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Lung cancer is a common malignant cancer. Kirsten rat sarcoma oncogene (KRAS)
mutations have been considered as a key driver for lung cancers. KRAS p.G12C
mutations were most predominant in NSCLC which was comprised about 11–16% of
lung adenocarcinomas (p.G12C accounts for 45–50% of mutant KRAS). But it is still not
clear how the KRAS mutation triggers lung cancers. To study the molecular mechanisms
of KRAS mutation in lung cancer. We analyzed the gene expression profiles of 156 KRAS
mutation samples and other negative samples with two stage feature selection approach:
(1) minimal Redundancy Maximal Relevance (mRMR) and (2) Incremental Feature
Selection (IFS). At last, 41 predictive genes for KRAS mutation were identified and a
KRAS mutation predictor was constructed. Its leave one out cross validation MCC was
0.879. Our results were helpful for understanding the roles of KRAS mutation in
lung cancer.
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INTRODUCTION

Lung cancer, known as a malignant cancer which defined as the overgrowth of uncontrolled cell in
lung tissues, has proved be a key cause of cancer death. Each year, 1.3 million people die of lung
cancer (Jemal et al., 2006; Jemal et al., 2011). Non-small-cell lung cancer (NSCLC) accounts for
more than 85% of diagnosed lung cancer patients (Morgensztern et al., 2010). NSCLC can be further
divided into adenocarcinoma, squamous cell carcinoma (SCC), and large cell carcinoma (Sandler
et al., 2006; Morgensztern et al., 2010).

At present, the pathogenesis of lung cancer is not very clear, but is generally believed that one of
the most important reason is the accumulation of mutations including single nucleotide
transformation, small fragments of insertions and deletions, the changes of copy number, and
chromosome rearrangement. Moreover, these mutations are closed with cell proliferation, invasion,
metastasis, and apoptosis (Scagliotti et al., 2008; Liu et al., 2012). So, studying mutations in living
systems will be helpful to understand how mutations are associated with lung-cancer
biological processes.
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In the last decade, researchers have uncovered the source of
one of the important mutations is called as Kirsten rat sarcoma
oncogene (KRAS) mutations in lung cancers using molecular
studies (Gautschi et al., 2007). KRAS is the principal isoform of
RAS. KRAS p.G12C mutations were most predominant in
NSCLC which was comprised about 11–16% of lung
adenocarcinomas (p.G12C accounts for 45–50% of mutant
KRAS) (Cox et al., 2014). Other common KRAS mutations in
lung cancer are G12V and G12D. In other cancers, such as
pancreatic cancer and colorectal cancer, KRAS mutations are
also frequent. Based on the TCGA data in cBioPortal (Gao et al.,
2013), the most frequent KRAS mutations in pancreatic cancer
are G12D, G12V, and G12R; the most frequent KRAS
mutations in colorectal cancer are G12D, G12V, and G13D.
KRAS may be a good lung cancer therapeutic target for
searching potential drugs.

As above mentioned, mutations in KRAS is the most usual
mutations that occur in lung cancer, especially in NSCLC (Mao
et al., 1994; Mills et al., 1995; Nakamoto et al., 2001). KRAS
mutation is more frequent in Caucasians than in Asians.
Moreover, smokers may have more KRAS mutations than
nonsmokers (Westcott and To, 2013; Ferrer et al., 2018).
Single amino acid substitutions in codon 12 were most
common KRAS mutations in NSCLC (Graziano et al., 1999).
Therefore, the search for how the KRAS mutations affected the
gene in lung cancer has been a long-standing goal in
cancer biology.

