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Abstract

Control of human walking is not thoroughly understood, which has implications in developing suitable strategies for the
retraining of a functional gait following neurological injuries such as spinal cord injury (SCI). Bipedal robots allow us to
investigate simple elements of the complex nervous system to quantify their contribution to motor control. RunBot is a
bipedal robot which operates through reflexes without using central pattern generators or trajectory planning algorithms.
Ground contact information from the feet is used to activate motors in the legs, generating a gait cycle visually similar to
that of humans. Rather than developing a more complicated biologically realistic neural system to control the robot’s
stepping, we have instead further simplified our model by measuring the correlation between heel contact and leg muscle
activity (EMG) in human subjects during walking and from this data created filter functions transferring the sensory data into
motor actions. Adaptive filtering was used to identify the unknown transfer functions which translate the contact
information into muscle activation signals. Our results show a causal relationship between ground contact information from
the heel and EMG, which allows us to create a minimal, linear, analogue control system for controlling walking. The derived
transfer functions were applied to RunBot II as a proof of concept. The gait cycle produced was stable and controlled, which
is a positive indication that the transfer functions have potential for use in the control of assistive devices for the retraining
of an efficient and effective gait with potential applications in SCI rehabilitation.
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Introduction

Human walking can be viewed as a complex programme of

reflexes which through the use of feedback and feed-forward

processes allows stepping to adapt to a constantly changing terrain

or walking environment. Loading and contact information from

the feet are important sensory components in producing a walking

pattern which is flexible and efficient, and can be measured

directly or indirectly by a variety of specific and non-specific

receptors which is then fed back to control the stepping. Gait is

cyclical in nature with intrinsic muscle properties providing many

constraints which can have an influence on individual muscle

function and the coordination of multiple muscles to perform the

locomotion [1]. The stability of human bipedal gait is due to a

coherence between the body’s neuromuscular skeletal system and

the walking environment [2].

Many different control strategies have been used within

robotics, not only to produce bipeds with a stable and efficient

gait pattern, but also for studying biological models and gaining

insight into walking control systems that may be present in

humans. This allows us to simplify and analyse individual

components of a complex system to study their role in generating

functional locomotion. From this information, development can be

made in the area of rehabilitation engineering with the aim of

improving functional gait in individuals with spinal cord injuries

(SCI) and other neurological injuries. Rehabilitation technologies

for restoring ambulatory function and retraining of a functional

gait include devices such as the exoskeleton, ReWalk (Argo

Medical Technologies Inc., Marlborough, MA, USA) [3] and the

robotic gait orthosis, Lokomat (Hocoma, Switzerland) [4].

Functional electrical stimulation (FES) has been demonstrated to

be an important therapy, which can vastly improve walking

function in individuals with incomplete spinal cord injuries (iSCI)

[5]. FES is commonly recruited as a rehabilitation strategy for SCI

to exercise and strengthen weakened muscles as well as artificially

replace muscle activation that is missing or lacking (for review see

[6]). However, high human energy requirements and a current

complexity of FES systems for assisting walking mean these devices

are not routinely used [7]. It is thus of fundamental importance to

find a successful mechanism to control FES, one which is real-

time, simple and does not override or counteract voluntary control

originating from the user.

Classical control strategies employed in bipedal robotics, which

have a biomechanic inspired design, include passive dynamic

walkers, that are simple and can remain stable while walking down

slopes [8]. Robots featuring this design have demonstrated gait,
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which appears visually human-like, however they cannot adapt

and/or change their speed or walk on a level or inclined surface

without the addition of actuators and controllers. Conversely,

other robotic walkers, such as the well publicised bipedal walker

ASIMO [9], have moved towards highly complex systems such as

precise joint-angle control and trajectory-based methods (including

Zero-Moment Point (ZMP) based [10] and Virtual Model control

[11]). However the need for precision in the actuators and

frequency response of these systems cannot be easily related to the

human model which uses the less precise musculoskeletal system

integrating muscles, tendons and joints under neuronal control

[12]. Central pattern generator (CPG) methodology has also been

investigated for creating humanoid bipedal robot walkers, which

can be partially autonomous using local oscillators to generate

limb motion patterns and limited sensory information as feedback

(for review see [13]). Although this technique has proved successful

in producing gait in a range of robotic walkers, including bipeds

[14–16], and uses a biological approach conclusively described in

animal locomotion, there remains debate over the importance of

this strategy in human walking control. This has promoted

development of biped locomotion controllers based on reflexes

rather than on CPGs [17–19].

Within a human model, feedback on the current status of the

walking process is fed back from different sensory organs located in

muscles and tendons and from the peripheral vestibular and visual

systems. At high walking speeds, coordination between the sensory

input and motor output needs to act efficiently and quickly, which

are high dynamic walking demands very difficult to replicate using

existing biologically-inspired robotic control systems [15,18,20].

