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Background: Pulmonary sarcomatoid carcinoma (PSC) is a rare, highly malignant type of non-small 
cell lung cancer (NSCLC) with a poor prognosis. Targeted drugs for MET exon 14 (METex14) skipping 
mutation can have considerable clinical benefits. This study aimed to predict METex14 skipping mutation in 
PSC patients by whole-tumour texture analysis combined with clinical and conventional contrast-enhanced 
computed tomography (CECT) features.
Methods: This retrospective study included 56 patients with PSC diagnosed by pathology. All patients 
underwent CECT before surgery or other treatment, and both targeted DNA- and RNA-based next-
generation sequencing (NGS) were used to detect METex14 skipping mutation status. The patients were 
divided into two groups: METex14 skipping mutation and nonmutation groups. Overall, 1,316 texture 
features of the whole tumour were extracted. We also collected 12 clinical and 20 conventional CECT 
features. After dimensionality reduction and selection, predictive models were established by multivariate 
logistic regression analysis. Models were evaluated using the area under the curve (AUC), and the clinical 
utility of the model was assessed by decision curve analysis.
Results: METex14 skipping mutation was detected in 17.9% of PSCs. Mutations were found more 
frequently in those (I) who had smaller long- or short-axis diameters (P=0.02, P=0.01); (II) who had lower T 
stages (I, II) (P=0.02); and (III) with pseudocapsular or annular enhancement (P=0.03). The combined model 
based on the conventional and texture models yielded the best performance in predicting METex14 skipping 
mutation with the highest AUC (0.89). The conventional and texture models also had good performance 
(AUC =0.83 conventional; =0.88 texture).
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Introduction

Pulmonary sarcomatoid carcinoma (PSC) is a rare, highly 
malignant type of non-small cell lung cancer (NSCLC) 
with a poor prognosis; it has a 0.3–1% incidence rate of all 
lung cancers (1-3). Although surgery is currently considered 
the primary treatment for PSC and some conventional 
chemotherapy regimens can be applied, their efficacy 
is limited (3-5). Excitingly, NSCLC has recently seen 
tremendous clinical benefits and improved patient outcomes 
from targeted therapy (6-9), which also provides new 
opportunities for therapeutic strategies in PSC. In recent 
studies, the frequency of MET exon 14 skipping (METex14 
skipping) mutations appears to be much more prevalent 
in PSC (approximately 13–22%) (10-12). At the same 

time, several high-quality clinical studies have suggested 
that targeted drugs for METex14 skipping mutation (e.g., 
savolitinib, capmatinib, tepotinib, and crizotinib) can have 
considerable clinical benefits (1,13-15). Therefore, the 
accurate judgement of METex14 skipping mutations in PSC 
patients is critical for individualized treatment selection.

Advanced unresectable or fragile PSC patients require 
a biopsy to identify the pathological type and METex14 
skipping mutation status, but PSC is usually large in size 
and mixed in components. Biopsy may not be performed, 
and false negative results may also be obtained (12,16-18). 
Meanwhile, the occurrence of METex14 skipping mutation 
is low, and the diverse compositions of the METex14 
splice sites and their variable locations in intronic regions 
require examination by high-throughput sequencing or 
genotyping technologies (12). These are cost-inefficient 
for both hospitals and patients. Therefore, a noninvasive, 
convenient, and more reliable way of detecting METex14 
skipping mutations in PSC patients is needed.

Computed tomography (CT) is the most used tool 
for detecting and diagnosing lung cancer, and contrast-
enhanced computed tomography (CECT) can better reflect 
the tumour blood supply and contrast between tissues 
(19,20). Recent studies have investigated some clinical 
features or conventional CT/CECT features associated 
with METex14 skipping mutations in NSCLC (11,21,22), 
but only a very small number of PSC patients were included 
in these studies. Meanwhile, texture analysis or radiomics 
signatures, which can deeply reflect the heterogeneity 
of tumours, have been widely used in predicting gene 
mutations in lung cancer, such as epidermal growth factor 
receptor (EGFR), anaplastic lymphoma kinase (ALK), 
and Kirsten rat sarcoma viral oncogene homolog (KRAS)  
(23-27); however, none have been used for METex14 
skipping mutations. Therefore, based on more PSC 
patients, our study tried to predict METex14 skipping 
mutations by whole-tumour texture analysis combined 
with clinical and CECT features. To the best of our 
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knowledge, there have been no imaging studies on PSC 
in a large number of patients. Our study findings will also 
have implications for diagnosing PSC using conventional 
imaging. We present this article in accordance with the 
TRIPOD reporting checklist (available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-24-56/rc).

