopsy or FNA procedure
preceded the PET scan were not included in the study.
“PET impression” was defined as a qualitative evaluation
of the visually recognized focal area of hypermetabolism.
PET impression was divided into four categories: posi-
tive, negative, suspicious, and indeterminate. Positive PET
impression was defined as a well-defined focus of abnormal
FDG uptake, more active than the surrounding tissue, and
with an SUV more than 2.5. Areas with no activity or
activity less than that of the adjacent tissue were identified
as negative by PET impression [6, 7]. Cases in which there
was any FDG uptake qualifying as focal hypermetabolism
with SUV less than 2.5 or SUV more than 2.5 but visually
not focally hypermetabolic were classified as “suspicious”
by PET impression. Indeterminate was any uptake or lesion
which could not be classified as above. All PET studies
were evaluated for PET impression by one Nuclear Medicine
Physician for benignancy versus malignancy blinded to
the tissue diagnosis. SUV was measured in the focus of
hypermetabolism by drawing the region of interest (ROI)
for all cases. SUV of 2.5 or greater is reported to be more
indicative of malignant rather than benign lesions [8, 9].
Correlation of tissue diagnoses with the PET impression
and the standard uptake value (SUV) using 2.5 as a cutoff
was performed and the sensitivity and specificity calculated.
Cytology or biopsy specimens obtained from PET-negative
results were obtained from patients who had a PET-positive
lesion with a concurrent positive biopsy of that site. In
addition, some of these patients had biopsies of other
locations (that were PET negative) for staging purposes.
“PET grouped” refers to the analysis of the sum of both
PET impression positive and PET impression suspicious
groups. Cases with PET inconclusive interpretation were not
included in the specificity or sensitivity analysis.

3. Statistical Methods

Basic statistical analysis to calculate percentage, specificity,
and sensitivity were done using Microsoft Office Excel 2007.

Table 2: Organ sites where PET scan and tissue diagnosis were per-
formed.

Site Total

Lung 36

Lymph node

Lung 23

Neck 5

Paratracheal 2

Axilla 2

Mediastinum 2

Supraclavicular 1

Groin 1

Bone

Rib 3

Vertebral 1

Parotid gland 2

Skin 2

Chest wall 1

Colon 1

Epiglottis 1

Esophagus 1

Soft tissue

Gluteal 1

Supraclavicular 1

Kidney 1

Liver 1

Mediastinum 1

Neck mass 1

Orbit 1

Oropharynx 1

Rectum 1

Minor salivary gland 1

Thyroid 1

Total 95

Differences in proportions among SUV value and biopsy
results were calculated using Student’s t-test. Receiver oper-
ating characteristic (ROC) curve was used to evaluate SUV
and biopsy-FNA results. An ROC curve is a plot of the true
positive fraction (sensitivity) versus the false positive fraction
(one minus the specificity). ROC curves were constructed for
the whole group of cases and controls. The area under the
ROC curve (AUC) was also calculated (Statistica Version 8,
Statsoft, Tulsa, OK).

4. Results

A total of 1383 biopsies and FNA cytologies were found
in our electronic records, of which 95 had tissue and
available corresponding preceding PET scan to be included
for the final analysis. Most diagnostic procedures resulted in
cytology specimens (from fine needle aspirations, n = 65);
the type of diagnostic procedure is detailed in Table 1, and
the organ location, where PET scan and tissue diagnosis
were performed, is depicted in Table 2. These 95 procedures
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Table 3: Distribution of cases according to PET impression and Bx/FNA result.

Biopsy-FNA

PET impression Positive Negative Nondiagnostic Inconclusive Total

Positive 37 (80%) 8 (18%) 1 (2%) 0 46 (49%)

Negative 0 (0%) 24 (100%) 0 0 24 (25%)

Suspicious 9 (43%) 10 (47%) 1 (5%) 1 (5%) 21 (22%)

Inconclusive 2 (50%) 2 (50%) 0 0 4 (4%)

Total 51 41 2 1 95

(a) (b)

(c) (d)

Figure 1: A case showing PET scan diagnosed as “positive for neoplastic process” and a corresponding negative biopsy. (a, b) Intense FDG
radiotracer uptake in the mediastinal lymph node. (c) Surgical specimen showing caseating granuloma (H&E 100x). (d) FNA showing
absence of malignant cells and clusters of epithelioid cells admixed with lymphocytes and debris (Papanicolaou 100x).

were performed in 54 patients, of which 53 were male and 1
female (this reflects usual demographics of a Veterans Affairs
hospital, where most patients are male). The average age
was 66.5 years at time of diagnosis (42–88 years old). The
average time that elapsed between PET scan and diagnostic
procedure was 36 days (0–288 days).