The gait cycle of bipedal walkers has only one foot in contact with

the ground for the majority of the time, which is a major issue in

the development of dynamic control avoiding tripping or falling.

The development of RunBot I was able to demonstrate that

minimal adaptive neuronal control, based on a reflexive mecha-

nism [21] integrated with a biomechanic inspired design, can

produce a fast walking and adaptive robot with a maximum

walking speed comparable to that of humans (corrected walking

speed (leg length/s)) [20].

RunBot is driven by local reflexes without any use of position or

trajectory-tracking control algorithms and without using a central

pattern generator [19,20,22]. Phase switching of the legs is

triggered by ground contact signals, when one foot contacts the

ground this signal triggers motors driving hip flexion/extension

and knee flexion/extension of the swing and stance legs, driving

the walking forward. The reflexive locomotion controller design

implemented in RunBot is based on the reflexive mechanisms

observed in human gait [23], and on observation, RunBot’s gait

appears visually similar to human walking, Fig. 1.

Central to this paper is investigating the control between the

sensor inputs of the robot and its motors. The original RunBot I

attempted a biologically inspired approach where the sensor

signals were translated into motor signals with the help of a neural

network incorporating biologically inspired neuronal functions (see

[19,20,22]). However the human nervous system is highly complex

and has many unknown variables, in addition to controversy of

how and even where the control of walking actually originates,

means creating a robot with function comprised of neural

networks, is highly speculative. In this paper, we go the opposite

way and create an abstract controller which is based on actual

human walking data instead of classical control theory. To

Figure 1. RunBot’s basic operation involves phase switching of the legs triggered by contact signals from the feet. (A) Photographs of
RunBot’s gait cycle and (B) the system used by RunBot to generate stepping.
doi:10.1371/journal.pone.0109959.g001
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essentially create a purely analogue closed-loop system we just

require knowledge of the causal relationship between the foot

contact information and the motor activation or, in the case of

humans, the muscle activation (EMG). By creating a simple

mechanism for generating stepping we take a black box approach

to modelling the complex neural control system in humans and

instead study how input signals can be translated into a functional

motor output.

Our aim was to calculate transfer functions from human

walking which translate sensory information into muscle activation

signals by recording foot contact data and leg muscle activity

(EMG) in healthy subjects as they walked on a speed controlled

treadmill. To average out the periodicity in the recorded data,

irregular walking patterns needed to be generated. As a treadmill

can be viewed as a foreign environment for walking, which may

also have an effect on the subjects walking, varying the walking

speed in a random fashion should also create an environment

which is more closely modelled on natural walking where speed

can be changing constantly.

The unknown transfer functions which translate the contact

information into muscle activation signals were identified using

adaptive filtering. The filter was trained by using the heel contact

information as an input (contralateral (CH) and ipsilateral (IH) to

the leg muscle) and the EMG activity from the Tibialis Anterior

(TA), Lateral Gastrocnemius (LG), Rectus Femoris (RF) and

Biceps Femoris (BF) as the output.

The algorithm converged for the following relationships

between the muscle activity and heel contact and generated stable

transfer functions: HTA,CH , HLG,CH , HRF ,CH , HBF ,CH , HBF ,IH .

These transfer functions show that there is a causal relationship

between the foot contact information and motor output. All

functions could then be applied to Runbots control model to

control its motors, where the Runbot was used as a biomechanical

model to test the control programme.

Characteristics within the transfer functions related to flexion or

extension of the hip and knee joints in humans were identified and

separated to produce transfer functions for controlling RunBot’s

leg motors and generate stepping. The following transfer functions

were applied to RunBot’s hip and knee motors and were successful

in producing a stable gait cycle: ĤHH,F , ĤHH,E , ĤHK ,F and ĤHK ,E ,

where H, F/E is hip flexion/extension and K, F/E is knee flexion/

extension.

Knowledge of how sensory information from the peripheral

nervous system (PNS), in humans, relates to motor actions of the

muscles and limbs throughout the gait cycle has potential use in

iSCI rehabilitation. Specifically if foot contact information is

causally related to muscle activity, then contact information from

the feet could be used as a feedback control mechanism for use

with FES of leg muscles to generate walking. The idea of this

approach is an entirely analogue closed-loop system to generate

locomotion using simple reflexes and without central pattern

generators. This has potential to provide a minimalistic control

system for FES, where the cyclic sequence of joint movements is

minimally imposed on the walker, which has an application for

producing functional gait in individuals with iSCI without

Figure 2. Set-up for the treadmill walking trials. (A) The USB-DUX Sigma data acquisition device and EMG/FSR amplifier are worn in a waist bag
around the subject’s waist. Surface EMG electrodes are used to record the muscle activity during the treadmill walking. FSR insoles are placed in the
subject’s shoes and measure contact signals under different areas of the feet. (B) Position of the recorded muscles on the leg. TA = Tibialis Anterior,
RF = Rectus Femoris, BF = Biceps Femoris and LG = lateral Gastrocnemius.
doi:10.1371/journal.pone.0109959.g002
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overriding any residual function which may remain. We have

shown that transfer functions can be found to translate informa-

tion from the feet during the gait cycle into muscle activation

signals with correct timing to promote flexion and extension of the

hip, knee and ankle joints (analogous to the function of RunBot’s

motors). The long-term aim would be the development of a device

which will promote limit cycle walking, allowing the walker to

adapt their gait to suit changing loading conditions dependent on

terrain or the environment.