Methods

Patient information

In this study, we reviewed the imaging data of all patients 
(n=77) based on a previously published study (12) and 
excluded patients (n=33) without CECT images or standard 
images. We reviewed the imaging data of all patients (n=70) 
diagnosed with PSC at the Cancer Hospital, Chinese 
Academy of Medical Sciences from January 2017 to October 
2021 and excluded patients (n=58) without METex14 
skipping mutation tests or CECT images. Thus, 56 patients 
were included in this study and divided into two groups: the 
METex14 skipping mutation group and the nonmutation 
group.

The following inclusion criteria were applied: (I) 
pathological diagnosis of PSC; (II) METex14 skipping 
mutation status was detected by using targeted DNA- 
and RNA-based next-generation sequencing (NGS); 
(III) no clinical treatments, such as chemotherapy, were 
administered prior to the METex14 skipping mutation test; 

and (IV) CECT was performed before surgery or treatment, 
and the image quality was good. The exclusion criteria 
were as follows: (I) no METex14 skipping mutation test; (II) 
missing CECT images before surgery or other treatment; 
and (III) poor image quality. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The Ethical Committee of the Cancer Hospital, 
Chinese Academy of Medical Sciences approved this study 
approved this retrospective study (No. 18-224/1782) and 
waived the requirement for obtaining informed consent 
from patients, as data were de‑identified, involving no 
potential risk to patients and no link between the patients 
and researchers. The flow diagram of the study cohort is 
shown in Figure 1.

METex14 skipping mutation analysis

All patients in the study received diagnoses of PSC 
confirmed through independent evaluations of hematoxylin 
and eosin (H&E) stained sections by two pathologists. The 
tissue samples were preserved using formalin fixation and 
embedded in paraffin for analysis. DNA- and RNA-based 
NGS was performed to test METex14 skipping mutations 
in tumour samples. Briefly, DNA and RNA extractions were 
performed using TIANamp Genomic DNA Kit (Tiangen, 
Beijing, China) and RecoverAllTM Total Nucleic Acid 
Isolation Kit for FFPE (Thermo Fisher Scientific, Waltham, 

Data derived from published articles*, including 77 patients with 
PSC who underwent METex14 skipping mutation testing

Patients eligible for this study (n=44) Patients eligible for this study (n=12)

METex14 skipping mutation patients 
(n=10)

Non-METex14 skipping mutation 
patients (n=46)

33 patients were excluded:
• Patients without CECT
• Poor image quality

58 patients were excluded:
•	Patients without CECT
•	Patients without METex14 

skipping mutation testing

The imaging data of all patients (n=70) diagnosed with PSC at 
our institution from January 2017 to October 2021

Figure 1 Flow diagram of the study cohort. *, Yang Z, Xu J, Li L, et al. Integrated molecular characterization reveals potential therapeutic 
strategies for pulmonary sarcomatoid carcinoma. Nat Commun 2020;11:4878; Li Y, Gao L, Ma D, et al. Identification of MET exon14 
skipping by targeted DNA- and RNA-based next-generation sequencing in pulmonary sarcomatoid carcinomas. Lung Cancer 2018;122:113-9.  
PSC, pulmonary sarcomatoid carcinoma; METex14 skipping, MET exon 14 skipping; CECT, contrast-enhanced computed tomography.
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MA, USA), respectively. Qubit quantitation platform was 
used to quantitate DNA and RNA concentration.

NGS based on DNA was conducted utilizing a tailor-
made gene panel that includes the MET gene along with 
17 additional oncogenes. DNA libraries were prepared and 
targeted NGS was performed as previously reported (12). 
A custom-crafted probe panel encompassing the junction 
of MET exons 13 to 15 was employed for the execution of 
RNA-based NGS. RNA libraries were prepared and the 
amplicon libraries were sequenced with an Ion Torrent 
Systems Proton system as previously reported (12). 
Representative H&E morphology and DNA-based NGS 
results of one METex14 skipping mutation case and one 
nonmutation case are shown in Figure 2.