In this study, to study the functional effects of key driver KRAS
mutations on gene expression in lung cancer, we analyzed the gene
expression profiles of 156 lung cancer cell lines with KRAS
mutations and other 3,582 lung cancer cell lines without KRAS
mutations. Forty-one discriminative genes for KRAS mutations
were identified using two stage feature selection approach: (1)
minimal Redundancy Maximal Relevance (mRMR) and (2)
Incremental Feature Selection (IFS).
METHODS

The Gene Expression Profiles of Cell Lines
With and Without KRAS Mutations
To identify the key genes that distinguishes key driver KRAS
mutations from other mutations, we downloaded the gene
expression profiles of 156 lung cancer cell lines with KRAS
mutations as positive samples and other 3,582 lung cancer cell
lines without KRAS mutations as negative samples from publicly
available Gene Expression Omnibus (GEO) database under
accession number of GSE83744 (Berger et al., 2016). The
expression levels of 978 representative genes from Broad
Institute Human L1000 landmark were measured. The L1000
landmark was derived from the Connectivity Map (CMap)
project (Subramanian et al., 2017). CMap is a large gene-
expression dataset of human cells perturbed with many
chemicals and genetic reagents (Lamb et al., 2006). These 1,000
genes were sensitive to perturbations and can reflect 81% of non-
measured transcripts (Subramanian et al., 2017).
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Two Stage Feature Selection Approach
We applied two stage feature selection approach to select the
biomarker genes. First, the genes were ranked based on not only
their relevance with mutation samples, but also their redundancy
among genes using the mRMR algorithm (Peng et al., 2005). It
had a wide range of applications in bioinformatics for feature
selection (Chen et al., 2018c; Chen et al., 2019e; Li and Huang,
2018; Li et al., 2019b; Wang and Huang, 2019a). As the equation
shown below,Ωs,Ωt andΩ were the set of m selected genes, n to-
be-selected genes, and all m+n genes, respectively. We use
mutual information (I) to measure the relevance of the
expression levels of gene g from Ωt with KRAS mutation status
t (Huang and Cai, 2013):/>

D = I g, tð Þ (1)

Meanwhile, the redundancy R of the gene g with the selected
genes in Ωs can be calculated as below:

R =
1
m

∑gi ∈Ws
I g, gið Þ� �

(2)

The optimal gene gj from Ωt with max relevance with KRAS
mutation status t and min redundancy with the selected genes in
Ωs can be selected by maximizing mRMR function listed below

max
gj ∈Wt

I gj, t
� �

−
1
m

∑gi ∈Ws
I gj, gi
� �� �� �

j = 1, 2,…, nð Þ (3)

With N round evaluations, genes can be ranked as

S = g
0
1, g

0
2,…, g

0
h,…, g

0
N ,

n o
(4)

The top ranked genes were associated with KRAS mutation
status, and had little redundancy with other genes. Such genes
were suitable for biomarkers. The top 200 genes were further
analyzed at the second stage.

The second stage was to determine the number of selected
genes using the IFS method (Chen et al., 2018b; Chen et al.,
2019b; Chen et al., 2019c; Chen et al., 2019d; Chen et al., 2019f; Li
et al., 2019a; Pan et al., 2019a; Pan et al., 2019b; ). To do so, 200
classifiers were constructed using top 1, top 2, top 200 genes. The
LOOCV (leave-one-out cross validation) MCC (Mathew’s
correlation coefficient) of the top k-gene classifier was
calculated each time.

We tried several different classifiers: (1) SVM (Support
Vector Machine) (Jiang et al., 2019; Yan et al., 2019; Chen
et al., 2019a; Li et al., 2019a; Pan et al., 2019a; Wang and
Huang, 2019b; Chen et al., 2019d), (2) 1NN (1 Nearest
Neighbor) (Lei et al., 2013; Chen et al., 2016; Wang et al.,
2017a), (3) 3NN (3 Nearest Neighbors), (4) 5NN (5 Nearest
Neighbors), (5) Decision Tree (DT) (Huang et al., 2008;
Huang et al., 2011; Chen et al., 2015), (6) Neural Network
(NN) (Liu et al., 2017; Pan et al., 2018; Chen et al., 2019e). The
function svm from R package e1071, function knn from R
package class, function rpart from R package rpart, function
nnet from R package nnet were used to apply these
classification algorithms.
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Based on the IFS curve in which x-axis was the number of
genes and y-axis was the corresponding LOOCV MCC, we can
decide the best gene combinations we should select. The peak of
the curve was the optimal selection.