Materials and Methods

Ethics statement
The investigation was granted ethical approval by the Univer-

sity of Strathclyde ethics committee. Ten subjects, four males and

six females with a mean age of 26.5 years (range 23–30 years) were

recruited at the Department of Biomedical Engineering, Univer-

sity of Strathclyde and gave full informed written consent before

taking part in the study.

EMG and foot contact recording
The study involved recording muscle activity and foot contact

information during treadmill walking. The muscles recorded were

chosen due to their different roles in the gait cycle, two muscles

located in the shank (Tibialis Anterior (TA) and Lateral

Gastrocnemius (LG)) and two in the thigh (Biceps Femoris (BF)

and Rectus Femoris (RF)), see Fig. 2. Bipolar surface EMG

electrodes were attached parallel to the muscle fibres in the centre

of the muscle belly in accordance to the recommendations of

SENIAM [24]. Pre-gelled, one use surface electrodes (Blue Sensor

N-10-A, Ambu, St. Ives, Cambridgeshire) were used and the skin

prepared following standard procedure before application [24].

To record muscle activity and foot contact information during

the treadmill walking, a purpose designed EMG/FSR amplifier

was developed (PCB design files available from http://www.linux-

usb-daq.co.uk/howto2/bio-sigma/). The device was required to

be lightweight and compact so it could be worn by the subject

during ambulation. The device has eight channels for recording

surface EMG of the four leg muscles in both legs. The device also

incorporates amplifier circuitry for force sensing resistors (FSRs)

(Interlink Electronics, Camarillo, CA, USA) for measuring foot

contact information. The FSRs are embedded in standard shoe

insoles at four different positions under each of the feet for

recording areas of peak pressure distribution during walking (main

weight bearing areas); under the first and fifth metatarsals, big toe

and heel, as described by Granat et al. [25]. Images of the

experimental set-up can be seen in Fig. 2 and Video S1.

FSR insoles were constructed for each individual subject. To

position the FSRs accurately under the foot aligned with the four

areas of interest, FootDoc foot impression sheets (Visual Footcare

Technologies, LLC, NY, USA) were used to create a template of

the feet.

All sixteen of the EMG and FSR channels were recorded

simultaneously with a sampling frequency of fs~1 kHz using the

USB-DUX Sigma data acquisition device (Incite Technology Ltd.,

Stirling). This device also provides a regulated 5 V power supply

to the attached circuitry and electrically isolates the subject from

the mains supply. The device connects via USB to a computer

running Linux for data acquisition. Comedirecord (open source

software available from http://www.linux-usb-daq.co.uk/soft

ware2/comedi-record) was used to record the walking data and

the output saved in a MATLAB compatible ASCII file for further

analysis.

Treadmill control
A belted treadmill (Quasar Med, h/p/cosmos sports & medical

gmbh, Germany) was used during the study. To generate an

irregular walking pattern, a control program was written in C#
(Visual Studio 2008, Microsoft, Washington, USA and Mono-

Develop 2.10, http://monodevelop.com) to produce a pseudo-

random sequence of belt speed settings within a desired range. The

program was based on the Coscom V3 interface protocol

(available from www.coscom.org) enabling the treadmill to be

controlled over a RS232 connection to a computer. The belt speed

was transmitted via Ethernet and recorded alongside the EMG

and foot contact data in Comedirecord.

The change in walking speed was set as small increments/

decrements between 0.05 and 0.1 m/s to prevent the subject

stumbling. To produce speed sequences within the natural walking

speed range of each subject, measurements of gait parameters,

including average walking speed and cadence, were taken prior to

the treadmill walking using a wireless gait assessment device (wi-

GAT) (as described in [26]). Two sequences were generated for

each subject, each lasting approximately 15 minutes with a rest

break given in between. The first generated sequence comprises of

20 speed settings and repeats twice. Each speed setting is

programmed to run long enough to generate approximately 25

steps per speed and the complete sequence has a total range of

0.5 m/s, see Fig. 3. In comparison, the second sequence comprises

of 10 speed settings, without a repeat and has a speed range of

0.39 m/s with each speed running for a longer duration to

produce approximately 100 steps per speed.