Forty-six (49%) lesions were interpreted as positive on
PET scan, of which 37 (80%) were malignant, 8 (18%)
benign, and 1 (2%) nondiagnostic on cytology or biopsy.
Twenty-four cases (25%) had a negative PET scan, all of
which were benign on cytology or biopsy. Twenty-one (22%)
lesions were interpreted as suspicious on PET scan, of which
9 (43%) were malignant, 10 (47%) were benign, 1 (5%)
rendered nondiagnostic material, and 1 (5%) inconclusive

result on cytology or biopsy. A total of 4 cases (4%) were
interpreted as inconclusive on PET scan, of which 2 (50%)
were diagnosed as positive and 2 (50%) as negative on
cytology (Table 3).

PET-positive/FNA-biopsy negative cases were found in
8 procedures performed on 6 cases. These corresponded
to 5 lung lesions and 3 lymph nodes. On pathologic
exam, these cases showed either no pathologic change
(one case), necrotizing granuloma (one case; Figure 1), or
chronic inflammatory changes (three cases). In addition, 10
PET suspicious-biopsy/FNA negative cases were identified
showing reactive changes, inflammation, aspiration pneu-
monia, reactive lymphoid hyperplasia, and a villous ade-
noma.
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Table 4: Distribution of the cases according to PET SUV and Biopsy-FNA result.

Biopsy

SUV Positive Negative Suspicious Inconclusive Total

>2.5 39 (66%) 19 (32%) 0 1 (2%) 58

<2.5 7 (22%) 21 (68%) 3 (10%) 0 31

Not available 5 (83%) 1 (17%) 0 0 6

Total 51 41 2 1 95

Table 5: Clinical characteristics of the 8 biopsy-FNA positive procedures with SUV < 2.5.

Patient Age Organ Procedure PET impression SUV Diagnosis

1 68 Supraclavicular lymph node US FNA Inconclusive 1.5 Metastatic adenocarcinoma

2 77 Mediastinal lymph node TBNA Suspicious 2.1 Poorly differentiated squamous cell carcinoma

3 77 Lung TBNA Suspicious 2.4 Basaloid carcinoma

4 82 Axillary lymph node CT FNA Suspicious 2.3 B-cell lymphoma, follicular type

5 42 Neck lymph node CT FNA Suspicious 2.1 Small lymphocytic lymphoma

6 55 Paratracheal lymph node Biopsy Negative 0 Poorly differentiated squamous cell carcinoma

6 Paratracheal lymph node Biopsy Negative 0 Poorly differentiated squamous cell carcinoma

6 Lung Biopsy Negative 0 Poorly differentiated squamous cell carcinoma

US FNA: ultrasound guided FNA, TBNA: transbronchial needle aspirate, CT FNA: CT-guided FNA.
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Figure 2: Distribution of SUV according to biopsy result.

The correlation between SUV and biopsy results is shown
in Table 4. A total of 19 cases (32%) with SUV > 2.5 had a
negative FNA or biopsy result. These cases were diagnosed
as negative for malignancy, reactive lymph nodes, villous
adenoma, and necrotizing granuloma. Seven procedures
(22%) with an SUV < 2.5 with a positive FNA or biopsy
corresponded to 6 patients (Table 5). The first case was
a metastatic adenocarcinoma consistent with a pancreatic
primary. By immunohistochemistry the tumor cells were
cytokeratin 7 positive, cytokeratin 20 negative, and TTF-1

negative. The patient was found to have a 7.3 cm pancreatic
head mass by imaging studies. The remaining cases included
a poorly differentiated squamous cell carcinoma, basaloid
carcinoma of the lung, B-cell lymphoma follicular type, small
lymphocytic lymphoma, and poorly differentiated squamous
cell carcinoma (Table 5).