Prediction Performance Evaluation
of the Classifier
As we mentioned before, the prediction performance of each
classifier was evaluated with leave-one-out cross validation
(LOOCV) (Cui et al., 2013; Yang et al., 2014). It will go
through N rounds and each sample will be tested during the N
rounds. In each round, one sample will be tested using the model
trained with the other N-1 samples. It can objectively evaluate all
samples (Chou, 2011).

The performance metrics, including Sensitivity (Sn),
Specificity (Sp), Accuracy (ACC), and Mathew’s correlation
coefficient (MCC) were all calculated:

Sn =
TP

TP + FN
(5)

Sp =
TN

TN + FP
(6)

ACC =
TP + TN

TP + TN + FP + FN
(7)

MCC =
TP � TN − FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp (8)

where TP, TN, FP, and FN stand for the number of true
positive samples, true negative samples, false positive samples,
and false negative samples, respectively. Since the sizes of
KRAS mutation + samples and KRAS mutation - samples were
imbalance and MCC can trade-off sensitivity and specificity
(Chen et al., 2018a; Li et al., 2018; Pan et al., 2018; Pan et al.,
2019a; Pan et al., 2019b), MCC was used as the main
performance metric.
RESULTS AND DISCUSSION

The Genes That Showed Different
Expression Pattern Between KRAS
Mutations From Other Mutations Samples
The top 200 most informative genes for KRAS mutations were
identified using the mRMR method which has been widely
used in bioinformatics filed (Zhao et al., 2013; Zhang et al.,
2016). The C/C++ version software written by Peng et al.
(Peng et al., 2005; Best et al., 2017) (http://home.penglab.com/
proj/mRMR/) was used to apply the mRMR algorithm. Unlike
the traditional statistical test based univariate feature selection
methods, mRMR considers the relevance between gene
expression and KRAS mutation status, and the redundancy
among genes.
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The Optimal Biomarkers Identified From
the mRMR Gene List With IFS Methods
After genes were ranked by mRMR, the IFS procedure was
applied to find the optimal number of genes to be selected.
The IFS curve in Figure 1 showed the relationship between the
number of genes and their MCCs. The peak LOOCV MCCs of
SVM, 1NN, 3NN, 5NN, DT, and NN were 0.858 with 8 genes,
0.853 with 48 genes, 0.879 with 41 genes, 0.878 with 59 genes,
0.871 with 69 genes, 0.842 with 174 genes. 3NN performed best.
The corresponding 41 genes were shown in Table 1.

The Prediction Metrics of the 41 Genes
The 41 genes were chosen with two stage feature selection
methods: mRMR and IFS. To more carefully evaluate their
prediction power, we checked their confusion matrix which
showed the overlaps between actual KRAS mutation status and
predicted KRAS mutation status using 3NN (Table 2). The
LOOCV sensitivity, specificity, accuracy, and MCC were 0.840,
0.997, 0.991, and 0.879, respectively.

The Network Associations Between KRAS
and the 41 Genes
We searched KRAS and the eight genes in STRING database
Version: 11.0 (https://string-db.org) and Figure 2 showed their
functional association networks. It can be seen that 20 out of 41
genes (CCND3, CDK19, CEBPA, CEBPD, CSNK1E, CTSL,
DUSP6, GRB10, HMGA2, MMP1, MTHFD2, NR3C1, PAK4,
PMAIP1, RAP1GAP, SDHB, STX1A, TP53, TRIB3, UBE2L6)
FIGURE 1 | The IFS curves of six different classifiers. The x-axis was the
number of genes and the y-axis was the then leave one out cross validation
(LOOCV) MCC. The red, blue, brown, black, orange, and purple curves were
the IFS results of SVM, 1NN, 3NN, 5NN, DT, and NN, respectively. Peak
LOOCV MCCs of SVM, 1NN, 3NN, 5NN, DT, and NN were 0.858 with 8
genes, 0.853 with 48 genes, 0.879 with 41 genes, 0.878 with 59 genes,
0.871 with 69 genes, 0.842 with 174 genes. 3NN performed best. Therefore,
the corresponding 41 genes were finally selected.
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had direct interactions with KRAS. The STRING network results
supported that most of the 41 genes had direct interactions
with KRAS.