Generating irregular walking using two different ratios of steps

per speed setting will demonstrate which sequence produces a

better average in the EMG and FSR data for calculating transfer

functions. To visualise the relationship between the heel contact

and EMG, an event related average (ERA) was taken in a time

period of one stride duration before and after heel contact, Fig. 3.

Indication that a motor neuron pool, which facilitates the specific

muscle, has received suppressed or facilitatory synaptic input is

given by troughs or peaks in the ERA of the rectified EMG [27].

By maintaining a walking speed range within a moderate walking

speed range (0.75 to 1.75 m/s), the effect of speed on the EMG

pattern can be viewed as the addition of a speed-related gain to a

standard pattern [28]. Taking an ERA of the entire sequence

(black dashed line in Fig. 3) provides an average of the EMG

activity over all of the different walking speeds with the aim of

identifying the base EMG patterns.

Adaptive filtering
The next step is to calculate the transfer functions which

translate foot contact information into muscle activation signals.

These are especially useful in the creation of a human-walking

model with potential applications in the development of humanoid

robots with locomotion based on human walking and within

rehabilitation engineering research.

Adaptive filtering was used to derive the transfer function for

each of the recorded muscles and implemented using MATLAB

(version 2012a, The MathWorks Inc., Natick, MA). The EMG

data for each muscle in the left or right leg, EMGL=R,mus (where

mus = TA, LG, RF or BF), was first processed using a band pass

filter (hBP) (FIR filter, 20–500 Hz) to remove artefacts, then full-

wave rectified and low-pass filtered (hLP) (zero-lag fourth-order

IIR Butterworth filter, 6 Hz) to leave the linear envelope of the

EMG.

Reflex Control of Robotic Gait Using Human Walking Data
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EM̂MGL=R,mus(t)~DEMGL=R,mus(t) � hBP(t)D � hLP(t) ð1Þ

Where EM̂MGL=R,mus is the smoothed and rectified EMG. The

EMG and FSR data recorded from each subject is provided as

supplementary files, Data S1–S21.

Using the Least Mean Squares (LMS) algorithm, the output

signal EMGL=R,est is estimated through convolution of the filter

impulse response for each muscle hL=R,mus,CH=IH , with the filter

input vector FSRCH=IH , the FSR contact data from the

contralateral (CH) or ipsilateral (IH) heel to the muscle.

EMGL=R,est(t)~FSRCH=IH (t) � hL=R,mus,CH=IH (t) ð2Þ

The error signal e(n) is then calculated as the difference between

the desired signal EM̂MGL=R,mus and the estimated signal

EMGL=R,est.

e(t)~EM̂MGL=R,mus(t){EMGL=R,est(t) ð3Þ

The error signal drives the optimisation algorithm which

updates the filter coefficients with correction factor hopt at every

time instant.

hopt~e(t):FSRCH=IH (t):m ð4Þ

Where m is the learning rate of the adaptive filter. The length of

the response of the filter was set to the duration of two strides for

each subject and the number of iterations set to 100, where the

filter converges. So,

hL=R,mus,CH=IH (tz1)~hL=R,mus,CH=IH (t)zhopt ð5Þ

The transfer function coefficients were calculated using the

adaptive filtering method for each of the four leg muscles from

each of the ten subjects. A table of the final mean square error

(MSE) of the filter coefficients is provided in Table S1.

Applying the coefficients to an FIR filter produces a muscle

activation signal when the filter is given an input of a typical FSR

heel contact signal. A half Hanning window was convolved with

the impulse response of the variable filter to select only the

coefficients needed to generate a muscle activation signal one

stride duration in length subsequent to the input of a heel contact

Figure 3. EMG and FSR foot contact data from each subject was recorded over a range of different walking speeds. The data could
then be separated depending on the walking speed and compared to the activity recorded over the entire sequence (black dashed line in figure). To
analyse the activity before and after heel contact, an event related average (ERA) was taken in a time period of one stride duration before and after
the heel contact. The figure demonstrates the relationship between left leg smoothed and rectified EMG and heel contact information from one of
the ten subjects during walking sequence 1 (25 steps per speed setting). Increasing walking speed increases the amplitude of the EMG signal, as
described by [28]. TA = Tibialis Anterior, LG = Lateral Gastrocnemius, RF = Rectus Femoris and BF = Biceps Femoris.
doi:10.1371/journal.pone.0109959.g003
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signal from an FSR. An example of the filter outputs for one

subject can be seen in Fig. 4 together with corresponding film

frames of the subject’s gait cycle (film frames taken from Video

S2).

RunBot

Before the transfer functions can be applied to the RunBot

robot the standard operation and mechanical structure need to be

understood in terms of how the motors can be controlled by

muscle activation signals.

RunBot II is the second generation development of a biped,

robotic walker which features some adaptions to the robot

(RunBot I) described by Geng et al. (2006) [19,22].