Image acquisition

The image acquisition is described in supplementary 
material (Appendix 1).

Collection of clinical data and evaluation of conventional 
CECT features

Clinical data were collected through the Hospital 
Information System (HIS), including the following 12 
characteristics: sex, age, smoking history, T stage, N stage, 

M stage, American Joint Committee on Cancer (AJCC) 
stage, location-lobe, location-distribution, translobar 
growth, long-axis diameter, and short-axis diameter. The 
clinical stage was determined according to the 8th edition of 
the AJCC guidelines for NSCLC staging.

All CECT images were evaluated by two radiologists 
(with three and 10 years of thoracic imaging diagnosis 
experience) who were blinded to the clinical data. The 
results were then confirmed by a chief physician specializing 
in thoracic imaging diagnosis. In cases of disagreement, 
a consensus was reached through consultation. Twenty 
CECT features were assessed, including shape, lobulation, 
margin, spiculation, texture, calcification, air bronchogram, 
bubble-like lucency, cystic change or necrosis, obstructive 
change, enhancement heterogeneity, pseudocapsular or 
annular enhancement, overall CECT value, CECT value of 
back muscle in the same slice, enhancement relative ratio, 
enhancement degree, pleural attachment, pleural retraction, 
pleural effusion, and lymphadenopathy. The definitions 
and scoring rules of the conventional CECT features are 
described in Table S1.

Tumour segmentation

The whole tumour was manually delineated slice-by-slice by 
two radiologists (with 3 and 10 years of lung cancer imaging 

0    80 160 240 320 400 μm

0      20    40     60    80   100 μm

Figure 2 Representative H&E morphology and DNA-based NGS results of one METex14 skipping mutation case and one nonmutation 
case. H&E, hematoxylin and eosin; NGS, next-generation sequencing; METex14, MET exon 14. 

https://cdn.amegroups.cn/static/public/TLCR-24-56-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-56-Supplementary.pdf
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diagnosis experience) in the lung window setting [width 1,200 
Hounsfield unit (HU), level −500 HU] and mediastinal 
window (width 350 HU, level 50 HU) by using ITK-SNAP 
(version 2.2.0, www.itksnap.org) software and reviewed by 
an expert radiologist with 20 years of lung cancer imaging 
diagnosis experience. The radiologists were blinded to the 
patients’ clinical and pathological details. The volume of 
interest (VOI) was drawn according to the tumour-lung 
interface, excluding vasculature, bronchus, atelectasis, lymph 
nodes, consolidation or obstructive changes in the lung, and 
other adjacent normal tissues as much as possible.

Feature extraction

First, all CECT images were preprocessed by resampling 
to 1×1×1 (mm3) before VOI delineation to eliminate 
differences between images with different slice thicknesses. 
Then, all CECT images were normalized with Z scores to 
obtain a standard normal distribution of image intensities. 
Texture features were extracted from the VOIs by using 
AK software (Analysis Kit, GE Healthcare, Chicago, IL, 
USA). Each image had 1,316 texture features, including 14 
shape features (3D), 18 first-order features, 24 grey level 
co-occurrence matrix (GLCM) features, 16 grey level run 

length matrix (GLRLM) features, 16 grey level size zone 
matrix (GLSZM) features, 14 grey level dependence matrix 
(GLDM) features, 5 neighbouring grey tone difference 
matrix (NGTDM), 744 wavelet transform features (using 
the PyWavelets package), 186 Laplacian of Gaussian 
(LoG) features (based on SimpleITK functionality), and 
279 local binary patterns (LBPs). All texture features were 
obtained from open-source PyRadiomics (http://www.
radiomics.io/pyradiomics.html) as recommended by the 
Image Biomarker Standardisation Initiative (IBSI) (28). The 
processes of tumour segmentation and feature extraction 
are shown in Figure 3.