A box plot showing the SUV distribution according to the
biopsy/FNA result is shown in Figure 2. The average SUV for
the negative biopsy group was 3.3 (0–18.9, SD: 5.2) and for
the positive biopsy group 8.6 (0–26.9, SD: 6.7). There was
a significant overlap among negative and positive cases as
shown in Figure 2. However, the difference between negative
and positive biopsy groups was statistically significant (P <
.0017). In concordance, the ROC curve shows that an SUV
cutoff of 2.5 has a significant discriminatory value (Figure 3).
The calculated area under the curve was 82.3%.

The overall sensitivity and specificity for PET impression
was 100% and 75%, respectively (Table 6). When biopsy
and FNA results are correlated with SUV, the overall
sensitivity and specificity were 84% and 52%, respectively
(Table 6). Overall, the sensitivity and specificity were higher
for PET impression compared to the SUV. When suspicious
and inconclusive cases were grouped together with the
positive results, the sensitivity dropped, while the specificity
remained basically unchanged (Table 6).

5. Discussion

In this study we analyzed the correlation between pathology
diagnosis (obtained either by FNA or biopsy) and the
corresponding PET scan result. We found that the sensitivity
and specificity were higher for PET impression (qualitative
interpretation of a PET scan which takes into account visual
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Figure 3: ROC curve.

interpretation of FDG uptake coupled with SUV value)
compared to the SUV alone (quantitative measure of FDG
tracer uptake with a cutoff value of 2.5) [8, 9].

Currently, the application of Positron Emission Tomog-
raphy (PET) in the diagnosis, staging, and monitoring
of therapeutic response has gained wide acceptance in
the field of oncology. Metabolism of the most commonly
used tracer, F-18-fluorodeoxyglucose (FDG), can be used
to semiquantify metabolic activity in tissues of interest
via generation of “standardized uptake values,” or SUVs.
Standardized uptake values of greater than 2.5 are reported to
be more indicative of malignant conditions [8, 9]. However,
studies comparing PET impression and SUVs with FNA or
biopsy outcomes are sparse. In 2007, Pansare et al. performed
a retrospective analysis of PET scan SUV with final FNA
results [10]. Using an SUV cutoff of 2.5, their findings
showed that, for lesions with an SUV > 2.5, 87% proved to
be malignant and 13% benign on tissue diagnosis. Of the
lesions with an SUV < 2.5, 54.5% showed benign cytology
and 45.5% malignant cytology. The reported sensitivity,
specificity, positive predictive values (PPV), and negative
predictive value was 84%, 60%, 87%, and 56%, respec-
tively. In comparison to Pansare’s findings, the sensitivity
and specificity from our study are higher. The different
characteristics of the patient population, organ sites, and
method of collecting the specimens as well as variation in
PET analysis may account for these differences. In particular,
the number of true negative and false negative cases may be
difficult to obtain. Normally, tissue sites that are negative on
PET scan are not biopsied or are biopsied rarely. Therefore,
the total number of true negative and false negative cases
is difficult to assess and can be variable among studies. In
our study, these cases (PET positive/biopsy-FNA negative)
were obtained from patients who had a PET-positive lesion

Table 6: Comparison of the sensitivity and specificity for PET and
SUV.

Pet impression SUV PET grouped∗

Sensitivity 100% 84% 100%

Specificity 75% 52% 57%
∗

“PET grouped” refers to the analysis of the sum of both PET impression
positive and PET impression suspicious groups.

with a concurrent positive biopsy of that site, and in addition
these same patients had biopsies of other locations (that
were PET negative), for staging purposes. The number of
these cases was small and may not accurately reflect the true
correlation of PET diagnosis and pathologic diagnosis. Other
considerations that may contribute to differences among
studies are organ site, type of tumor, size of the lesion,
and metabolic state of the tumor cells. For example, the
reported sensitivity and specificity PET CT of lung lesions
is 96% (range: 83–100%) and 79% (range: 52–100%) [11,
12], for colorectal cancer 97% (95–99%) and 75.6% (64–
88%) [13, 14], for Hodgkin lymphomas 84% (71–92%)
and 90% (84–94%) [15], non-Hodgkin lymphomas 72%
(61–82%) and 100% (97–100%) [15], esophageal tumors
51% (27–93%) and 84% (41.7–95.2%) [16, 17], and head
and neck tumors 98% (88–100%) and 92% (75–100%),
respectively [18–20]. One of the limitations of our study was
the enrollment of patients with known history of cancer.
Further studies, including more homogeneous and larger
cohort of patients stratified by anatomic site and histologic
diagnosis are needed to further characterize and define SUV
cutoff values for particular organ system in our patient
population.

