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ABSTRACT: We describe the derivation of a set of bonded
and nonbonded coarse-grained (CG) potential functions for
use in implicit-solvent Brownian dynamics (BD) simulations of
proteins derived from all-atom explicit-solvent molecular
dynamics (MD) simulations of amino acids. Bonded potential
functions were derived from 1 μs MD simulations of each of
the 20 canonical amino acids, with histidine modeled in both
its protonated and neutral forms; nonbonded potential
functions were derived from 1 μs MD simulations of every
possible pairing of the amino acids (231 different systems).
The angle and dihedral probability distributions and radial distribution functions sampled during MD were used to optimize a set
of CG potential functions through use of the iterative Boltzmann inversion (IBI) method. The optimized set of potential
functionswhich we term COFFDROP (COarse-grained Force Field for Dynamic Representation Of Proteins)quantitatively
reproduced all of the “target” MD distributions. In a first test of the force field, it was used to predict the clustering behavior of
concentrated amino acid solutions; the predictions were directly compared with the results of corresponding all-atom explicit-
solvent MD simulations and found to be in excellent agreement. In a second test, BD simulations of the small protein villin
headpiece were carried out at concentrations that have recently been studied in all-atom explicit-solvent MD simulations by
Petrov and Zagrovic (PLoS Comput. Biol. 2014, 5, e1003638). The anomalously strong intermolecular interactions seen in the
MD study were reproduced in the COFFDROP simulations; a simple scaling of COFFDROP’s nonbonded parameters, however,
produced results in better accordance with experiment. Overall, our results suggest that potential functions derived from
simulations of pairwise amino acid interactions might be of quite broad applicability, with COFFDROP likely to be especially
useful for modeling unfolded or intrinsically disordered proteins.

■ INTRODUCTION
Although advances in computational software and hardware
have recently allowed for millisecond simulations of single
proteins1 and 100 ns simulations of the entire HIV-1 capsid2

using all-atom models, the extreme costs associated with large
or long explicit-solvent biomolecular simulations continues to
spur interest in the development of cheaper, coarse-grained
(CG) simulation models: this interest is reflected in the large
number of excellent review articles that have been written on
this subject in recent years.3−18 One critical consideration in the
development of CG models is how to map the detailed (usually
all-atom) structural model to its more coarse, bead-level
representation, that is, which degrees of freedom are to be
factored out and which are to be left in. A second consideration,
and the focus of the present work, is how to assign potential
functions to the interactions of the CG beads so that they
produce realistic or desired behavior.
One route to developing CG potential functions for use in

simulations is by attempting to reproduce experimental data
such as the free energies of transfer of model compounds (e.g.,
amino acids) between solvents,19−21 or osmotic second virial
coefficients.22,23 This approach has the clear advantage of being

grounded in reality but can, in some cases, leave the problem
underdetermined as there may be several ways to reproduce the
data. A second approach, feasible for proteins at least, is to use
the statistics of interatomic or inter-residue distances observed
in the Protein DataBank (http://www.rcsb.org) as a proxy for
the thermodynamics of these interactions.24−30 This approach
has the advantage of being based on a very ready source of data,
but there remain questions about how to define the reference
state (i.e., the baseline against which the apparent interaction
thermodynamics are to be computed) and the extent to which
the resulting potential functions can be interpreted physi-
cally.31−33

A third approach, and the approach that is followed here, is
to derive potential functions by attempting to reproduce the
behavior seen in more detailed simulations (e.g., explicit-
solvent, all-atom molecular dynamics (MD) simulations). One
advantage with this approach is that, with current computa-
tional resources, it is now possible to obtain excellent statistics
on both the thermodynamics and geometries of intra- and
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intermolecular interactions. For this reason, there have been a
number of applications of this approach to biomolecular
systems such as lipids,34−44 carbohydrates,45−48 and pro-
teins;49−54 especially relevant to the present study is the work
of the Betancourt group, who derived one-bead-per-residue
nonbonded potential functions describing the mutual inter-
actions of the 20 common amino acids by fitting to MD data.55

The principal disadvantage with this approach is obviously the
concern that the all-atom force fields are inaccurate, but in
recent years, atomistic force fields for proteins have reached a
sufficiently high level of sophistication and accuracy56−59 that
this is likely to become a common route to deriving CG
models.
We report here the optimization of a set of bonded and

pairwise nonbonded potential functions for use in simulating
protein systems by reproducing the thermodynamics of inter-
residue interactions observed in corresponding all-atom,
explicit-solvent MD simulations. Since one of our long-term
interests is in simulating the behavior of proteins in the
crowded conditions of biological cells, and given that such
simulations will need to be conducted on very long time scales
and length scales, our focus is on developing a CG protein
model that is quite simple. Specifically, while there are many
mapping schemes that might be imagined, we have chosen to
use a model in which one pseudoatom is used to represent the
backbone of each residue and 0−3 pseudoatoms are used to
represent the side chains (see Methods).
There are a number of techniques that might be used to

derive CG potential functions from all-atom simulation data,
such as the inverse Monte Carlo method developed by
Lyubartsev and Laaksonen60,61 and the force matching
approaches pioneered by Voth36,62 and co-workers.63 Here,
however, we use the iterative Boltzmann inversion (IBI)
method that was first introduced by Soper64 to develop an
atomistic water force field capable of reproducing radial
distribution functions obtained from neutron scattering experi-
ments, and later expanded by Reith, Pütz, and Müller−Plathe to
refine a set of effective CG site−site pair potential functions for
polyisoprene from atomic simulation data.65 As the name
implies, IBI uses an iterative approach, involving repeated
rounds of CG simulation, to optimize potential functions so
that distribution functions of interest observed in the more
detailed simulations are reproduced to a desired level of
accuracy in the CG simulations. The method has been
successfully used by a number of different groups41,42,48,54,66−68

and has recently been implemented in a software package
developed by the Lyubartsev group.69

Here, we use the IBI methodology to (a) optimize bonded
potential functions to reproduce the angle and dihedral
distributions of single amino acids, and (b) optimize non-
bonded potential functions to reproduce radial distribution
functions of pairs of amino acids calculated from MD
simulation. Using this methodology, we have created
COFFDROP (COarse-grained Force Field for Dynamic
Representation Of Proteins), a CG force field that captures
the internal flexibility of single amino acids and the
intermolecular interactions of every pairing of the amino
acids as described by explicit-solvent MD simulation. We show
that COFFDROP performs surprisingly well in simulations of
high concentrations of amino acids and in very preliminary
simulations of protein−protein interactions, both of which
represent important steps toward the eventual goal of

accurately simulating more complex, crowded biomolecular
systems.

■ METHODS
Systems Simulated. In this work, CG parameters are

derived to describe the internal degrees of freedom of each of
the 20 amino acids and their nonbonded interactions with each
other; separate sets of parameters are derived for histidine’s
neutral and protonated forms. In all of the simulations
described here each amino acid was capped with an acetyl
(Ace) group at the N-terminus and an N-methyl (Nme) group
at the C-terminus in order to mimic the Cα atoms of adjacent
residues that would be present in proteins. For the derivation of
bonded parameters, each capped amino acid was simulated
alone; for the derivation of nonbonded parameters, each
possible pairing of the capped amino acids was simulated: since
there are n(n − 1)/2 heterointeractions and n homointer-
actions, where n is the number of amino acid types, we
simulated a total of 231 different amino acid-pair combinations.
All MD simulations were performed using all-atom models in
explicit solvent (see below). In order to test subsequently the
ability of the derived nonbonded CG parameters to describe
associations in more complex systems, additional MD
simulations of systems comprising three or four molecules of
alanine, asparagine, aspartate, cysteine, glycine, lysine, leucine,
tryptophan, tyrosine, and valine were performed. To test the
CG parameters at much higher amino acid concentrations,
simulations of alanine, leucine, asparagine, and tryptophan were
also performed at concentrations of 50, 100, 200, and 300 mg/
mL. Finally, to test the CG parameters’ ability to describe a
prototypical weak protein−protein interaction that has been the
subject of recent MD work,70 simulations of the small protein
villin headpiece at a concentration of 9.2 mM were also
performed.