The Biological Significance of the Selected
Genes in Lung Cancer
As mentioned earlier, we used mRMR algorithm and IFS program
to screen out 41 genes which may be molecular markers for
identifying KARS mutations. Subsequently, we reviewed studies
of these genes in lung cancer and other cancers with high frequency
of KARS mutations such as colorectal and pancreatic cancer. In the
study of Zhang X et al., Tribbles-3 (TRIB3) pseudokinase can
activate the b-catenin signal pathway, which in turn promotes the
proliferation and migration of NSCLC cells (Zhang et al., 2019). In
addition, blocking the activity of TRIB3 may be one of the
mechanisms for the treatment of lung cancer (Ding et al., 2018).
Wang X et al. have found that PAK4 is significantly associated with
poor prognosis of NSCLC (Wang et al., 2016b), and LIMK1
phosphorylation mediated by it regulates the migration and
invasion of NSCLC. Therefore, PAK4 may be an important
prognostic indicator and a potential molecular target for
treatment of NSCLC (Cai et al., 2015). HMGA2 affects apoptosis
and is highly expressed in metastatic LUAD through Caspase 3/9
and Bcl-2. It is also considered to be a biomarker and potential
therapeutic target for lung cancer therapy (Kumar et al., 2014; Gao
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et al., 2017b). A meta-analysis of lung cancer showed that metallo-
proteinase 1 (MMP1)-16071G/2G polymorphism was a risk factor
for lung cancer in Asians (Li et al., 2015). In addition, DUSP6
rs2279574 gene polymorphism is thought to predict the survival
time of NSCLC patients after chemotherapy (Wang et al., 2016a).
Cyclin D3 gene (CCND3) is a key cell cycle gene of NSCLC, which
can promote the growth of LUAD (Zhang et al., 2017). Casein
kinase I epsilon (CSNK1E), a circadian rhythm gene, whose genetic
variation has a very significant correlation with the risk of lung
cancer (Ortega and Mas-Oliva, 1986). CEPBA, can be used as a
new tumor suppressor factor, Lu H et al. through clinical
experiments, it was found that up-regulation of CEBPA is an
effective method for the treatment of human NSCLC (Halmos
et al., 2002; Lu et al., 2015). In addition, a comprehensive analysis
of lung cancer genes by, Lv M shows that CEPBD may be involved
in the development of lung cancer (Lv and Wang, 2015). TP53
mutation is very common in NSCLC and is considered to be a
marker of poor prognosis and a prognostic indicator of lung cancer
(Gao et al., 2017a; Labbe et al., 2017). Methylenetetrahydrofolate
dehydrogenase 2 (MTHFD2) has redox homeostasis and can be
used in the treatment of lung cancer (Nishimura et al., 2019).
NR3C1 is reported to be involved in the pathways related to the
biological process of lung cancer, and as a gene marker has a
significant correlation with the survival of LUAD (Zhao et al., 2015;
Luo et al., 2018). Cathepsin L1, as a protein was encoded by the
CTSL1 gene, could reduce the cellular matrix and proteolytic
cascades which resulting to promote invasion or metastatic
activity (Duffy, 1996; Turk et al., 2012). Elevated expression of
extracellular Cathepsin L was related with cancer progression of
lung cancer cells (Okudela et al., 2016). Moreover, Cathepsin L is
viewed as a downstream target of oncogenic KRAS mutations.