In our study, we also assessed the correlation between
PET impression with the final tissue diagnosis. For lesions
diagnosed by PET impression as positive, 80% proved
malignant and 18% benign on cytology or biopsy. One case
(2%) with a PET-positive impression was signed out as
nondiagnostic on cytology. All 24 cases that were diagnosed
as negative by PET impression were diagnosed as benign
on cytology or biopsy. The overall sensitivity and specificity
was 100% and 75%, respectively. In comparison to the
results found by Pansare, the sensitivity when utilizing PET
impression was roughly the same; however, the specificity
appears notably higher (75% versus 60%) [10].

The SUV threshold of 2.5 has been used in most
studies to discriminate benign from malignant lesions [21,
22]. However, receiver operation characteristic analysis has
shown that a highest diagnostic accuracy can be achieved
using SUV thresholds of 4.4 or higher [23–25]. On the
other hand, such high threshold would significantly increase
the false negative rates and may have suboptimal clinical
impact [26]. According to one study, one can omit surgical
staging in patients with a PET-negative mediastinum [27].
Furthermore, in our study, an SUV of 2.5 does not seem to
segregate positive and negative cases adequately. Even though
the ROC curve analysis showed a significant discriminatory
value and cases with a negative biopsy result tend to have
a significantly lower SUV (mean 3.3) compared to positive
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biopsy result (mean 8.2), there was a significant overlap in
the overall distribution of the SUV among these two groups
as shown on the box plot analysis. Overall, PET impression
was more accurate in determining whether a lesion was
benign or malignant than the SUV value alone. Some studies
have reported the use of different SUV cutoff values to better
discriminate benign versus malignant lesion [28]. The use of
a single universal SUV cutoff may not always be appropriate.

Regarding false positive results, eight PET-positive/biop-
sy-FNA negative cases corresponded to 6 patients with 5
lung lesions and 3 lymph nodes. Two cases showed inflam-
matory changes, and the remaining 6 cases were diagnosed
as negative for malignancy. Benign conditions that cause
increased glucose uptake can result in elevated SUV [5].
Nonspecific inflammatory lesions in lymph nodes, as well as
various infectious etiologies, have been shown to cause SUV
elevation which can sometimes be misleading [5], implying
a malignant process. Among others, some examples include
sarcoidosis, lymph node with follicular hyperplasia, tuber-
culosis, histoplasmosis, and aspergillosis [5]. The proposed
mechanism responsible for this phenomenon is increased
glucose uptake by inflammatory cells (e.g., neutrophils and
macrophages) within the lesional tissue [5]. This seems a
plausible explanation for our false positive PET results.

In our study we did not encounter any false negative PET
studies (PET-negative/biopsy-FNA positive cases). Studies
have reported the sensitivity of the PET scan ranging from
50% to over 90% while in our study was 100% [29]. In
the literature false negative PET scans have been reported
in well-differentiated adenocarcinomas, purportedly due to
low glucose metabolism and/or low tumor cell density
[5]. Examples of low-grade lesions possibly yielding false
negative results via PET could include bronchioalveolar lung
carcinoma or small lymphocytic lymphoma. It has also been
speculated that this false negative result may be due to the
presence of necrosis in high-grade lesions [10]. In addition,
organ location, histologic tumor type, metabolic status of
the patient, and size of the lesions, among others, may also
account for the wide range of reported sensitivity [29].

In conclusion, our study indicates that an SUV cutoff
value of 2.5 does not always adequately discriminate between
malignant and benign processes, as confirmed by follow-
up tissue diagnosis. While a negative PET study most likely
excludes a malignant process, a positive PET scan may be
due to either a malignant process or reactive/inflammatory
condition, and therefore it may be useful to undertake
further diagnostic attempts (such as FNA) to better define
the lesion. For a practicing cytopathologist doing adequacy
checks during an image-guided procedure, it may be of
value to be aware that elevated SUV values are not always
indicative of a malignant process, and vice versa. This,
among other factors (such as, but not limited to, cellularity
and presence of lesional tissue), may help in determining
the number of required passes to get adequate diagnostic
material. The observed difference in our findings and other
studies highlights the need for additional investigation in this
area, especially investigating specific organ systems, specific
site, and specific diagnostic categories on a larger number of
patients and correlating with PET scan readings.
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