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Abstract
Background  We aimed to determine (1) the test–retest reliability of a newly developed portable fixed dynamometer (PFD) 
as compared to the hand-held dynamometer (HHD) in patients with motor neuron disease (MND) and (2) the PFD’s ability 
to reduce possible examiner-induced ceiling effects.
Methods  Test–retest reliability of isometric muscle strength of the quadriceps was measured in patients with MND and 
non-neurological controls using the HHD and PFD. Reliability was estimated by the intraclass correlation coefficient (ICC) 
and standard error of measurement (SEM) using linear mixed effects models, and the Bland–Altman method of agreement.
Results  In total, 45 patients with MND and 43 healthy controls were enrolled in this study. The ICC of the PFD was excellent 
and similar in both patients and controls (ICC Patients 99.5% vs. ICC Controls 98.6%) with a SEM of 6.2%. A strong examiner-
induced ceiling effect in HHD was found when the participant’s strength exceeded that of examiner. Employing the PFD 
increased the range of muscle strength measurements across individuals nearly twofold from 414 to 783 N.
Conclusions  Portable fixed dynamometry may significantly reduce examiner-induced ceiling effects, optimize the stand-
ardization of muscle strength testing, and maximize reliability. Ultimately, PFD may improve the delivery of care due to its 
potential for unsupervised, home-based assessments and reduce the burden to the patient of participating in clinical trials 
for MND or other neuromuscular diseases.
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Introduction

Progressive muscle weakness is the hallmark of motor neu-
ron disease (MND) [1]. Muscle strength testing has, there-
fore, a central role in monitoring MND progression [2–4]. 
Isometric muscle strength testing using the Hand-Held 
Dynamometer (HHD) is preferred to the Medical Research 
Council (MRC) scale due to its increased objectivity and 
sensitivity [3, 5–7]. Despite its user-friendliness, portability 
and cost-effectiveness, the HHD’s reliability depends on the 
technique and strength of the examiner [8–13]. These limita-
tions become especially apparent in strong muscle groups 
such as the quadriceps, resulting in possible ceiling effects 
and a reduced sensitivity for quantifying MND progression 
in early disease stages [14, 15].

Reducing examiner variability may, therefore, signifi-
cantly reduce measurement error and optimize the sensitiv-
ity of muscle strength testing in MND. Fixed dynamometry 
(i.e., fixation of the dynamometer in a rigid structure) has 
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been shown to alleviate the limitations of the HHD, but cur-
rently available systems still require a trained examiner and 
hospital visits [16–24].

Given the current transition to home-based assessments 
(i.e., remote monitoring) [25, 26], and the accompanying 
need for reliable and unsupervised measurements of dis-
ease progression [27, 28], we developed a portable fixed 
dynamometer (PFD). The PFD was developed to evaluate 
quadriceps strength, because, although there is a gradual 
rate of decline, the function of this muscle is preserved for 
a relatively long time, and may provide large effect sizes 
to quantify muscle strength loss over time in patients with 
MND [29, 30]. The quadriceps is, therefore, potentially a 
sensitive muscle group for objective measurement of disease 
progression in MND. However, as the quadriceps is one of 
the strongest muscles of the human body, its assessment is 
challenging, which leads to high variability among examin-
ers when using the HHD [31].

In this study, we aimed to determine (1) the reliability of 
PFD as compared to the HHD and (2) the PFD’s ability to 
reduce possible examiner-induced ceiling effects.

Methods

Study population

Study participants consisted of two groups: (1) participants 
with a diagnosis within the motor neuron disease spectrum 
(i.e., Amyotrophic Lateral Sclerosis, Progressive Muscular 
Atrophy or Primary Lateral Sclerosis) [32], and (2) controls 
without a neurological condition. Participants were excluded 
from the study if they met one of the following criteria: 
(1) less than MRC 2 quadriceps strength in both legs, (2) 
recent or current pain in knee joint or quadriceps muscle, 
(3) not able to follow test instructions from the examiner, or 
(4) having another non-MND disorder that affects muscle 
strength. All patients with MND were recruited from the 

outpatient clinic of the University Medical Centre Utrecht, 
The Netherlands. Control participants were recruited from 
personnel and students from the department of rehabilita-
tion and geriatrics. The study was approved by the Medical 
Ethics Committee of the UMCU (protocol number 18–243). 
All study participants gave written informed consent to par-
ticipate in this study.