Molecular Dynamics Simulations. All MD simulations
were performed using GROMACS version 4.5.1.71,72 In all
simulations, the amino acid molecules were described with the
Amber ff99SB-ILDN73,74 force field and water molecules were
modeled with the TIP4P-Ew model.75 Simulations were
performed within a 35 Å × 35 Å × 35 Å box to which
periodic boundary conditions were applied. All simulations
followed the same protocol: systems were first energy-
minimized with a steepest descent algorithm for 1000 steps,
gradually heated to 298 K over the course of 350 ps, and
equilibrated for a further period of 1 ns. Following
equilibration, a production simulation was carried out in the
NPT ensemble, with the temperature maintained at 298 K
using the Nose−́Hoover thermostat76,77 and the pressure
maintained at 1 atm using the Parrinello−Rahman barostat.78 A
cutoff of 10 Å was applied to short-range nonbonded
interactions and the smooth particle mesh Ewald method79

was used to calculate all long-range electrostatic interactions. A
2.5 fs time step was used with bonds being constrained to their
equilibrium lengths using the LINCS algorithm.80 Each
production simulation was carried out for 1 μs with the atomic
coordinates of the solutes being saved every 0.1 ps to give a
total of 10 000 000 snapshots for each system. Each such
simulation required approximately 10 days to complete on an
8-core server. Since our data may be of use for others interested
in deriving CG force fields from all-atom explicit-solvent MD
simulations, the trajectory files for all of our MD simulations
have been made available for download from our group’s ftp
server: ftp://128.255.119.154/pub/.
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MD Analysis: Association Kinetics. To calculate the
association rate constants for each amino acid pair, the protocol
proposed by Zhang and McCammon81 was used. First,
following our previous work,82 a radial distribution function,
g(r), was calculated using only the closest distance between any
pair of heavy atoms in each snapshot of the two solutes. Based
on the plots of these 231 g(r) functions (see Results), and
solely for the purposes of calculating association kinetics, we
chose to define solutes as being in an associated state when the
closest distance between any pair of heavy atoms was less than
3.9 Å, and being in a dissociated state when the closest distance
was greater than 10.0 Å. Using these definitions, each
simulation was analyzed to recordfor every association
eventthe time elapsed between the system leaving the
dissociated state and entering the associated state. The average
number of such association events found in each simulation was
550; the highest number of events was 663 for the glycine−
glycine system and the lowest number of events was 384 for the
aspartate-glutamate system. Knowing the duration of each
association event allowed a “survival function” for the
dissociated state to be constructed and plotted versus time.
Following Zhang and McCammon, this survival function was
then fit to an exponential, y = A exp(−Bt), where A is the value of
the survival function at time, t = 0, and B is the (effectively
unimolecular) association rate constant.
To determine whether the computed association rate

constants were consistent with association occurring via a
diffusion limited mechanism, the translational diffusion
coefficients, Dtrans, of the individual amino acids were calculated
(from simulations of single amino acids) using Einstein’s
equation:

= Δ ΔD r t/6trans
2

(1)

where ⟨Δr2⟩ is the ensemble-average mean squared displace-
ment of the center of mass of the amino acid and Δt is the
observation interval over which the displacement is measured
(in this case, 1 ns).
MD Analysis: Association Thermodynamics. The

association constants, KA, for each pair of amino acids were
computed by integrating (using Simpson’s method) the g(r)s
between 0 and 5.7 Å as outlined by Zhang and McCammon:81

∫π=K g r r r4 ( ) dA
0

5.7
2

(2)

Here, r is the distance expressed in units of 16001/3 Å, which
allows KA to be calculated corresponding to a standard state of
1 M. KA was then converted into a binding free energy by using
ΔG° = −RT ln KA.
To determine the extent of similarities between amino acids

in terms of their interactions with other amino acids, a
dendrogram was created based on the Cα−Cα g(r) functions
obtained from the all-atom MD simulations. First, a correlation
coefficient was computed for each pair of amino acids by
comparing their g(r) functions with all 21 amino acid types in
the range 3−12 Å. For example, to determine how similar
alanine and threonine are in terms of their interactions with
amino acids, we computed the Spearman correlation coefficient
for the entire set of 21 g(r)s for ala−ala, ala−arg, ala−asn, ...,
with the set of 21 g(r)s for thr−ala, thr−arg, thr−asn, ... . Next,
the resulting 231 correlation coefficients were converted into an
effective “distance matrix” using the Canberra algorithm and
converted into dendrogram form using agglomerative clustering

implemented in the R function “hclust”. Both the creation of
the distance matrix and the dendrogram were carried out using
R version 2.14.10;83 a related approach to clustering of amino
acids according to their interaction preferences has been
described by the Liang group.84

COFFDROP Coarse Grained Mapping Scheme. The
backbone mapping scheme used in COFFDROP places one
pseudoatom at the Cα position, one pseudoatom on the methyl
carbon of the Ace capping group and one pseudoatom on the
methyl carbon of the Nme capping group. The side chains of
the amino acids are represented by between 0 (for glycine) and
3 (for tryptophan) pseudoatoms (Supporting Information
Figure S1 and Table S1). For the uncharged amino acids, all
pseudoatoms carry a zero partial charge. For the amino acids
that are typically charged at pH 7 (aspartate, glutamate,
arginine, and lysine), and for the protonated form of histidine, a
formal charge of either +1 or −1 was placed on the side chain
pseudoatom that was closest to the true position of the charged
functional group.
The mapping scheme described above was used to convert

the 10 000 000 snapshots obtained from each MD simulation
into their corresponding CG representations. The CG-
converted MD simulations of the single amino acids were
then used to generate “target” probability distributions of bond
angles and dihedrals against which the bonded parameters of
COFFDROP were parametrized. Similarly, the CG-converted
MD simulations of pairs of amino acids were used to generate
“target” g(r)s for all pseudoatom−pseudoatom interactions
against which the nonbonded parameters of COFFDROP were
parametrized.

Brownian Dynamics Simulations. All Brownian dynamics
(BD) simulations were performed using the algorithm of
Ermak and McCammon85 with in-house software and using
settings that corresponded as closely as possible to those used
in the MD simulations. All amino acid simulations were
performed within a 35 Å × 35 Å × 35 Å box to which periodic
boundary conditions were applied. For systems that contained
two or more charged amino acids, a grid-based Ewald method86

was used to calculate the long-range electrostatic interactions;
energies and forces computed with this method were identical
to those obtained using the smooth PME method implemented
in GROMACS. All simulations were performed at 298 K with a
dielectric constant of 62.9 being applied to all electrostatic
interactions as this is the reported value for the TIP4P-Ew
water model75 used in the MD simulations. All BD simulations
were conducted for 5 μs, with a 50 fs time step being employed.
As in our previous BD studies,87,88 intramolecular hydro-
dynamic interactions were described at the Rotne−Prager−
Yamakawa level of theory89,90 with a hydrodynamic radius of
3.5 Å assigned to all pseudoatoms. The correlated random
displacements required in order to satisfy the fluctuation−
dissipation theorem were obtained by performing a Cholesky
decomposition of each intramolecular diffusion tensor, with the
latter being updated every 20 ps (i.e., every 400 simulation
steps). Intermolecular hydrodynamic interactions, which are
likely to be important only for larger systems than those studied
here,87,88 were not modeled; it is to be remembered that the
inclusion or exclusion of hydrodynamic interactions does not
affect the thermodynamics of interactions that are the principal
focus of the present study. Each BD simulation required
approximately 5 min to complete on one core of an 8-core
server; relative to the corresponding MD simulation, therefore,
the CG BD simulations are ∼3000 times faster.
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COFFDROP Bonded Potential Functions. In COFF-
DROP, the potential functions used for the description of
bonded pseudoatoms include terms for 1−2 (bonds), 1−3
(angles), 1−4 (dihedrals) interactions. To model the 1−2
interactions, a simple harmonic potential was used:

ε = −K x x( )CG bond
o

2
(2)

where εCG is the energy of a specific bond, Kbond is the spring
constant of the bond, x is its current length, and xo is its
equilibrium length. The spring constant used for all bonds was
200 kcal/mol·Å2. This value ensured that the bonds in the BD
simulations retained most of the rigidity observed in the
corresponding MD simulations (Supporting Information Figure
S2) while still allowing a comparatively long time step of 50 fs
to be used: smaller force constants allowed too much flexibility
to the bonds and larger force constants resulted in occasional
catastrophic simulation instabilities. Equilibrium bond lengths
for each type of bond in each type of amino acid were
calculated from the CG representations of the 10 000 000
snapshots obtained from the single amino acid MD simulations.
As was anticipated by a reviewer, a few of the bonds in our CG
scheme produce probability distributions that are not easily fit
to harmonic potentials: these involve the flexible side chains of
arg, lys, and met. We chose to retain a harmonic description for
these bonds for two reasons: (1) use of a harmonic term will
simplify inclusion (in the future) of the LINCS80 bond-
constraint algorithm in BD simulations and thereby allow
considerably longer timesteps to be used and (2) the
anharmonic bond probability distributions are significantly
correlated with other angle and dihedral probability distribu-
tions and would therefore require multidimensional potential
functions in order to be properly reproduced. While the
development of higher-dimensional potential functions may be
the subject of future work, we have focused here on the
development of one-dimensional potential functions on the
grounds that they are more likely to be easily incorporated into
others’ simulation programs (see Discussion).
For the 1−3 and 1−4 interactions, the IBI method was used

to optimize the potential functions. Since the IBI method has
been described in detail elsewhere,65 we outline only the basic
procedure here. First, probability distributions for each type of
angle and dihedral (binned in 5° intervals) were calculated
from the CG representations of the 10 000 000 MD snapshots
obtained for each amino acid; for all amino acids other than gly,
these included two improper dihedrals (involving the Ace,
Nme, Cα, and the first side chain pseudoatom) that were used
to maintain correct chirality during CG simulations. Initial CG
potential functions for use in BD simulations were generated by
Boltzmann inversion of the CG probability distributions
obtained from the MD simulations according to

ε ξ ξ= −RT( ) ln(prob ( ))CG MD
(3)

Here, εCG(ξ) is the potential function of a specific angle or
dihedral, ξ, R is the gas constant, T is the temperature in Kelvin,
and probMD(ξ) is the “target” probability distribution obtained
for the angle or dihedral from MD. A first BD simulation was
then performed using these initial potential functions; forces
and energies from each potential function were computed
during the BD simulations using the method of cubic spline
interpolation.91 Angle and dihedral probability distributions
were then calculated from the BD simulation and compared to
the corresponding distributions obtained from MD. The CG

potential functions were then modified by amounts dictated by
the differences between the MD and BD probability
distributions according to

ε ξ ε ξ ξ ξ= ++ RT( ) ( ) ln{prob ( )/prob ( )}0.25j i
CG

j
CG BD MD

(4)

where the subscript j indicates the current iteration number and
probBD(ξ) is the probability distribution obtained from BD of
the corresponding degree of freedom. A scaling factor of 0.25
was applied in order to better control convergence of the
procedure; in addition, to eliminate the possibility of
uncontrolled drift in poorly sampled regions, the potential
functions were only updated for bins in which the probability
exceeded 1 × 10−5 in both the BD and MD simulations. Having
modified the potential functions, a new BD simulation was
performed, and the potential functions were again updated
according to the procedure outlined above. Convergence of the
procedure was monitored by computing, following each new
BD simulation, the absolute error between the “target”
distribution function and the distribution function obtained
from BD using

∑ ξ ξ| − |
=

(prob ( ) prob ( ))
N

k 1
k
MD

k
BD

(5)

where N is the number of potential functions being optimized
and the sum extends over each bin of the distribution. The IBI
scheme was continued for 50 iterations for each type of amino
acid in order to derive angle and dihedral energy functions
capable of describing the conformational distributions observed
in MD. Since the errors do not always diminish monotonically
with increasing iterations (see Results), for all amino acids
other than glycine the iteration that produced the lowest overall
error for the dihedral probability distributions was selected for
inclusion in COFFDROP; for glycine, the iteration that
produced the lowest error for the angle probability distributions
was selected.

COFFDROP Nonbonded Potential Functions. The IBI
method was also used to optimize nonbonded potential
functions using data obtained from simulations of pairs of
capped amino acids. For each of the 231 MD simulations,
“target” g(r)s were computed for all intermolecular pairs of
pseudoatoms. As in our previous work,82 each g(r) was
computed as the ratio of the distance distribution observed in
MD to the corresponding distance distribution obtained from
100 000 000 random placements of two pseudoatoms in the
same simulation box; g(r) values were computed for all
distances from 0 to 20 Å with a bin size of 0.1 Å and were
normalized to 1 between 18 and 20 Å.
For the first iteration of the IBI process, all nonbonded CG

potential functions were assumed to follow a purely repulsive
1/rij

12 form (where rij is the distance between the two
pseudoatoms). As was the case with the bonded potentials,
the nonbonded potential functions were then modified by
amounts dictated by the differences between the MD and BD
g(r)s according to

ε ξ ε ξ ξ ξ= ++ RT g r g r( ) ( ) ln{ ( ) ( )/ ( ) ( )}0.05j i
CG

j
CG BD MD

(6)

where g(r)BD(ξ) and g(r)MD(ξ) are the g(r)s obtained for
interaction ξ from the BD and MD simulations, respectively.
Note that it was found that the scaling factor used to suppress
oscillations in the optimization procedure needed to be smaller
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for the nonbonded potential functions than for the bonded
potential functions. As with the bonded terms, potential
functions were only adjusted for bins in which the probability
exceeded 1 × 10−5 in both the BD and MD simulations. In
order to reduce noise in the nonbonded potential functions,
they were all smoothed twice using a Savitzky−Golay
procedure92 prior to being used in the next BD simulation.
The IBI scheme was continued for 100 simulations for each
amino acid pair and the nonbonded potential functions used in
the iteration that produced the smallest error between the g(r)
functions obtained from MD and BD were selected for use in
COFFDROP.
It is to be noted that in all simulations involving pairs of

charged pseudoatoms, the nonbonded potential functions to be
optimized by IBI are supplemented by direct electrostatic
interactions computed using Coulomb’s law with a dielectric
constant set equal to that of the TIP4P-Ew water model (see
above). Since these direct electrostatic interactions are not
adjusted during the IBI procedure, the IBI-optimized non-
bonded interaction terms are expected to describe all non-
Coulombic components of the interaction between charged
pseudoatoms.
Clustering Analysis. To assess the ability of COFFDROP’s

nonbonded potential functions to describe interactions
between more than two amino acids, additional all-atom MD
and CG BD simulations were performed of systems containing
between 3 and 54 amino acid molecules (again, in a 35 Å × 35
Å × 35 Å box). A clustering analysis was then performed on the
MD and BD trajectory snapshots to determine whether the all-
atom and CG simulation models predict similar degrees of
solute−solute interactions. As before, the MD snapshots were
first converted to their CG equivalents so that the MD and BD
behavior could be directly compared. For all 10 000 000
snapshots generated in the MD and BD simulations, all
intermolecular pseudoatom−pseudoatom distances were meas-
ured; any two solute molecules for which a pair of pseudoatoms
was within 4.5 Å were considered to be in contact with each
other. Then, as in our previous work,93 clusters were
constructed using in-house code to identify all solutes that
shared one or more contacts with other solutes.