The above genes have not only been proved to be closely
related to the prognosis, diagnosis, and treatment of lung cancer,
but also have a direct interaction with KRAS. Some of the 41
selected genes have no direct interaction with KRAS, but are
considered to be involved in the occurrence and development of
lung cancer. RBM6 protein is located at 3p21.3, and its
expression changes regulate many of the most common
abnormal splicing events in lung cancer (Sutherland et al.,
2010; Coomer et al., 2019). The double up-regulation of RGS2
gene is related to the poor overall survival rate of patients with
lung adenocarcinoma (Yin et al., 2016). Epigenetic silencing of
BAMBI has been identified as a marker of NSCLC, and
overexpression of BAMBI may become a new target for the
treatment of this cancer (Marwitz et al., 2016; Wang et al.,
2017b). Overexpression of PAFA-H1B1 can lead to the
occurrence and poor prognosis of lung cancer (Lo et al., 2012).
Collagen alpha-1(IV) chain (COL4A1), encoded by the COL4A1
gene, was found previously to play a crucial role in the
coordinating alveolar morphogenesis and formatting the
epithelium vasculature lung tissue (Abe et al., 2017).
The Potential Roles of the Selected Genes
in Other Cancers
KRAS related genes are likely to be diagnostic, prognostic
markers and therapeutic targets of lung cancer. We also
TABLE 1 | The 41 genes selected by mRMR and IFS.

Rank Gene Rank Gene

1 CTSL1 22 CCDC92
2 GNPDA1 23 BRP44
3 TRIB3 24 CDK19
4 STX1A 25 CD320
5 PHKA1 26 ATP1B1
6 CSNK1E 27 DRAP1
7 COL4A1 28 DUSP6
8 CEBPA 29 RAP1GAP
9 CEBPD 30 GALE
10 NSDHL 31 SSBP2
11 TP53 32 UBE2L6
12 MTHFD2 33 CCND3
13 RGS2 34 PAFAH1B1
14 NR3C1 35 RBM6
15 PPIC 36 C5
16 BAMBI 37 SDHB
17 PAK4 38 GRB10
18 FEZ2 39 UFM1
19 KTN1 40 ARL4C
20 HMGA2 41 PMAIP1
21 MMP1
TABLE 2 | The confusion matrix of actual sample classes and predicted sample
classes using 3NN.

Predicted KRAS mutation + Predicted KRAS
mutation −

Actual KRAS mutation + 131 25
Actual KRAS mutation − 10 3572
MCC = 0.879 Sensitivity = 0.840 Specificity = 0.997
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looked for studies of these genes and KRAS high-frequency
mutations in other cancers, mainly in colorectal and
pancreatic cancer. According to Hua F et al., TRIB 3 gene
knockout can reduce the occurrence of colon tumors in mice,
reduce the migration of colorectal cancer cells, and reduce
their growth in mouse transplanted tumors. The strategy of
blocking the activity of TRIB3 can be used to treat colorectal
cancer (Hua et al., 2019). Tyagi N et al. have found that PAK4
can maintain the stem cell phenotype of pancreatic cancer cells by
activating STAT3 signal, which can be used as a new therapeutic
target (Tyagi et al., 2016). TP53 mutation is associated with early
stage of colorectal cancer (Laurent et al., 2011). There was a
significant correlation between MMP1 and colon cancer mortality
(Slattery and Lundgreen, 2014).
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DATA AVAILABILITY STATEMENT

We downloaded the blood gene expression profiles of 156 KRAS
mutations as positive samples and other 3582 mutations as
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FIGURE 2 | The functional association network of KRAS and the selected genes based on STRING database. Twenty out of 41 genes (CCND3, CDK19, CEBPA,
CEBPD, CSNK1E, CTSL, DUSP6, GRB10, HMGA2, MMP1, MTHFD2, NR3C1, PAK4, PMAIP1, RAP1GAP, SDHB, STX1A, TP53, TRIB3, UBE2L6) had direct
interactions with KRAS. Each line represented an interaction supported by different evidences. The skype-blue, purple, green, red, blue, grass green, black, and
navy-blue edges were interactions from curated databases, experiment, gene neighborhood, gene fusions, gene co-occurrence, text mining, co-expression, and
protein homology, respectively. For more detailed explanations, please refer to STRING database (https://string-db.org).
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