Procedures and measurement techniques

Two examiners (T.G.A. and M.J.H) were certified for 
isometric HHD muscle testing after (1) completing the 
‘Treatment Research Initiative to Cure ALS’ (TRICALS) 
e-course ‘Isometric muscle testing in ALS’, and (2) satis-
factorily completing supervised HHD testing of five control 
participants. After the registration of patient information 
and collection of MND-specific characteristics (e.g., ALS 
functional rating scale [ALSFRS-R] and respiratory func-
tioning), test re-test reliability was assessed in two separate 
trials on the same day (Fig. 1). Thirty minutes before each 
trial, participants were requested to refrain from engaging in 
any strenuous activities. Each trial consisted of six measure-
ments per leg, three with the HHD and three with the PFD. 
Participants were seated on a chair with back support, hips 
and knees were kept at 90 degrees. To rule out the influence 
of arm function, arms were placed in the lap. The starting 
sequence of the assessment (HHD or PFD) was randomized 
to minimize the effect of fatigue. All trials within the same 
participant were conducted by the same examiner, verbally 
instructing and motivating the patient.

Hand‑held dynamometry

The HHD (MicroFET 2, HOGGAN Scientific) assessments 
consisted of three isometric ‘break contractions’ [33], 
approximately 10 s apart. The HHD was placed 1 centimeter 
proximal to the midline between the malleoli. If necessary, 
a towel roll was placed under the knee to prevent the foot 

Fig. 1   Overview of study procedures
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from touching the ground. During the maximal contraction, 
the examiner not only attempted to offer sufficient resistance, 
but also strived to give a gentile break in the opposite direc-
tion of the isometric strength. The score of each measure-
ment, as well as the ability to perform a ‘break’ (classified 
as break OR unable-to-break), was registered.

Portable fixed dynamometer

To be able to measure muscle strength of the quadriceps 
muscle using a portable, but fixed device, we constructed a 
simple rigid construction with two HHD holders. In Fig. 2 
we illustrate the PFD with the HHDs fixed in a rigid, but 
portable construction. The PFD can be easily placed in front 
of a (wheel) chair and standardizes the starting position of 
the knee joint at 90 degrees. The vertical arm of the PFD 
(indicated by a, Fig. 2) can be adjusted to prevent the feet 
from touching the ground. The arm length of the PFD (indi-
cated by b) is adjusted to the length of the participant’s lower 
leg and positions the HHD. We evaluated muscle strength 
in a fashion identical to that of the HHD. Importantly, in 
contrast to the HHD, and due to the nature of the fixed con-
struction, the PFD tests consisted of an isometric ‘make con-
traction’ as opposed to a ‘brake contraction’ [33].

Statistical analysis

Data were summarized using the mean with standard devia-
tion (SD) for continuous variables and number with percent-
age for categorical variables. Mean differences (MD) were 
calculated between cases and controls using an independent 
t test. For each participant, per trial (i.e., trial 1 or 2) and per 
method (i.e., HHD or PFD), we selected the highest muscle 

strength score from the two values which were most similar 
of the three measurements taken. Test–retest reliability was 
assessed using (1) the intraclass correlation coefficient (ICC) 
and its associated standard error of the measurement (SEM), 
and (2) the Bland–Altman method of agreement [34, 35]. 
Due to the heteroscedastic nature of the data, we applied a 
10log-scale transformation, and calculated the mean differ-
ence between trials. The ICC was estimated using a linear 
mixed effects model, incorporating only a fixed intercept 
and random intercept per subject. The ICC was then calcu-
lated as the percentage of the total variation (i.e., sum of the 
between-subject and within-subject variation) that can be 
explained by between-subject differences (i.e., the between-
subject variation); 95% confidence intervals were obtained 
by means of bootstrapping (n = 1000). The SEM was calcu-
lated by taking the square root of the within-subject variation 
and back-transformed as described elsewhere [35]. Finally, 
the presence of a ceiling effect was assessed in two steps. 
First, we assessed the relationship between HHD and PFD 
measurements with a linear mixed model. This relationship 
was modelled using a natural spline with four knots. Sec-
ondly, we compared the relationship between HHD and PFD 
measurements with functional loss, using item 8 (walking) 
of the ALSFRS-R. All analyses were conducted using R. 
Linear mixed models were fitted and bootstrapped using 
the lmer and bootMer functions (R package lme4, version 
1.1–21), respectively [36].