Villin Headpiece Simulation. To provide a preliminary
test of whether COFFDROP’s nonbonded potential functions
can accurately model the intermolecular interactions of
proteins, CG BD simulations were performed for systems
containing 8 copies of the villin headpiece protein (PDB ID:
1VII) in a 113 × 113 × 113 Å periodic box (a protein
concentration of 9.2 mM). The simulation protocol used was
identical to that used in simulations of amino acid pairs, with
the exception that simulations were performed for periods of
50−200 ns in order to be consistent with the corresponding
MD simulations recently reported by Petrov and Zagrovic.70

Since the version of COFFDROP presented here has been
derived from simulations that include only capped single amino
acids, it does not contain parameters for the large number of
bonded backbone terms (e.g., Cα−Cα−Cα−Cα dihedrals) that
would be required in order to model polypeptide chains. In
order to model the villin headpiece, therefore, we supple-
mented COFFDROP’s bonded potential functions for side
chain angles and dihedrals with additional terms intended to
maintain the native state conformation. Missing angle terms
were modeled using harmonic potential functions with a force
constant of 10 kcal/mol·rad and with the equilibrium angle
taken from the native state structure. Missing dihedral terms
were described with simple cosine potential functions used in
our previous CG simulations of protein cotranslational folding
events:94

φ φ φ φ φ= + − + + −E V V( ) [1 cos( )] [1 cos(3 )]1 1 3 3
(8)

where V1 is 0.5 kcal/mol·rad, V3 is 0.25 kcal/mol·rad, φ is the
value of the dihedral, and φ1 and φ3 are the phase angles
defining the position of the energy maxima of the cosine terms.
Since our purpose here was to assess COFFDROP’s ability

to model intermolecular interactions of proteins, we used
simplified Go̅-like potential functions,95 similar to those
described in our previous work,94 to model all intramolecular
nonbonded interactions. To this end, all intramolecular
nonbonded interactions were represented by one of two
types of nonbonded potential functions depending on whether
the two pseudoatoms are in contact with each other in the
native state structure of the protein: contacts are defined here

Figure 1. Translational diffusion coefficients and association kinetics of amino acids calculated from all-atom MD simulations. (A) Translational
diffusion coefficients of 12 amino acids calculated from MD and compared to experimental data from Longsworth.97 Each symbol is labeled using the
one letter amino acid code. (B) Plot showing the correlation between the calculated effective association rate constant (kon) and the sum of the
individual amino acid translational diffusion coefficients. Each symbol represents a different amino acid pair.
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as any pair of (nonbonded) pseudoatoms that are within 5.5 Å
of each other. Nonbonded interactions for those pseudoatom
pairs that are in contact in the native state were modeled using
a “12−10” Lennard-Jones-like potential:

ε σ σ= −E r r{5( / ) 6( / )}ij ij
12

ij
12

ij
10

ij
10

(7)

where ε is the energy well depth assigned to the contact (1
kcal/mol·Å), rij is the distance between the pair of pseudoatoms
during the simulation, and σij is the distance between the
pseudoatoms in the native structure. Nonbonded interactions
for those pseudoatom pairs that are not in contact in the native
state were treated with a purely repulsive term, Eij = ε{(σij

12/
rij
12)}, where σij was set to 4 Å. The use of Go̅-like potential
functions in this way ensures that the native state
conformations of the proteins are retained in the simulations
while still allowing COFFDROP to be used to describe their
intermolecular interactions; the inclusion of potential functions
specifically for the purpose of maintaining the native state
structure has also been suggested by the developers of the
MARTINI force field in applications of their force field to
proteins.21,96

■ RESULTS
MD Simulation Analysis. Although the main focus of this

work is on the derivation of CG potential functions for use in
BD simulations, the MD trajectories generated in this study are
interesting in their own right for investigating the behavior of
amino acids through simulation. In particular, since all MD
simulations have been performed without the imposition of any
restraints to enforce interactions between the amino acids we
can straightforwardly obtain both the thermodynamics and the
kinetics of association for each type of amino acid-amino acid
interaction.
We deal with kinetic aspects first. In previous work we

showed that the effective association rate constants of small
aliphatic hydrocarbons appear to be diffusion-limited.82 To
determine if the same is true for the capped amino acids studied
here, we first computed the translational diffusion coefficients
of the isolated amino acids using the Einstein diffusion equation
(see Methods). Encouragingly, for the 12 amino acids that were
studied experimentally by Longsworth,97 we obtain excellent
agreement between the simulated and experimental values (r2 =
0.97, Figure 1A). Despite this good agreement, it is noticeable

that the MD values are uniformly lower than the corresponding
experimental values (the slope of the regression line is 0.66).
This is likely due to a combination of the following two factors:
(a) the simulated amino acids possess capping groups (which
double the molecular mass for glycine for example); (b)
simulated translational diffusion coefficients are known to be
subject to a system-size dependent slowdown when periodic
boundary conditions are imposed.98 These two factors appear
to outweigh the compensating effect of the TIP4P-Ew water
model’s viscosity being somewhat lower (0.742 mPa)99 than
the experimental value (0.899 mPa)100 at 298 K. Having
determined the translation diffusion coefficient of each amino
acid, we could determine whether association of amino acid
pairs is diffusion-limited by comparing the computed effective
association rate constants (see Methods) with the sums of the
translational diffusion coefficients of the two amino acids. Such
a comparison is shown in Figure 1B; the linear regression gives
r2 = 0.69 with p < 0.001, which suggests that such associations
are in general effectively diffusion-limited.
Of more direct relevance to the remainder of the present

work is the fact that the 231 × 1 μs MD simulations provide us
with meaningful estimates of the association thermodynamics
for all possible pairings of the amino acids. A simple way to
gauge the interactions of different amino acid pairs is to
compare their radial distribution functions (g(r)) computed
using the Cα−Cα distance of each MD snapshot. Such a plot is
shown in Figure 2A, from which it can be seen that significant
interactions are apparent even at quite long Cα−Cα separation
distances. More importantly, we can use these g(r)s to group
amino acids according to the similarity of their interactions with
other amino acids (see Methods); a dendrogram constructed
on the basis of the computed Cα−Cα g(r) data is shown in
Figure 2B. Encouragingly, it can be seen that amino acids that
are known to share physicochemical similarities automatically
group with one another in the dendrogram: in particular, the
aliphatic, aromatic, acidic, and basic amino acids generally tend
to form separate clusters. The groupings are not perfect,
however, as gly surprisingly groups with the positively charged
amino acids, thr is grouped with the aliphatic amino acids, and
protonated his (hip) is more closely grouped with the negative
amino acids than the positive amino acids. Overall, however,
the dendrogram suggests that the g(r)s obtained from the MD
simulations are sufficiently reliableand contain sufficient

Figure 2. Radial distribution functions of amino acid pairs and amino acid dendrogram calculated from all-atom MD. (A) Plot showing 231 Cα−Cα
g(r) functions. (B) Dendrogram created by performing agglomerative clustering on the calculated correlation coefficients of the 231 Cα−Cα g(r)
functions shown in A. (C) Plot showing 231 g(r) functions calculated using only the closest distance between any pair of heavy atoms.
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informationto draw meaningful conclusions about the nature
of amino acids’ interactions with other amino acids.
While g(r)s computed from the Cα−Cα distance provide a

useful way of comparing the different natures of amino acid
interactions, the fact that they appear to indicate that
interactions occur over a considerable distance (up to ∼12 Å;

see Figure 2A) means that they do not provide a particularly
useful measure of when two amino acids are associated. An
alternative and more intuitive way to represent the state of
association is to compute g(r)s using the distance between the
closest pair of (pseudo)atoms in each MD snapshot instead of
the Cα−Cα distance.82 The g(r)s computed in this way for all