RunBot I was designed with stiff knees, which has a

disadvantage of causing damage to the gearbox of the motor in

the joint due to the impact of the leg on the ground at heel strike.

To improve in the RunBot’s knee structure and minimise damage

to the joint, the motor was moved up to the thigh and three springs

were positioned at the joint. This creates a balanced spring-loaded

pulley using a robust bearing at the knee joint. The different

springs are dominant either during flexion or extension, similar to

muscles in the human leg. Using this configuration of springs,

there is still a linear relationship between the motor angle and the

knee angle but the knee retains an ability to flex to absorb the

shock to the joint at heel strike [29–33]. A mechanical stop or

‘kneecap’ keeps the knee locked straight during the stance phase.

This kneecap also prevents hyperextension and damage to the

joint during knee extension at terminal swing.

Further development of RunBot II includes using filter functions

to generate a coordinated walking behaviour rather than neuronal

processing, which was the original control structure employed in

RunBot I.

Filter functions and real-time processing allow fast tuning of few

parameters however, like RunBot I, ground contact information is

still used as the main sensory input to promote joint movement

and stepping.

RunBot II has a height of 0.3 m (foot to hip joint axis) and a

total weight of approximately 552 g. Motors at RunBot’s hip and

knee joints are driven by output signals of a reflexive control

program written in C++ (running on a Linux PC) with a sampling

rate of fs~200 Hz through a USB-DUX D DA/AD converter

Figure 4. Photograph series representing one gait cycle during treadmill walking. The series of frames corresponds to one stride from heel
strike of the left leg (highlighted in white in the first and last frame) to the next heel strike of the same leg. The filter output using the transfer
functions for each measured muscle of the left leg corresponding to the heel strike of the ipsilateral leg, found using the adaptive filtering, are shown
alongside the images of one stride duration. (A) = hL,TA,IH , (B) = hL,LG,IH , (C) = hL,RF ,IH and (D) = hL,BF ,IH , HS = Heel strike.
doi:10.1371/journal.pone.0109959.g004
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board (Incite Technology Ltd., Stirling). The hips are actuated

directly by DC motors (HS-625MG, Hitec RCD, USA) whereas

the knees are actuated by DC motors (HS285+MG, Hitec RCD,

USA), via springs. The four (A/D) input channels of the USB-

DUX measure the angles of the joints: at the left and right hip

(wL=R,H ) and the left and right knee (wL=R,K ). Two standard micro

switches in the feet detect the ground contact: on the left (GL) and

right foot (GR). Finally, the four analogue outputs (D/A) of the

USB-DUX, which have a range of +4:096, are used to drive the

four motors on the hip joints VL=R,H and the knee joints VL=R,K

following amplification (with a gain of 2.3).

The robot has no ankle joint but features flat feet with serrated

soles to increase friction with the ground and prevent slipping.

RunBot is counterweighted in the sagittal plane by a weight and

boom. This is connected to the robot by a joint which rotates

freely in the forward direction but prevents the robot falling

sideways. The boom (total length of approximately 1 m) rotates

freely around a central pivot with one end attached to RunBot and

the other to a counterweight. With this configuration, the robot is

not being suspended or supported in an upright position but its

motions are constrained to a circular path. A camera (colour board

camera L79AB) is fixed to the boom arm for tracking markers

positioned on RunBot’s right hip, knee and ankle for gait analysis

and calculation of joint kinematics.

Reflexive Control System

RunBot’s reflexive control system can be explained through

description of three important events in the gait cycle:

1. Ground contact

2. Anterior extreme angle (AEA) of the contralateral hip joint

3. Passive dynamic walking phase

(1) Foot contact with the ground triggers the hip and knee of the

contralateral leg to begin flexing (swing) and the ipsilateral hip and

knee to begin extending (stance), Fig. 1Ai. (2) When the

contralateral hip reaches the anterior extreme angle (maximum

flexion position) the knee of the same leg is triggered to straighten

producing leg extension at terminal swing, Fig. 1Av. (3) Once the

contralateral knee has extended in preparation to contact the

ground and the remaining motors have all reached the required

positions, the motors are switched off. This causes the centre of

gravity of the robot to shift forward of the boom leading to the foot

making contact with the ground, which in turn begins the next

cycle, Fig. 1Avi. In RunBot’s operation, every motor switches off

when the joint reaches the required position so it can be expected

that during the gait cycle there may be a period where all of the

joint motors are off. During this time RunBot can be termed a

passive dynamic walker as the joints are not fixed in an angular

position by the motors and are instead driven by the mechanism of

natural dynamics acting on the structure.