Results

Between 4th April 2018 and 8th March 2019, 88 Dutch 
participants were enrolled in this study: 45 patients with 
MND and 43 non-neurological controls; their baseline 
characteristics are presented in Table 1. The age distribu-
tion ranged from 22 to 94 years. In the control subjects, 
the range of muscle strength was larger for PFD (8 N to 
783 N) as compared to HHD (15 N to 414 N). As expected, 
patients with MND had a significantly lower quadriceps 
strength compared to the control population (p < 0.001). The 
group difference in quadriceps strength (MND vs controls) 
was, however, considerably larger on PFD (− 113 N, 95% 
CI − 52 N to − 174 N, standardized: 0.792) as compared to 
HHD (− 60 N, 95% CI 23 N to 97 N, standardized: 0.679).

Reliability HHD and PFD

In Fig. 3, we provide the measurements of reliability. Due 
to the heteroscedastic nature of the data, we applied a 10log 
transformation on the muscle strength scores. For both 
the HHD and PFD, no systematic differences were found 
between trials 1 and 2 as indicated by their mean differ-
ence (MD, i.e., mean trial 1—trial 2). The ICC of the PFD 

Fig. 2   Prototype of the Portable Fixed Dynamometer. A rigid frame-
work with two holders for the MicroFET dynamometers (*) was cre-
ated to remove the need for an examiner when evaluating quadriceps 
strength. With the vertical arm (a), the height was adjusted to pre-
vent the feet from touching the ground. The diagonal arm (b) enabled 
adjustment of the dynamometer pad to 1 centimeter proximal to the 
midline between the malleoli
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was excellent and similar in both patients and controls (ICC 
Patients 99.5% vs. ICC Controls 98.6%). The back-transformed 
SEM of the PFD was 6.2% of the mean strength in New-
ton, meaning that test–retest values may vary by as much 
as ± 12.5% of their mean (i.e., approximately two times the 
SEM) [35]. Interestingly, the ICC of the HHD was excellent, 
albeit considerably lower in controls (ICC Patients 99.3% vs. 
ICC Controls 91.8%).

Examiner‑induced ceiling effects in hand‑held 
dynamometry

Figure 4a shows the relationship between HHD and PFD 
measurements. For lower values up to 200 N, the PFD and 

HHD show visually a level of high agreement, resulting in 
nearly identical strength values. Above 200 to 250 N, the 
proportion of unable-to-break (Fig. 4b) increases and the 
correlation between PFD and HHD weakens (as reflected 
by a deviation from the dashed line). As patients, on aver-
age, had lower muscle strength than controls, the correla-
tion coefficient between HHD and PFD was high in patients 
(Pearson’s r 0.94, 95% CI 0.89 to 0.97), whereas in controls 
it was considerably lower (Pearson’s r controls: 0.71, 95% 
CI 0.52 to 0.83).

When HHD and PFD measurements were compared 
between subgroups based on the score on question 8 (walk-
ing) of the ALSFRS-R (Fig. 5), the effect of the ceiling 
effect became visible. On a group level, the distinction 
between scores 2, 3 and 4 of item 8 of the ALSFRS-R, did 
not appear profound for HHD measurements. However, in 
PFD measurements, muscle strength was approximately lin-
early related to the reported functional loss.