Figure 3. Derivation of COFFDROP bonded potential functions using the IBI method. (A) Plot showing the error in the angle probability
distributions obtained from BD simulations as a function of IBI iteration number for the amino acids arginine, alanine and tryptophan. (B) Same as
A but showing results for dihedral probability distributions. (C) Comparison of the angle probability distributions obtained from MD (lines) with
those obtained from BD (circles) for tryptophan. Each color represents a different angle. (D) Same as C but showing results for dihedral probability
distributions. (E) Comparison of an example angle potential function (Ace−Cα−Nme for tryptophan) obtained from using IBI (blue) with that
obtained from noniterative Boltzmann inversion of the MD probability distribution (red). (F) Same as E but showing an example dihedral potential
function (Cγ−Cβ−Cα−Nme for tryptophan).
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231 systems are shown in Figure 2C: these are much more in
line with our intuition that significant intermolecular
interactions are to be expected only at much shorter separation
distances (<8 Å).
Bonded Potential Functions. We next turned our

attention to creating a CG force field capable of reproducing
the behavior seen in the MD simulations focusing first on the
conformational behavior of single amino acids. To establish the
extent of convergence of the “target” MD simulation data, the 1
μs trajectories were first converted into their CG representa-
tions and then split into three 333 ns blocks from which the
average and standard deviations of the angle and dihedral
probability distributions were calculated. Supporting Informa-
tion Figure S3 shows the results for tryptophan, which contains
the most pseudoatoms of any amino acid; the standard
deviations in all of the angle (Supporting Information Figure
S3A) and dihedral (Supporting Information Figure S3B)
probability distributions are small, indicating that 1 μs is a
sufficient length to obtain convergence of these properties.
After determining that the MD simulations of the single

amino acids were likely to be sufficiently converged, the
iterative Boltzmann inversion (IBI) method was used to derive
a set of bonded CG potential functions optimized to reproduce
the angle and dihedral probability distributions obtained from
MD. Figure 3A shows the combined error of the angle
distributions sampled during the BD simulations as a function
of the iteration number of the IBI protocol for three of the
amino acids: arginine, alanine, and tryptophan; Figure 3B
shows the same for the dihedral distributions. In all three
systems the error in the angles and dihedrals decreases sharply
during the first ∼10 iterations of the IBI procedure, before−in
the case of alanine and arginine−undergoing a more gradual
decrease over the succeeding 40 iterations. For tryptophan,
significant fluctuations in the error continue to occur after the
10th iteration in both the angle and (especially) the dihedral
distributions. The increased noise seen with tryptophan is likely
a consequence of it containing the largest number of angle and
dihedral potential functions−all of which have to be
simultaneously optimized−and a result of it containing two
internal nonbonded interactions that must also be optimized at
the same time (see below). Even with the noise, however, the
optimized bonded potential functions for tryptophan produce
angle (Figure 3C) and dihedral (Figure 3D) probability
distributions that match nearly perfectly with those measured
in MD. A similarly high level of agreement between the angle
and dihedral probability distributions from MD and from BD
was obtained for all of the amino acids (Supporting
Information Figure S4). Parts E and F of Figure 3 provide
example comparisons of the optimized potential functions for
angles and dihedrals, respectively, with those obtained by
(noniterative) Boltzmann inversion of the MD data according
to E(θ) = −RT ln f(θ), where f(θ) denotes the frequency with
which a particular value of the angle or dihedral θ is sampled
during MD. In general, the optimized COFFDROP potential
functions (blue) are similar to the potential functions obtained
by Boltzmann-inverting the MD data (red), but there are
nevertheless cases where the optimized potential functions have
quite different global minima from those obtained by
Boltzmann inversion (see, e.g., Figure 3F).
It is to be noted that in addition to optimizing regular

dihedral potential functions, we also optimized two improper
dihedral functions for all amino acids other than glycine: both
of these improper terms involved the Ace, Nme, Cα, and the

first side chain pseudoatoms. Without including these improper
dihedral functions, we found that amino acids could adopt
incorrect chiralities during CG simulations. As an example,
when the IBI procedure was carried out on alanine without
placing potential functions on the improper dihedrals, the
amino acid would freely interconvert between L- and D-like
configurations even though all angle and dihedral probability
distributions were accurately reproduced (Supporting Informa-
tion Figure S5A). When, however, the IBI procedure was
repeated with two additional potential functions placed on the
improper dihedral terms, the amino acid was (correctly)
restricted to the L-like configuration (Supporting Information
Figure S5B); importantly, inclusion of these improper dihedral
functions in the IBI process did not adversely affect the ability
to reproduce the probability distributions for other angle and
dihedral functions.
To explore if the IBI procedure would converge on the same

final potential functions if different initial potential functions
were used, example reoptimizations were performed for the
bonded parameters of leu and lys. For leu, reoptimization was
performed using as initial potential functions the final
optimized potential functions obtained previously for lys; for
lys, reoptimization was performed using as initial potential
functions the final optimized potential functions obtained
previously for leu. The results of the reoptimizations for leu are
shown in Supporting Information Figure S6; those for lys are
shown in Supporting Information Figure S7. In both cases, the
initial probability distributions obtained using the “wrong”
initial potential functions (green lines in rows B and D) are,
predictably, in poor agreement with the “target” MD
distributions (blue lines). After using the IBI procedure,
however, all probability distributions obtained with the newly
reoptimized potential functions are in good agreement with
MD (compare blue lines with red symbols); this indicates that
the choice of the initial potential functions need not be critical
to the success of the IBI optimization. For the most part, the
reoptimized potential functions are essentially identical to those
obtained from the original IBI procedure (compare blue lines
with red symbols in rows A and C). The few cases where they
differ substantially (Supporting Information Figure S6 row C)
involve low-probability (i.e., high energy) regions of the
distributions; in all high-probability regions, however, the
optimized and reoptimized potential functions are effectively
identical.

Nonbonded Potential Functions. In addition to bond,
angle, and dihedral potential functions, CG simulation of the
single amino acid tryptophan in its capped form also required
the introduction of two 1−5 (intramolecular) nonbonded
functions: these occur between the distal side chain
pseudoatom (which we call Cδ) and the Ace and Nme capping
group pseudoatoms (Supporting Information Figure S8).
Potential functions that capture these nonbonded interactions
were again optimized using the IBI procedure at the same time
that the angle and dihedral potential functions were optimized.
In this case, the “target” functions to be matched were the
probability distributions of the 1−5 pseudoatom interactions
measured in the CG-converted MD trajectories, both of which
are shown in Supporting Information Figure S9. The
interesting shapes of these distributions reflect the peculiarities
of the interactions within the capped tryptophan molecule.
Both the Ace−Cδ and the Nme−Cδ distance distributions
exhibit a broad peak centered at ∼5 Å and a sharp peak at ∼9
Å. The former is easy to explain since it corresponds to a
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favorable contact between the tryptophan phenyl ring and the
methyl of each capping group. The latter is, at first sight, harder
to explain since it is unusual to see sharp peaks indicating
favorable interactions at long distances. Visual examination of
the simulation trajectory, however, indicates that the internal

structure of the capped tryptophan molecule dictates that when
the Ace and Cδ pseudoatoms are in contact, the Nme and Cδ
pseudoatoms must be at their furthest possible separation
distance and vice versa (Supporting Information Figure S8);
the sharp peak obtained at 9 Å in the Nme−Cδ distribution,

Figure 4. Derivation of COFFDROP nonbonded potential functions using the IBI method. (A) Plot showing the error in the nonbonded g(r)
functions obtained from BD simulations as a function of IBI iteration number for the ile−leu (green circles), glu−arg (yellow upward triangles), and
tyr−trp (red downward triangles) systems. (B) Comparison of binding affinities calculated from the Cα−Cα g(r) functions from MD (x-axis) and
BD (y-axis). The green, yellow, and red symbols represent the ile−leu, glu−arg, and tyr−trp systems, respectively; the blue symbols represent the
other 228 systems.