Feature selection and model construction

Data reduction and feature selection processes were 
performed to select the most relevant features for 
constructing the models. First, the correlation test 
between features was assessed. Some features with high 
correlation (r>0.8) were further evaluated for the diagnostic 
performance of predictive targets, and the features with 
higher area under the curve (AUC) were retained. Based 
on the above methods, the texture features with high 
diagnostic efficacy and low correlation between features 
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(r<0.8) can be screened out. Second, we used univariate 
logistic regression to eliminate irrelevant features, and 
features with P<0.05 were selected. Finally, multivariate 
logistic regression analysis was used to select the most 
significant features, and the texture model was established. 
The differences in clinical/conventional features between 
the METex14 skipping mutation and nonmutation groups 
were compared using univariate analysis, and features 
with P<0.05 were selected. Multivariate logistic regression 
analysis was used to select the most significant features, and 
the conventional model was established. The combined 
model was established by combining the texture model 
and the conventional model by using multivariable logistic 
regression. The Radscore, which included the conventional_
score, texture_score and combined_score was calculated via 
the logistic regression linear combination of the selected 
features weighted by their respective coefficients for each 
patient. Conventional_score, texture_score and combined_
score were the corresponding formulas for calculating the 
above three models (conventional model, texture model and 
combined model).

Statistical analysis

The data were analysed using R software (version 3.6.1; 
http://www.Rproject.org) and MedCalc (ver. 10.3.0.0, 
MedCalc software). The Kolmogorov-Smirnov test was 
utilized to evaluate whether all sets of data adhered to a 
normal distribution. The t test or the Mann-Whitney U test 
was used to compare the differences between continuous 
variables, while the chi-squared test or Fisher’s exact test 
was used for categorical variables. The agreement between 
different observers was evaluated through the application 
of the intraclass correlation coefficient (ICC). The strength 
of the association among the groups was assessed using the 
Pearson correlation coefficient, and r>0.8 indicated a high 
correlation. The Mann-Whitney U test was used to evaluate 
the difference in the Radscore between the METex14 
skipping mutation group and the nonmutation group for 
each model. The three models were evaluated with 10-
fold cross-validation. The performance of each model in 
predicting METex14 skipping mutation was evaluated by 
receiver operating characteristic curve (ROC) analysis. The 
DeLong test was used to compare differences among the 
three models. The benefit of the model was evaluated by 
decision curve analysis (DCA).

Results

Clinical and conventional CECT features

Fifty-six patients (40 males and 16 females; mean age, 
58.14±8.7 years) were included in this study, of which  
10 patients (17.9%) had METex14 skipping mutations.

The clinical features are listed in Table 1. T stage, long-
axis diameter, and short-axis diameter were significantly 
different between the two groups (P=0.02, P=0.02, and 
P=0.01, respectively). The results of conventional CECT 
features are listed in Table 2. Pseudocapsular or annular 
enhancement was significantly different between the two 
groups (P=0.03). Mutations were found more frequently 
in (I) those who had smaller long- or short-axis diameters 
(P=0.02, P=0.01); (II) those who had lower T stages (stage 
I or II) (P=0.02); and (III) those with pseudocapsular or 
annular enhancement (P=0.03).

There are some implications for the diagnosis of PSC 
in conventional CECT features. In our study, PSCs were 
all solid masses (100%), mostly with some irregularities 
or irregular in shape (91.1%), with lobulation (92.9%), 
spiculation (92.9%), and poorly defined margins (83.9%). 
In some tumours, cystic changes or necrosis (39.3%) could 
be seen, and there may be obstructive changes (46.4%). 
The tumours were mostly heterogeneously enhanced 
(78.6%) on CECT, and some showed pseudocapsular or 
annular enhancement (19.6%). The overall CT value of 
PSC was 42.09 HU on average, which was lower than or 
equal to the back muscles at the same level (100%). Most 
of them had a pleural attachment (80.4%) or retraction 
(78.6%), and enlarged lymph nodes were seen in the 
mediastinum or hilum (44.6%). Meanwhile, bubble-like 
lucency (25%) was rare within the tumour, usually without 
pleural effusion (82.1%), no calcification (100%), and air  
bronchogram (100%).