Discussion

In this study, we showed that (1) the PFD achieves a high 
level of precision with an excellent test–retest reliability over 
a wide range in muscle strength measurements and (2) the 
PFD has an advantage over hand-held isometric strength 
measurements as it reduces examiner-induced ceiling effects. 
Fixating a dynamometer in a simple and portable framework 
opens the door to standardized self-assessments by patients 
in their homes, and may eventually decrease the number of 
hospital visits and reduce the burden to participate in clini-
cal trials.

Optimizing muscle strength testing is important to opti-
mize the evaluation of efficacy of new MND therapies and 
to contribute to the delivery of remote care [20]. In the field 
of voluntary muscle strength testing, the Biodex system is 
considered to be the gold standard [21, 37, 38]. Similar to 
the Biodex, other systems have been developed that fixate 
a loading cell or dynamometer in a rigid framework [e.g., 
Maximum Voluntary Isometric Contraction (MVIC) or 
Accurate Test of Limb Isometric Strength (ATLIS)]. The 
MVIC and ATLIS have proven to be reliable in patients with 
ALS with an excellent intra-rater test variability ranging 
from 8.6% to 8.9% for the assessment of quadriceps muscle 
strength.[16, 39] These rigid frameworks are, however, not 
portable, require visits to the out-patient department, and are 
still operated by a trained examiner. Other methods that are 
applied to fixate dynamometers are belt or clamp fixations 
and stabilization devices [18, 37, 40–44]. Although these 
have the advantage of being portable and less expensive, 
unsupervised use has led to inaccurate measurements and 
patient discomfort [45].

Table 1   Baseline characteristics of study population

Data are in mean (SD) or no. (%).ΔFRS = 48—ALSFRS-R total 
score/symptom duration [48]. Prognostic subgroups are based on the 
ENCALS prediction model [49]
HHD hand-held dynamometry, PFD portable fixed dynamometry, 
MND motor neuron disease, ALS amyotrophic lateral sclerosis, PMA 
progressive muscular atrophy, PLS primary lateral sclerosis, ALS-
FRS-R revised ALS functional rating scale

Characteristic Patients (N = 45) Controls (N = 43)

Age (years)
 Median 62 47
 Range 30–84 22–94
 Males 27 (60%) 22 (51%)
 Body mass index (kg/m2) 25 (2) 24 (3)

Muscle strength, average (N)
 HHD 216 (94) 275 (80)
 PFD 237 (126) 350 (159)

Muscle strength, range (N)
 HHD 15–373 128–414
 PFD 8–508 91–783

MND subtype
 ALS 41 (91%) –
 PMA 3 (7%) –
 PLS 1 (2%) –
 Bulbar onset 11 (24%) –
 FVC, % predicted—GLI2012 78 (20) –

Symptom duration (months)
 Median 26 –
 Range 8—311 –

Diagnostic delay (months)
 Median 12 –
 Range 3—157 –
 Riluzole use 37 (82%) –
 ALSFRS-R total score (SD) 35 (7) –

ΔFRS (points per month)
 Median 0.41 –
 Range 0.01–1.94 –
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Our results show that the examiner-induced ceiling effect 
in HHD measurements may be an important source of varia-
bility. This is a critical observation as the HHD is a common 
endpoint in both exploratory and confirmatory clinical trials 
for ALS [5, 6]. The ceiling effect prevents the investigator 
from determining the patient’s true strength if the exam-
iner is no longer able to overcome the participant’s mus-
cle strength [10, 15, 21, 22]. This may become particularly 
problematic in longitudinal settings if patients are assessed 
by multiple examiners, with each examiner being able to 
withstand a different amount of force (commonly around 
200–300 N) [14, 15]. More importantly, site personnel train-
ing and their experience are unlikely to fully eliminate these 
effects, leading to persistent between-examiner and -site var-
iability. Although the ceiling effects are irrelevant for rela-
tively weak muscle groups, the true strength of major muscle 

groups like the quadriceps could be significantly underesti-
mated with HHD. Particularly in asymptomatic stages of the 
disease (as was shown in Fig. 5), this could mean important 
signals of early disease progression or therapeutic efficacy 
are missed.