Figure 5. Example nonbonded potential functions. (A) Plot comparing the Ace−Ace nonbonded potential function of the val−val system obtained
from IBI (blue) with that obtained from noniterative Boltzmann inversion (red) of the MD g(r) function. (B) Same as A but for the Cα−Cα
interaction; (C) same as A but for the Cβ−Cβ interaction. (D) Plot comparing the Ace−Ace g(r) of the val-val system obtained from MD (black
circles) with that obtained from BD using COFFDROP (blue line). (E) Same as D but for for the Cα−Cα interaction; (F) same as D but for the
Cβ−Cβ interaction.
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therefore, is a consequence of (i.e., accompanies) the broader
peak at ∼5 Å in the Ace−Cδ distribution. As with the angle and
dihedral distributions, both the Ace−Cδ and the Nme−Cδ
distance distributions can be well reproduced by IBI-optimized
potential functions (Supporting Information Figure S9).
With the exception of the above interaction, all other types of

nonbonded functions in the present version of COFFDROP
have been derived from intermolecular interactions sampled
during 1 μs MD simulations of all possible pairs of amino acids.
To establish that the 1 μs duration of the MD simulations was
sufficient to produce reasonably well converged thermody-
namic estimates, the trp−trp and asp−glu systems, which
respectively produced the most and least favorable binding
affinities, were independently simulated twice more for 1 μs.
Supporting Information Figure S10 row A compares the 3
independent estimates of the g(r) function for the trp-trp
interaction calculated using the closest distance between any
pair of heavy atoms in the two solutes; Supporting Information
Figure S10 row B shows the 3 independent estimates of the
g(r) function for the asp−glu interaction. Although there are
differences between the independent simulations, the differ-
ences in the height of the first peak in the g(r) plots for both
the trp−trp and asp−glu systems are comparatively small,
which indicates that the use of equilibrium MD simulations to
sample the amino acid systems studied hereat least with the
force field that we have usedis not hugely hampered by the
interactions being excessively favorable or unfavorable.
As was the case with the bonded interactions, the IBI

procedure was used to optimize potential functions for all
nonbonded interactions with the “target” distributions to
reproduce in this case being the pseudoatom−pseudoatom
g(r) functions obtained from the CG-converted MD simu-
lations. During the IBI procedure, the bonded potential
functions that were previously optimized to reproduce the
behavior of single amino acids were not reoptimized; similarly,
for tryptophan, the intramolecular nonbonded potential
functions were not reoptimized. Shown in Figure 4A is the
calculated average error in the g(r)s obtained from BD as a
function of IBI iteration for three representative interactions:
ile−leu, glu−arg, and tyr−trp. In each case, the errors rapidly
decrease over the first ∼40 iterations. Following this point, the
errors fluctuate in ways that depend on the particular system:
the fluctuations are largest with the tyr−trp system which is
likely a consequence of it having a larger number of interaction
potentials to optimize. The IBI optimization was successful
with all pairs of amino acids to the extent that binding affinities

computed by integrating the Cα−Cα g(r)s obtained from BD
simulations of each system were in excellent agreement with
those obtained from MD (Figure 4B); all other pseudoatom−
pseudoatom g(r)s were reproduced with similar accuracy.
Some examples of the derived nonbonded potential

functions are shown in Figure 5A−C for the val−val system.
For the most part, the potential functions have shapes that are
intuitively reasonable, with only a few small peaks and troughs
at long distances that challenge easy interpretation. Most
notably, however, the COFFDROP optimized potential
functions (blue lines) are much less favorable and less long-
ranged than the corresponding potential functions that are
obtained by performing a Boltzmann inversion of the MD g(r)s
according to E = −RT ln g(r) (red lines). The need for the
iterative adjustment of the potential functions so that they
properly reproduce the g(r)s (shown in Figure 5D−F) is
therefore clear (see Discussion).
The nonbonded potential functions that we have derived are

pairwise terms that have been optimized to reproduce
interactions between pairs of amino acids. The ultimate
application of such potential functions, however, is to protein
systems, which are obviously considerably more complicated
than the systems studied above. One way to assess initially
whether the pairwise interaction functions might work for more
complicated systems is to carry out comparative (all-atom) MD
and (coarse-grained) BD simulations of systems where three-
body and higher interactions are unavoidable. To do this, we
performed an additional series of 1 μs MD simulations of
systems containing 3 or 4 copies of each of the following
(capped) amino acids: ala, asn, asp, cys, gly, leu, lys, tyr, trp, and
val; these systems were selected so as to provide a broad
sampling of different physicochemical characteristics. The level
of agreement between the MD and BD simulations was
determined by performing a cluster analysis of the snapshots
sampled during the simulations (see Methods); the results of
such analyses are shown in Figure 6. The MD simulation data
(blue symbols) show that populations of monomers, dimers,
trimers and (in the case of 4-copy simulations) tetramers are
observed in each simulation; the results for the tryptophan
systems, for example, (far right of Figure 6), show that they are
considerably more prone to forming higher-order clusters than
more weakly interacting amino acids such as alanine (far left of
Figure 6). More importantly, however, the distributions of the
various cluster sizes obtained from the all-atom MD simulations
are found to be well reproduced by the BD simulations using
the CG nonbonded potential functions (green symbols): the

Figure 6. Clustering of alanine, leucine, asparagine, and tryptophan solutions in MD and BD. The plots show the fraction of solute molecules that
are members of clusters of various sizes. Blue circles represent results from MD, green upward triangles represent results from BD using
COFFDROP, and red downward triangles represent results from BD using steric nonbonded potentials.
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(representative) results for the ala, leu, asn, and trp systems are
shown in Figure 6, while the results for the other amino acids
studied are shown in Supporting Information Figure S11. To
verify that reproducing the clustering behavior seen in MD is
not a trivial consequence of adding more amino acids to the
simulation box, additional BD simulations were performed
using purely steric nonbonded potentials (red symbols) and
were found to be unable to reproduce the clustering behavior
observed in MD.
To further test the transferability of our nonbonded potential

functions to conditions that are even more different from those
in which they were derived, additional 1 μs MD and BD
simulations of systems containing 50, 100, 200, or 300 mg/mL
of capped amino acids were also performed. To provide a range
of interaction types and strengths for testing, these simulations
were performed on ala, asn, leu and trp systems. Shown in
Figure 7 are the results of cluster analyses for each of these
systems at 200 and 300 mg/mL; the results for 50 and 100 mg/
mL can be found in Supporting Information Figure S12. Again,
the correspondence between the results obtained from the all-
atom MD and the coarse-grained BD simulations is surprisingly
good. For tryptophan at 200 and 300 mg/mL, the BD
simulations successfully reproduce the prediction from MD that
a single large cluster should form that traverses the width of the
simulation box (for a visual comparison of the MD and BD
snapshots of the 300 mg/mL trp system see Supporting
Information Figure S13). At lower concentrations, the BD
simulations predict a degree of clustering that is somewhat too
high relative to MD (Supporting Information Figure S12); this
suggests that the solubility predicted by the pairwise CG
potential functions is somewhat lower than that predicted by
the all-atom MD potential functions. For the other three amino
acids studied, agreement with MD is again good, but,
interestingly, the BD simulations in these cases predict a
degree of clustering that is somewhat lower than that predicted
by the MD simulations.
After determining that COFFDROP’s nonbonded potential

functions were able to reproduce the clustering behavior of
concentrated amino acid solutions, we carried out a preliminary
examination of their ability to describe a weak protein−protein
interaction. The system we chose to simulate was a 9.2 mM
solution of the villin headpiece protein that has been the subject
of a recent comprehensive MD study by Petrov and Zagrovic.70