Feature selection and model construction

All parameters showed good interobserver agreement (ICC 
>0.8). First, 44 features were retained after the correlation 
test. Second, 16 features were selected after univariate 
analysis. Finally, after multivariate logistic regression 
analysis, three features (wavelet_LowHighLow_GLDM_
LowGrayLevelEmphasis, lbp_3D_m2_GLRLM_RunLeng
thNonUniformityNormalized, and wavelet_LowLowHigh_
NGTDM_Strength) remained, and the corresponding 
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Table 1 Clinical data of the patients

Characteristic All patients METex14 skipping mutation Non-mutation P value

Sex 0.62

Female 16 (28.6) 4 (40.0) 12 (26.1)

Male 40 (71.4) 6 (60.0) 34 (73.9)

Age, years 58.14±8.74 60.30±9.13 57.67±8.68 0.34

Size, cm

Long axis diameter 5.26±1.97 3.95±1.35 5.54±1.98 0.02

Short axis diameter 3.97±1.75 2.75±1.04 4.24±1.77 0.01

Smoking history 0.39

No 24 (42.9) 6 (60.0) 18 (39.1)

Yes 32 (57.1) 4 (40.0) 28 (60.9)

Location (distribution) 0.92

Central 26 (46.4) 4 (40.0) 22 (47.8)

Peripheral 30 (53.6) 6 (60.0) 24 (52.2)

Location (translobar) 0.94

No 48 (85.7) 9 (90.0) 39 (84.8)

Yes 8 (14.3) 1 (10.0) 7 (15.2)

Location (lobe) 0.57

Right upper lobe 9 (16.1) 2 (20.0) 7 (15.2)

Right middle lobe 4 (7.1) 0 4 (8.7)

Right lower lobe 11 (19.6) 1 (10.0) 10 (21.7)

Left upper lobe 18 (32.1) 4 (40.0) 14 (30.4)

Left lower lobe 14 (25.0) 3 (30.0) 11 (23.9)

T stage 0.02

1 7 (12.5) 2 (20.0) 5 (10.9)

2 21 (37.5) 7 (70.0) 14 (30.4)

3 20 (35.7) 1 (10.0) 19 (41.3)

4 8 (14.3) 0 8 (17.4)

N stage 0.79

0 32 (57.1) 6 (60.0) 26 (56.5)

1 11 (19.6) 2 (20.0) 9 (19.6)

2 11 (19.6) 2 (20.0) 9 (19.6)

3 2 (3.6) 0 2 (4.3)

M stage 0.51

0 50 (89.3) 10 (100.0) 40 (87.0)

1 6 (10.7) 0 6 (13.0)

Table 1 (continued)
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Table 1 (continued)

Characteristic All patients METex14 skipping mutation Non-mutation P value

AJCC stage 0.13

I 15 (26.8) 5 (50.0) 10 (21.7)

II 18 (32.1) 2 (20.0) 16 (34.8)

III 17 (30.4) 3 (30.0) 14 (30.4)

IV 6 (10.7) 0 6 (13.0)

Values are n (%) or mean ± SD. METex14 skipping, MET exon 14 skipping; AJCC, American Joint Committee on Cancer; SD, standard 
deviation. 

Table 2 Conventional CECT imaging features of the patients

Features All patients METex14 skipping mutation Non-mutation P value

Shape 0.43

0 5 (8.9) 2 (20.0) 3 (6.5)

1 24 (42.9) 4 (40.0) 20 (43.5)

2 27 (48.2) 4 (40.0) 23 (50.0)

Lobulation 0.14

0 4 (7.1) 2 (20.0) 2 (4.3)

1 52 (92.9) 8 (80.0) 44 (95.7)

Margin 0.92

0 47 (83.9) 9 (90.0) 38 (82.6)

1 9 (16.1) 1 (10.0) 8 (17.4)

Spiculation 0.95

0 4 (7.1) 1 (10.0) 3 (6.5)

1 30 (53.6) 5 (50.0) 25 (54.4)

2 22 (39.3) 4 (40.0) 18 (39.1)

Bubble-like lucency 0.42

0 42 (75.0) 6 (60.0) 36 (78.3)

1 14 (25.0) 4 (40.0) 10 (21.7)