Fixating the HHD in a rigid framework could, therefore, 
reduce the effect of examiner strength on muscle strength 
assessments. As is indicated by our results, employing a 
rigid framework around the HHD increases the range of 
muscle strength measurements across individuals, especially 
in early disease. On an individual level, these results are crit-
ical as they suggest that the PFD may be able to better track 
the progression curve of quadriceps strength. On a group-
level, this may result in larger effect sizes (e.g., standardized 
group-differences), which could have significant benefits for 
clinical trials in terms of sample size. Importantly, despite 

Fig. 3   Bland–Altman plots for test–retest reliability. Bland–Altman 
plots of the HHD (a–b) and PFD (c–d) for non-neurological con-
trols and patients with MND, respectively. Due to the heteroscedastic 
nature of the data, we applied a 10log-transformation. MD mean dif-

ference between trials 1 and 2, ICC intraclass correlation coefficient, 
SEM standard error of measurement, expressed as percentage of the 
mean on the original scale (Newton) [35]
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the increase in range, the test–retest reliability of the PFD 
remained practically unchanged; implementing the PFD 
may, therefore, help standardize muscle testing protocols in 
multicenter settings and reduce site-variability.

Our study does, however, have limitations. As the com-
parison was limited to PFD vs. HHD, it remains to be 

established how well the PFD performs compared to the 
gold standard (i.e., Biodex). Previous research indicated a 
good correlation between HHD and the Biodex for meas-
urements of the quadriceps [21, 46, 47]. Given the strong 
correlation between HHD and PFD, we expect that the PFD 
and Biodex will have an equivalent correlation.

Fig. 4   Association between hand-held and portable fixed dynamom-
etry. a Association between HHD and PFD measurements. The dot-
ted line represents a correlation of 1 (i.e., HHD measurement = PFD 
measurement and vice-versa). The black solid line represents the 
observed association, estimated using a linear mixed effects model. 
The dots with crosses are data points classified as unable-to-break. 

b Muscle strength based on hand-held dynamometry data was cat-
egorized and per sub-group we determined the proportion unable-to-
break A clear pattern emerges with the assessor no longer being able 
to measure the full muscle strength from 300 N upwards (i.e., a pro-
portion of unable-to-break of 1)

Fig. 5   Relationship between 
functional loss and muscle 
strength measurements. Boxplot 
of the HHD and PFD meas-
urements in 45 patients with 
MND and 43 non-neurological 
controls (blue). Functional 
loss in MND patients was 
categorized using self-reported 
function scores of the ALS 
functional rating scale item 8 
(walking); the score range was 
0 to 4, where 0 indicates no leg 
muscle function (not included) 
and 4 indicates normal walking 
function
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The PFD is currently applied to one muscle group 
and might, therefore, not capture the full extent of motor 
function loss in patients with MND (e.g., arm weakness). 
Extensive muscle strength testing is time-consuming and 
increases patient burden which may lead to significant 
attrition over time [2, 45]. It is, therefore, critical to mini-
mize the number of assessments, while obtaining sufficient 
information for clinical decision-making or monitoring 
disease progression. Dedicated longitudinal studies are 
required to use a data-driven approach to determine which 
muscle groups provide complementary information in 
addition to quadriceps strength monitoring. An important 
aspect to consider is the current transition to home-based 
assessments (i.e., remote monitoring); [23–26] portability, 
cost-effectiveness and the potential for unsupervised, user-
friendly assessments should have a prominent place in any 
future iteration of the PFD.

In conclusion, our study reveals the value of fixed 
dynamometry in reducing examiner-induced ceiling effects 
and optimizing the standardization of muscle strength 
testing to maximize test–retest reliability. The PFD may 
improve our ability to track disease progression in indi-
vidual patients and magnify group-level differences. Ulti-
mately, extending the PFD to home-based settings in MND 
or other neuromuscular diseases, could improve the deliv-
ery of remote care, optimize trial efficiency, and reduce 
the burden to the patient of participating in clinical tri-
als. A prerequisite for independent remote use is further 
development of the PFD by integrating the load cells and 
introducing a patient-friendly user interface.
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