These authors showed that with all tested MD force fields,
aggregation of villin headpiece molecules occurs at a
concentration of 9.2 mM during the course of a 50 ns MD
simulation; experimentally, however, there is evidence to

suggest that no significant aggregation occurs at this protein
concentration.101 We found that when using COFFDROP’s
nonbonded potential functions in our own simulations of the
villin headpiece, significant aggregation occurred on the 50 ns
time scale, just as it did using the Amber ff99SB-ILDN force
field (and others) in Petrov and Zagrovic’s study (Figure 8A;
blue circles); a view of the aggregated system is shown in Figure
8B. Continuing the COFFDROP simulation for an additional
150 ns did not reverse this aggregation.
The fact that aggregation occurs suggests, on the one hand,

that COFFDROP’s nonbonded potential functions do a good
job of reproducing what the corresponding all-atom MD
simulation force field predicts, but that on the other hand, they
do a poor job of reproducing the experimental behavior. To
explore whether simple alterations could be made to the
nonbonded potential functions to better reproduce experiment,
we performed two additional simulations in which all favorable
regions of the nonbonded potential functions were scaled by
factors of 0.8 and 0.9 respectively. With a scaling factor of 0.9,
no large aggregates formed, but there remained a significant
population of dimers (Figure 8A; green upward triangles); with
a scaling factor of 0.8, however, the proteins remained
monomeric with only transient formations of dimers (Figure
8A; yellow downward triangles); a view of this system is shown
in Figure 8C. To determine if this scaling factor of 0.8 was
sufficient to break up pre-existing aggregates, a final simulation
was performed starting from the final snapshot obtained from
the 1.0 scaling factor simulation: this snapshot had the eight
villin molecules separated into two clusters: a trimer and a
pentamer (Figure 8B). Encouragingly, these pre-existing
aggregates rapidly dissociated when a simulation was started
with a scaling factor of 0.8 (Figure 8A; red squares), suggesting
that such a scaling factor appropriately shifts the thermody-
namics of the model away from aggregates and toward
monomers.
While the clustering behavior seen in both the concentrated

amino acid and villin headpiece simulations indicate that
COFFDROP’s nonbonded potential functions may be useful
for modeling concentrated peptide and protein systems, it is
important to note that there is one respect in which the
functions perform quite disappointingly. To see this, we return
to an analysis of the data obtained from simulations that
contain only pairs of molecules. It will be recalled from above
that convergence of the IBI procedure ensures that each of the
individual pseudoatom−pseudoatom g(r)s are accurately
captured by the CG simulations. However, each of the
optimized nonbonded potential functions is assumed to be

Figure 7. Clustering of alanine, leucine, asparagine, and tryptophan solutions at concentrations of 200 and 300 mg/mL in MD and BD. Same as
Figure 6 but showing results for much higher concentrations.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct5006328 | J. Chem. Theory Comput. 2014, 10, 5178−51945188



pairwise-additive, that is, independent of the other potential
functions; it is therefore possible that important correlations
between potential functionsif presentmight not be
properly described. A related issue is that each of the potential
functions depends only on the distance between two
pseudoatoms which means that orientational (angular)
preferences might also not be correctly captured. It appears

to be a disappointing consequence of these issues that even in
simulations of two amino acid molecules the relative spatial
dispositions of pseudoatoms can be quite poorly described by
the CG potential functions. As one example of this we show in
Figure 9 results for the tryptophan-tryptophan interaction. The
contour plots in Figure 9 (A−C) show three different rotational
views of one of the tryptophan molecules (black), highlighting
(in red) the regions of nearby space that are most frequently
occupied by the Cδ atom of the second tryptophan molecule
during MD simulations. Figure 9 (D−F) shows corresponding
results obtained from BD simulations using our CG potential
functions. While there is some degree of similarity between the
two sets of results, they are also clearly somewhat different, with
some regions of space that are occupied during MD not being
occupied during BD and vice versa; repeating the analysis with
the two tryptophan molecules swapped indicates that these
discrepancies are not due to poor sampling in either the MD or
BD (Supporting Information Figure S14). This indicates that
while it is possible to correctly reproduce all of the
pseudoatom−pseudoatom g(r)s for CG models of the type
developed here, this does not guarantee that the interaction
geometries of the parent molecules will also be correctly
reproduced.

■ DISCUSSION
We have described here the use of the IBI procedure to derive
CG nonbonded potential functions for amino acid−based
systems by matching pseudoatom−pseudoatom g(r)s sampled
from 231 × 1 μs MD simulations of pairs of amino acids. The
MD data themselves appear to be quite reliable−although one
can probably never have too much sampling−and the patterns
of interactions that the different types of amino acids exhibit
match nicely with intuitive expectations (Figure 2B). For each
system, the IBI procedure appears to have little trouble
simultaneously optimizing all of the potential functions (a total
of 30 independent functions in the case of the tryptophan−
tyrosine system), and the derived potential functions make
clear intuitive sense (Figure 5). Perhaps most surprisingly,
while the resulting COFFDROP potential functions struggle to
accurately describe the structural details of amino acid
interactions (Figure 9), they do an excellent job of reproducing
the thermodynamics of interactions in systems that are much
more concentrated than those in which they were derived
(Figure 7), and in reproducing the clustering seen with the
same force field in recent MD simulations of the villin
headpiece (Figure 8A).70 The fact that the discrepancies with
experiment seen in the latter application can be corrected by
simply scaling the favorable nonbonded interactions highlights
one of the potential advantages of using such CG potential
functions, namely that they can often be adjusted in quite
straightforward ways in order to better match experiment.23

Further testing and refinement of COFFDROP for protein
systems is the subject of ongoing work.
Our experiences with the use of the IBI procedure appear to

mirror those of others.41,42,48,54,66−68 The bonded potential
functions derived for single amino acids converge rapidly and
are, at least in the cases studied here, often very similar to the
potential functions that would be obtained by Boltzmann-
inverting the angle and dihedral distributions obtained from
MD (Figure 3E and F). Relative to the bonded functions, the
nonbonded potential functions derived for interactions of pairs
of amino acids have a little more trouble converging, with
fluctuations in the errors remaining evident even at high

Figure 8. Clustering of villin headpiece solutions at a 9.2 mM
concentration in BD. (A) Plot shows the fraction of villin headpiece
molecules that are members of clusters of various sizes. Blue circles
represent results using a 1.0 scaling factor with COFFDROP’s
nonbonded potential functions, green upward triangles represent
results using a 0.9 scaling factor, yellow downward triangles represent
results using a 0.8 scaling factor, and red squares represent results
using a 0.8 scaling factor and starting from a structure in which the
villin molecules were already aggregated into a trimer and pentamer.
(B) Image showing aggregated villin molecules obtained at the end of
a 200 ns BD simulation using a 1.0 scaling factor. Each color
represents a different villin molecule. (C) Image showing villin
molecules at the end of a 200 ns BD simulation using a 0.8 scaling
factor.
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iteration numbers (Figure 4A). Despite this, the IBI procedure
still yields nonbonded potential functions that provide an
excellent reproduction of all of the pseudoatom−pseudoatom
g(r)s (Figure 4B). It is to be noted again that, in contrast to the
bonded functions, the nonbonded potential functions that are
derived by the IBI procedure are very different in strength and
range from those obtained by Boltzmann-inverting the MD
g(r)s (Figure 5A−C); this echoes the results shown by Reith et
al. in their original publication of the IBI method.65 It is also
important to recall that while the Boltzmann-inverted potential
functions have shapes that are reminiscent of those obtained
from the IBI procedure they were not used as the initial
functions for the IBI procedure: instead, to avoid any bias the
IBI procedure was initialized with purely steric potential
functions. The fact that the resulting potential functions
automatically take on the same shapes as those derived by a
noniterative Boltzmann-inversion of the MD data argues for the
robustness of the iterative procedure.
One limitation of the nonbonded potential functions derived