In mathematical terms, the reflexive model of RunBot is a

simple system involving convolution of the summed impulse

trigger signals, from the leg joints and the ground contact

information from both feet, with transfer functions HL=R,H=K ,F=E

(left/right leg, hip/knee joint, flexor/extensor). Ground contact

switches trigger an impulse signal from the left (H(G’L(t))) and

right foot (H(G’R(t))), where GL=R(t) is 1 when the foot contacts

the ground and 0 with no contact so G’L=R(t) is the derivative

impulse, and are the main inputs to the controller. There is also a

local joint control feature for preventing the over-flexion or

extension of the joints by calculation of the angle from the motor

voltage. The total motor output of each of the four leg motors are

defined by UL=R,H=K ,F=E and drive the walking behaviour, Eqn.

6a, 6b, 6c and 6d.

Shown are the general equations for both legs, with ‘I’ defining

the ipsilateral leg and ‘C’ the contralateral leg:

UL=R,H,F (t)~BL=R,H (t):HL=R,H,F (t) �H(G’C(t)) ð6aÞ

UL=R,H,E(t)~BL=R,H (t):HL=R,H,E(t) �H(G’I (t)) ð6bÞ

UL=R,K,F (t)~BL=R,K (t):HL=R,K ,F (t) �H(G’C(t)) ð6cÞ

UL=R,K,E(t)~BL=R,K (t):HL=R,K ,E(t)

� 0:3:H(G0I (t))zH(B0I ,H (t))
� � ð6dÞ

Where BL=R,H=K is a parameter preventing the joints flexing

or extending beyond an extreme angle threshold

(hH=K ,F=EvwH=KvhH=K,E=F ) by limiting the motor voltages to

prevent mechanical damage. H(B’I ,H (t)) is used as an impulse

trigger signal to trigger knee extension of the ipsilateral leg at

terminal swing when the anterior extreme angle (AEA) of the hip is

detected (wH~hH,F ), Eqn. 6d. The values used for the extreme

joint angles can be found in the Table S2. These values were

hand-tuned as described in [19,22].

The final outputs VL=R,H=K to the USB-DUX are found by

multiplying UL=R,H=K,F=E with predefined gain coefficients, where

aL=R,H=K is the gain of the motor amplifier (the gain values of the

hip and knee motors are provided in the Table S3). As with the

extreme joint angle values, the gain of the motor amplifier was

chosen intuitively in accordance with the method used by [19,22].

VL=R,H (t) ~aL=R,H
:(UL=R,H,F (t){UL=R,H ,E(t))

VL=R,K (t) ~aL=R,K
:(UL=R,K ,F (t){UL=R,K,E(t)) ð7Þ

Generating RunBot’s walking using human-derived
transfer functions

After having established the transfer functions using the human

treadmill walking data and adaptive filtering (hL=R,mus,CH=IH , Eqn.

5) which connect the heel contact and muscle activity in the legs,

we next need to translate them over to the RunBot. As the hip

joint and knee joint controls are separate in RunBot, the features

of the human muscle transfer functions needed to be separated

according to specific function (e.g hip flexion, hip extension, knee

flexion and knee extension). It is also necessary to define the

triggers for the transfer function and resample and normalise the

functions in accordance with RunBot’s control mechanism.

As we have discussed, RunBot has push switches in its feet

which generate impulses on contact with the ground (G’R=L) to

trigger motor switching in the knee and hip joints. However during

the treadmill walking study, foot contact information was recorded

using FSRs positioned under the feet which produce an increasing

voltage curve when pressure is applied. To compensate for the

difference in foot contact measurement between the two systems,

and enable the human derived muscle transfer functions to be

Reflex Control of Robotic Gait Using Human Walking Data
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applied to the RunBot, the transfer functions calculated using the

FSR data hL=R,mus,CH=IH were convolved with the mean FSR heel

contact signal one stride duration in length for each subject,

FSRCH=IH .

HL=R,mus,CH=IH (t)~hL=R,mus,CH=IH (t) � 1

N

XN

k~1

FSRCH=IHk
(t) ð8Þ

Where N is the total number of strides recorded during the

treadmill walking.

The effect is that the response of the filter to an impulse

becomes equivalent to applying an input of a typical heel contact

FSR signal measured during gait and RunBot can still use its

original foot contact impulse trigger signal (H(G’L=R(t))).

We are looking to define the functions HL=R,H,F , HL=R,H,E ,

HL=R,K ,F and HL=R,K ,E which relate to those presented in Eqn. 6a,

6b, 6c and 6d.

By examining the muscle activity relating to one stride duration,

we can analyse the peaks and troughs in the data and correspond

this to knowledge of the muscle actions during the gait cycle and

analysis of video footage of each subject during the treadmill

walking (see Fig. 4 and 5 and Video S2, which provides an

example of a subject walking on the treadmill) to identify the

information in the signal which could be used to control RunBot’s

hip and knee motors. The action of each muscle on the hip and

knee joint motion is summarised in Table 1. The trigger for each

of these events is either the contralateral heel contact (CH) or the

ipsilateral heel contact (IH).