Cystic change or necrosis 0.68

0 34 (60.7) 5 (50.0) 29 (63.0)

1 22 (39.3) 5 (50.0) 17 (37.0)

Obstructive change 0.92

0 30 (53.6) 6 (60.0) 24 (52.2)

1 26 (46.4) 4 (40.0) 22 (47.8)

Table 2 (continued)
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Table 2 (continued)

Features All patients METex14 skipping mutation Non-mutation P value

Enhancement heterogeneity 0.59

0 12 (21.4) 1 (10.0) 11 (23.9)

1 44 (78.6) 9 (90.0) 35 (76.1)

Pseudocapsular or annular enhancement 0.03

0 45 (80.4) 5 (50.0) 40 (87.0)

1 11 (19.6) 5 (50.0) 6 (13.0)

Overall CT value (HU) 42.09±15.18 38.30±16.65 42.91±14.91 0.39

CT value of back muscle (HU) 57.57±10.30 53.00±12.90 58.57±9.53 0.12

Enhancement relative ratio 0.74±0.25 0.72±0.26 0.74±0.24 0.83

Enhancement degree 0.67

0 33 (58.9) 7 (70.0) 26 (56.5)

1 23 (41.1) 3 (30.0) 20 (43.5)

Pleural attachment 0.68

0 11 (19.6) 2 (20.0) 9 (19.6)

1 45 (80.4) 8 (80.0) 37 (80.4)

Pleural retraction 0.76

0 12 (21.4) 2 (20.0) 10 (21.7)

1 44 (78.6) 8 (80.0) 36 (78.3)

Pleural effusion 0.24

0 46 (82.1) 10 (100.0) 36 (78.3)

1 10 (17.9) 0 10 (21.7)

Lymphadenopathy 0.98

0 31 (55.4) 6 (60.0) 25 (54.3)

1 25 (44.6) 4 (40.0) 21 (45.7)

None calcification 56 (100.0) 10 (100.0) 46 (100.0) >0.99

None air bronchogram 56 (100.0) 10 (100.0) 46 (100.0) >0.99

Solid texture 56 (100.0) 10 (100.0) 46 (100.0) >0.99

Values are n (%) or mean ± SD. CECT, contrast-enhanced computed tomography; METex14 skipping, MET exon 14 skipping; CT, 
computed tomography; HU, Hounsfield unit; SD, standard deviation.

texture model was established.
For the conventional model, two features (pseudocapsular 

or annular enhancement and short-axis diameter) remained 
after multivariate logistic regression analysis, and the 
corresponding model was established.

The combined model integrated the conventional 
model and texture model and was constructed by using the 

conventional_score and texture_score. The details of the 
multivariate logistic regression models are listed in Table 3. 
Radscore was calculated as follows: 

Conventional_score = −2.34 + (0.914 × pseudocapsular or 
annular enhancement − 1.58 × short-axis diameter);

Texture_score = 2.65 + (1.122 × wavelet_LowHighLow_
GLDM_LowGrayLevelEmphasis + 1.388 × lbp_3D_m2_
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Table 3 Multivariate logistic regression analysis

Model OR 95% CI β coefficient P value Model fit

Conventional model 0.184

Pseudocapsular or annular enhancement 2.493 1.214–5.121 0.914 0.01

Short axis diameter 0.205 0.056–0.759 −1.58 0.02

Texture model 0.643

wavelet_LowHighLow_GLDM_LowGrayLevelEmphasis 3.072 1.246–7.576 1.122 0.02

lbp_3D_m2_GLRLM_RunLengthNonUniformityNormalized 4.001 1.221–13.141 1.388 0.02

wavelet_LowLowHigh_NGTDM_Strength 2.280 1.048–4.959 0.824 0.04

Combined model 0.643

Conventional_score 6.532 1.875–22.759 1.045 0.15

Texture_score 8.552 2.186–33.456 1.574 0.04

The goodness-of-fit of the logistic regression model was assessed using the Hosmer-Lemeshow test, and a model with P>0.05 was 
considered to be well fitted. OR, odds ratio; CI, confidence interval.
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Figure 4 Distribution of the Radscore between the mutation and non-mutation groups in the four models. The density width represents the 
frequency of the Radscore. Within each box plot, the central line denotes the median of the Radscore, while the bottom and top edges of the 
box correspond to the first and third quartiles. The ‘whiskers’ extend to reflect the 95% confidence interval. **, P≤0.01; ***, P≤0.001.