here is that they do not perform especially well in reproducing
the interaction geometries of the amino acids (Figure 9). It is
certainly possible to imagine that a better reproduction of these
geometries could be obtained using potential functions that
depend on more than just the distance between pairs of
pseudoatoms. In this vein, the Betancourt group has already
explored the use of MD-derived 4D potential functions that
better incorporate orientational specificity in the interactions of
amino acid side chains102 and the potential advantages of using
6D potential functions derived from molecular mechanics
calculations for dramatically accelerating large-scale simulations
have been highlighted by the Zuckerman group;103 a number of
other CG models of proteins104,105 and nucleic acids106−109

also incorporate multidimensional potential functions. We have
not explored such approaches here for two reasons. First, while
we think that equilibrium MD simulations of 1 μs duration are
sufficient for us to derive 1D nonbonded potential functions
(where the one dimension is the separation distance), we think
it is unlikely that they will be sufficiently well sampled to allow
the derivation of higher dimensional potential functions.
Second, simple distance-dependent potential functions of the

type developed here, presented in the form of look-up tables,
are more easily incorporated by other users into their
simulation programs; for this reason, all of our potential
functions are provided in Supporting Information.
Despite the fact that our pairwise nonbonded potential

functions struggle to fully reproduce the structural details of the
interactions of amino acid pairs, they perform surprisingly well
at predicting the thermodynamics of higher order interactions,
including at total solute concentrations that approach those
encountered in intracellular conditions.93,110 In simulations of
three or four amino acid molecules correct reproduction of the
ratio of monomers and dimers is not a surprise as the potential
functions were derived to match such distributions. But correct
reproduction of the ratio of dimers to trimers or trimers to
tetramers is not guaranteed. The fact that these ratios are
successfully reproduced, therefore, and the observation that the
potential functions also perform well at concentrations up to
300 mg/mL, suggests that pairwise nonbonded potential
functions may be surprisingly transferable, at least in terms of
capturing the effects predicted by corresponding all-atom MD
simulations.
Interestingly, the behavior predicted by COFFDROP for the

concentrated amino acid systems shows both similarities and
differences with what we obtain when we perform correspond-
ing simulations with two alternative CG parameter sets.
Supporting Information Figure S15 compares the clustering
obtained from COFFDROP with that obtained using the
MARTINI version 2.2 force field21,96 together with the
MARTINI polarizable water model,111 and with that obtained
using the implicit-solvent, one-bead-per-residue potential
functions derived by Betancourt and Omovie from fits to
MD simulation data;55 (the details of both of these latter sets of
simulations are described in Supporting Information). In
comparison with COFFDROP (blue symbols in Figure S15),
MARTINI (red symbols) predicts somewhat weaker amino
acid-amino acid interactions for the four amino acids studied
here. The Betancourt and Omovie potential functions (green
symbols), on the other hand, predict weaker amino acid-amino
acid interactions for the ala and leu systems while predicting

Figure 9. Spatial disposition of the Cδ pseudoatom of tryptophan in MD and BD. (A−C) Red contours show preferred locations of the Cδ
pseudoatom of a tryptophan molecule interacting with a second tryptophan molecule (shown in black) sampled from MD; each of the panels A−C
shows the same image viewed from a different orientation. (D−F) Same as panels A−C, respectively, but showing results from BD.
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stronger amino acid-amino acid interactions for the asn and trp
systems.
Regardless of these differences with other CG force fields, we

think that our initial application of COFFDROP to simulations
of the villin headpiece indicate that it is likely to be useful for
modeling the intermolecular interactions of globular proteins.
As noted above, we have shown that qualitative agreement with
experiment for the villin headpiece requires the use of a scaling
factor but simulations of a wider variety of protein−protein
interactions will be required before the extent to which this
approach works can be determined. To this end, we plan to
match COFFDROP to experimental data that report more
directly on the thermodynamics of protein−protein inter-
actions. In this regard, obvious sources of data for para-
metrization are osmotic second virial coefficients,112 which a
number of simulation studies have already attempted to
model.23,113−118 Since the current version of COFFDROP
only contains bonded parameters for single amino acids,
simulations of proteins will require Go̅-type95 distance
restraints such as those used here, or alternative ap-
proaches,21,96 in order to maintain proteins in their native
state structures. A more lasting solution to the problem will
involve using the IBI procedure to derive bonded potential
functions that describe the conformational preferences of the
protein backbone and/or reward the formation of α-helical or
β-sheet secondary structures. Potential functions derived in that
way might be especially useful as a very rapid method for
modeling the conformational dynamics of intrinsically dis-
ordered proteins (IDPs); this is the focus of ongoing work.
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(107) Šulc, P.; Romano, F.; Ouldrige, T. E.; Rovigatti, L.; Doye, J. P.
K.; Louis, A. A. Sequence-dependent thermodynamics of a coarse-
grained DNA model. J. Chem. Phys. 2012, 137, 135101.
(108) Hinckley, D. M.; Freeman, G. S.; Whitmer, J. K.; de Pablo, J. J.
An experimentally-informed coarse-grained 3-site-per-nucleotide
model of DNA: Structure, thermodynamics, and dynamics of
hybridization. J. Chem. Phys. 2013, 139, 144903.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct5006328 | J. Chem. Theory Comput. 2014, 10, 5178−51945193

http://www.R-project.org


(109) Denesyuk, N. A.; Thirumalai, D. Coarse-grained model for
predicting RNA folding thermodynamics. J. Phys. Chem. B 2013, 117,
4901−4911.
(110) Zimmerman, S. B.; Trach, S. O. Estimation of macromolecule
concentrations and excluded volume effects for the cytoplasm of
Escherichia coli. J. Mol. Biol. 1991, 222, 599−620.
(111) Yesylevskyy, S. O.; Schaf̈er, L. V.; Sengupta, D.; Marrink, S. J.
Polarizable water model for the coarse-grained MARTINI force field.
PLoS Comput. Biol. 2010, e1000810.
(112) Velev, O. D.; Kaler, E. W.; Lenhoff, A. M. Protein interactions
in solution characterized by light and neutron scattering: comparison
of lysozyme and chymotrypsinogen. Biophys. J. 1998, 75, 2682−2697.
(113) Elcock, A. H.; McCammon, J. A. Calculations of weak
protein−protein interactions: The pH dependence of the second virial
coefficient. Biophys. J. 2001, 80, 613−625.
(114) Lund, M.; Jönsson, B. A mesoscopic model for protein−
protein interactions in solution. Biophys. J. 2003, 85, 2940−2947.
(115) Lund, M.; Jönsson, B. On the charge regulation of proteins.
Biochemistry 2005, 44, 5722−5727.
(116) McGuffee, S. R.; Elcock, A. H. Atomically detailed simulations
of concentrated protein solutions: The effect of salt, pH, point
mutations, and protein concentration in simulations of 1000-molecule
systems. J. Am. Chem. Soc. 2006, 128, 12098−12110.
(117) Mereghetti, P.; Gabdoulline, R. R.; Wade, R. C. Brownian
dynamics simulation of protein solutions: Structural and dynamic
properties. Biophys. J. 2010, 99, 3782−3791.
(118) Mereghetti, P.; Wade, R. C. Atomic detail Browian dynamics
simulations of concentrated protein solutions with a mean field
treatment of hydrodynamic interactions. J. Phys. Chem. B 2012, 116,
8523−8533.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct5006328 | J. Chem. Theory Comput. 2014, 10, 5178−51945194