As the ankle joint in the current RunBot II is rigid, the recorded

TA activity was not considered relevant as the muscle only has

action on the ankle joint in humans. The other three muscles are

all bi-functional muscles with action on either the hip or knee joint

or both (Table 1).

The peaks and troughs visible in the EMG transfer functions,

Fig. 5, relate to activation and suppression of the motor neurons.

To separate the activity into the transfer functions relating to the

Figure 5. Identifying features of the transfer function coefficients which correspond to muscle activity promoting knee and hip
flexion/extension in human walking. The transfer functions from adaptive filtering heel contact data from the contralateral and ipsilateral foot to
the specific leg muscle ((A) HR,LG,CH , (B+C) HR,RF ,CH , (D) HR,BF ,CH , (E) HR,BF ,IH and (F) HR,RF ,IH ) were used to identify the required features. These
coefficients were then used in an FIR filter to control motors in RunBot’s hip and knee using the sensory input of the contralateral or ipsilateral heel
contact.
doi:10.1371/journal.pone.0109959.g005
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joint movement, the data located between the minimum value of

the trough preceding the peak to the subsequent trough minimum

value was selected.

Using the aforementioned information we can now discuss how

each muscle transfer function is transformed into transfer functions

for controlling RunBot’s motors.

Rectus Femoris (RF). RF is responsible for hip flexion (in

the swing phase) and knee extension (in the late swing phase and

the stance phase). Two separate peaks of activity can be observed

in the RF transfer function HL=R,RF ,CH (identified by a box in

Fig. 5B, C and F). As the first peak is during the swing phase, the

activity corresponds to hip flexion and the second peak, which

coincides with terminal swing, is identified as activity related to

knee extension.

HL=R,H,F (t)~

HL=R,RF ,CH (tztRF ,CH,start),

0,

0ƒtƒ(tRF ,CH,end{tRF ,CH,start)

otherwise

( ð9Þ

HL=R,K ,E (t)~

HL=R,RF ,CH (tztRF ,CH,start2
),

0,

0ƒtƒ(tRF ,CH,end2
{tRF ,CH,start2

)

otherwise

(
ð10Þ

Where tstart=end is the identifiable trough before and after the

peak in the data associated with the hip/knee flexion/extension

and tgait is the total duration of the gait cycle (i.e tgait~100%).

HL=R,H,F can then be substituted directly into Eqn. 6a.

Our aim was to relate muscle activity to foot contact and use

this to trigger muscle activation signals with the purpose to attempt

to represent the underlying muscle activation dynamics [12]. This

theory can be realised when comparing the timing of muscle

activity with heel contact information. The only exception where

the muscle activity does not follow heel contact is the knee

extension at terminal swing which occurs approximately between

40 and 50% of stance before ipsilateral heel contact at 50%,

Fig. 5C. An alternative, analogous to human walking, involves

angular sensory information from the hip or knee joint to trigger

the knee extension. This corresponds to the reflexive neuronal

control model currently implemented in RunBot II under its

normal operation, see Eqn. 6d. We used the Anterior Extreme

Angle (AEA) of the hip joint as the trigger signal of HL=R,K,E , Eqn.

10, instead of foot contact. When the hip flexion angle reaches a

threshold, the knee motor extends the leg to prepare for foot

contact with the ground. For RunBot’s reflexive controller we

replace Eqn. 6d (for the knee extensor) with:

UL=R,K,E(t) ~BL=R,K (t):HL=R,K ,E(t) �H(B’I ,H (t)) ð11Þ

Where, as previously, H(B’I ,H (t)) is the impulse trigger signal

when the ipsilateral hip reaches the AEA.
Biceps Femoris (BF). BF is responsible for hip extension (in

the stance phase) and knee flexion (in the swing phase), two

motions in different phases of the gait cycle. By taking the transfer

functions derived from the BF EMG activity and ground contact

information from both feet (HL=R,BF ,CH and HL=R,BF ,IH ) we can

identify the peak activity following the contralateral heel contact

trigger signal as the knee flexion transfer function (highlighted by a

box in Fig. 5D) and the hip extension transfer function (Fig. 5E)

following ipsilateral heel contact.

HL=R,H,E(t)~

HL=R,BF ,IH (tztBF ,IH,start),

0,

0ƒtƒ(tBF ,IH,end{tBF ,IH,start)

otherwise

� ð12Þ

HL=R,H,E can be substituted in Eqn. 6b and used for hip

extension in RunBot’s reflexive control system.

HL=R,K,FBF
(t)~

HL=R,BF ,CH (tztBF ,CH,start),

0,

0ƒtƒ(tBF ,CH,end{tBF ,CH,start)

otherwise

( ð13Þ

Lateral Gastrocnemius (LG). The LG transfer function is

responsible for ankle dorsiflexion in the stance phase (body weight

supporting in mid-stance phase and heel off motion in terminal

stance phase, toe off in pre-swing phase) and knee flexion in pre-

swing and initial swing phase. The transfer function relating to

contralateral heel contact (HL=R,LG,CH ) has a peak coinciding with

knee flexion following toe off and this feature can be used with

RunBot to generate knee flexion triggered by contralateral heel

contact (Feature of interest highlighted in Fig. 5A).