GLRLM_RunLengthNonUniformityNormalized + 0.824 × 
wavelet_LowLowHigh_NGTDM_Strength); 

Combined_score = −2.82 + (1.045 × conventional_score 
+ 1.574 × texture_score).

Model comparison and evaluation

The differences in the Radscore between the METex14 
skipping mutation group and the non-mutation group for 

each model are shown in Figure 4. The performance and 
ROC curves of each model are shown in Table 4 and Figure 5.  
The AUCs of the conventional model, texture model, and 
combined model for predicting METex14 skipping mutation 
were 0.83 [95% confidence interval (CI): 0.669–0.985], 0.88 
(95% CI: 0.766–0.994), and 0.89 (95% CI: 0.785–0.997), 
respectively. The DCA curves showed that all three models 
had better net returns than the None model and the All 
model over a wide range of risk thresholds between 0.1 and 
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1.0 (Figure 6).

Discussion

This study aimed to predict METex14 skipping mutation 
status through clinical characteristics, conventional 
imaging features, and texture features, and it is also the 
PSC imaging study with the largest sample size. In this 
study, we constructed three models (conventional model, 
texture model, and combined model) based on CECT 
image-derived texture parameters, conventional features 

and clinical features to predict METex14 skipping mutation 
status in PSC patients. All the three models performed 
well, among which the combined model had a higher AUC 

Table 4 Model performance for predicting METex14 skipping mutation in PSC patients

Model AUC 95% CI Sensitivity (%) Specificity (%) Accuracy (%)

Conventional model 0.83 0.669–0.985 50.0 97.8 89.3

Pseudocapsular or annular enhancement

Short axis diameter

Texture model 0.88 0.766–0.994 80.0 73.9 75.0

wavelet_LowHighLow_GLDM_LowGrayLevelEmphasis

lbp_3D_m2_GLRLM_RunLengthNonUniformityNormalized

wavelet_LowLowHigh_NGTDM_Strength

Combined model 0.89 0.785–0.997 70.0 82.6 80.4

Conventional_score

Texture_score

METex14 skipping, MET exon 14 skipping; PSC, pulmonary sarcomatoid carcinoma; AUC, area under the curve; CI, confidence interval.
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Figure 5 Comparison of the diagnostic performance of all models. Figure 6 DCA of all models. The net benefit is determined by 
taking the proportion of true-positive patients and subtracting the 
proportion of false-positive patients, with this calculation adjusted 
according to the severity of the consequences of false positives 
and false negatives. The two extreme approaches of “treat all” and 
“treating none” are presented for comparative purposes. A clinical 
advantage is indicated when the decision curve demonstrates a 
net benefit that exceeds that of both reference strategies. DCA, 
decision curve analysis.
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(0.89). Regarding the conventional features, mutations were 
found more frequently in (I) those who had a smaller long- 
or short-axis diameter (P=0.02, P=0.01); (II) those who had 
lower T stage (P=0.02); (III) those with pseudocapsular or 
annular enhancement (P=0.03).

PSC is a rare type of NSCLC with a high degree of 
malignancy, a poor prognosis, and limited efficacy in 
conventional surgical treatment (1). Fortunately, PSC has 
an “Achilles’ heel”: approximately 10% to 20% of patients 
have a METex14 skipping mutation. Some clinical trials 
have demonstrated that through targeted therapy (e.g., 
savolitinib, capmatinib, tepotinib and crizotinib), inhibition 
of METex14 mutations can bring clinical benefits. 
Therefore, the accurate judgement and early prediction 
of METex14 skipping mutation are significant for PSC. 
On the basis of previous research (12), our study included 
new PSC patients diagnosed in Cancer Hospital, Chinese 
Academy of Medical Sciences from 2017 to 2021, reviewed 
the CECT images of all patients, and then established 
three prediction models (conventional model, texture 
model, and combined model) to predict the METex14 
skipping mutation status of PSC patients in a noninvasive 
way. From the clinical data, the proportion of METex14 
skipping mutation in this study was 17.9%, which was 
basically consistent with that in previous studies (12,29). 
The median age of patients with PSC was 58 years, and 
the median tumour size (long-axis diameter) was 5.26 cm.  
The patients were more commonly male (71.4%), 
smokers (57.1%), and in stage 2–3 of the AJCC staging 
system (62.5%) at the time of initial diagnosis. These 
are consistent with previous studies (3,30,31). Our real-
world clinical data help advance and complement PSC 
research. It is worth noting that in the conventional model, 
only the odds ratio (OR) value of short-axis diameter 
is less than 1, indicating a negative correlation with the 
predicted outcome. Indicating that the lesions in patients 
with mutations are relatively small, we suspect that the 
necrosis of smaller lesions is relatively mild, and the tumor 
parenchyma is relatively large, making it easier to detect 
tumor mutations. We also discussed imaging features about 
METex14 skipping mutation in previous studies, as shown 
in supplementary material (Appendix 1).

Texture  ana lys i s  or  rad iomics  can  explo i t  the 
heterogeneity within the tumour to extract high-throughput 
image features from image data, and on this basis, the 
relationship between these deep image features and tumour 
gene expression or mutation can be analysed (32-34). Many 

studies have proven that the gene expression levels or 
gene mutations of lung cancer can be predicted by texture 
analysis or radiomics. Liu et al. (35), Jia et al. (24), Hong  
et al. (19), and Shiri et al. (36) predicted the EGFR mutation 
status; Weiss et al. (37) and Velazquez et al. (38) predicted 
the KRAS mutation status; and Kim et al. (39) and Choi 
et al. (40) predicted the ALK mutation status. At the same 
time, adding clinical or conventional imaging features on 
the basis of texture analysis or radiomics is more helpful for 
the diagnosis and prediction of the model. Song et al. (25)  
used radiomics to predict ALK mutation status in lung 
adenocarcinoma and added clinical and conventional 
CT features on this basis, which ultimately improved 
the diagnostic performance of the primary model (AUC 
=0.83–0.88, P=0.01). There are many similar studies that 
incorporated clinical, conventional imaging features and 
texture features (41-43). Three prediction models were 
established in our study, all of which can predict METex14 
skipping mutation status to a certain extent. Among 
them, the combined model performed the best. Three 
features were incorporated into the construction of the 
texture model, including two wavelet transform features. 
The wavelet transform is particularly suited for analyzing 
nonstationary signals and elementary functions that exhibit 
variation in both the frequency domain and spatial extent. 
It is crafted to deliver superior frequency resolution for the 
low-frequency elements, representing the overall image 
intensity, and excellent temporal resolution for the high-
frequency elements, which correspond to the image's edge 
details (44). These three features all can reflect the tumour’s 
intensity and textural features surrounding and within 
the high-intensity CT voxels, providing the possibility to 
predict gene mutations.

This study has some limitations. First, these data are 
based on a single-centre retrospective study, which will 
inevitably lead to selection bias. The number of cases 
with METex14 skipping mutations included in the study 
was relatively small, which may cause overfitting of the 
model. Nonetheless, this study is the largest imaging study 
of PSC ever. Second, the VOI and conventional imaging 
features were manually determined. These human factors 
may cause errors in feature extraction and conventional 
feature judgement. In future work, we hope to build a more 
advanced system by referring to the work of Tomassini  
et al. (45), to determine the METex14 skipping mutation 
by segmentation free CT scans, coupled with an on-cloud 
decision-support system. Third, due to the small amount 

https://cdn.amegroups.cn/static/public/TLCR-24-56-Supplementary.pdf


Miao et al. Predicting METex14 skipping mutation in PSC patients1244

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(6):1232-1246 | https://dx.doi.org/10.21037/tlcr-24-56

of data in this study, we did not have a validation group to 
validate the model. 

Conclusions

In conclusion, our findings highlight the feasibility of 
noninvasively predicting METex14 skipping mutations 
in PSC patients using an integrated model that combines 
clinical and conventional CECT features and texture 
features.
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