HL=R,K ,FLG
(t)~

HL=R,LG,CH (tztLG,CH,start), 0ƒtƒ(tLG,CH,end{tLG,CH,start)

0 otherwise

(
ð14Þ

In the case of two of our recorded muscles being responsible for

the same action (e.g LG and BF in knee flexion) the sum of the two

transfer function coefficients is taken. The sum can then be

Table 1. Relating the muscle transfer function to RunBot’s motor control.

Transfer Function RunBot Motor Control

HL=R,LG,CH Knee flexion during swing (CH).

HL=R,RF ,CH Knee extension at terminal swing and during the stance phase (CH).

HL=R,RF ,CH Hip flexion during swing (CH).

HL=R,BF ,CH Knee flexion during the swing phase (CH).

HL=R,BF ,IH Hip extension during the stance phase (IH).

doi:10.1371/journal.pone.0109959.t001
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substituted in Eqn. 6c for knee flexion in RunBot’s control system:

HL=R,K ,F (t)~HL=R,K,FBF
(t)zHL=R,K ,FLG

(t) ð15Þ

The start point for the transfer functions next needs to be

defined. It is important to note that the data is cyclic and thus a

start and endpoint of the function needs to be determined.

As we have already discussed, the delay between contralateral

heel contact and muscle activity related to knee extension at

terminal swing (HL=R,K ,E , Eqn. 10) is too large for the heel contact

to be deemed a suitable trigger for this action. Using hip AEA as

the trigger means that the transfer function start point is taken as

the time of the trough minimum (tRF ,CH,start) which precedes the

peak of activity related to knee extension. In this way the filter is

triggered immediately when the hip AEA is reached.

The springs used in RunBot’s knees produce a latency period

due to a delay between the motor turning and the springs reacting

which can be viewed as equivalent to the delay between heel strike

and toe off of the contralateral foot observed in normal human

walking during the double support phase (first 10%) of the gait

cycle, see Fig. 4.

Unlike the knee, the hip joint motor in RunBot is directly

controlled by the motor so there is no spring latency period. The

delay in motor activation between heel strike and contralateral toe

off in the transfer functions, summed with RunBot’s spring latency

period, produces an extended delay causing knee motion

uncoordinated to the hip. For this reason, the delay between the

trigger and the onset of knee flexor activity was subtracted from

the knee flexion transfer functions. As the hip joint motor is not

controlled by springs the delay between trigger and muscle

activation for hip joint control was not removed.

Curve fitting
The final stage in data processing before applying the transfer

functions to RunBot is curve fitting to remove spurious artefacts in

the EMG as the assumption is made that a muscle activation signal

should be a smooth increase and decrease in voltage with

contraction.

The muscle twitch response of muscle has a characteristic shape

which closely matches the impulse-response time curve of a

damped, linear second-order differential system and models the

net result of coupling between the excitation and contraction of the

muscle [34]. The second-order model behaves essentially like a

low-pass filter producing a delay between the neural excitation and

the active state of the muscle [35,36].

To this purpose we have used the impulse response of a critically

damped system to curve fit the muscle excitation of the desired

features of the muscle transfer functions using the least mean

squares (LMS) algorithm and model optimisation in MATLAB.

The resulting transfer functions are (ĤHL=R,H=K,F=E ) which can be

applied at RunBot’s hip and knee motors (H/K) for flexion or

extension (F/E).

ĤHL=R,H=K,F=E(t)~

l exp( {(t{d)
t1

){exp( {(t{d)
t2

)
� �

,

0,

t{d§0

t{dv0

8<
:

ð16Þ

Where l is the amplitude fitted variable. t2 and t1 are

equivalent to the rise and fall time respectively and d is the delay

constant from the trigger signal to the onset of muscle contraction.

Only the positive values of the curve fitted transfer function

were taken and normalised to an amplitude range between 0 and

1 V. This enabled the motor voltage to be easily adjusted

according to the observed gait pattern stability using Eqn. 7.

The transfer functions correspond to one stride duration defined

as from foot contact to the next foot contact of the same leg. The

mechanical system mainly dictates how the transfer functions need

to be resampled for the RunBot. The transfer functions for the hip

and knee motors were sampled at the frequency of the control

program (fs~200Hz or one second) for one stride duration and

the knee motor transfer functions were subsequently halved to a

duration of 500 ms, for one step. The results of the curve fitting

are provided in Table 2 and 3.

Table 2. Results of the curve fitting for hip flexion/extension.

ĤHL=R,H,F ĤHL=R,H,E

Set t1 (ms) t2 (ms) d (ms) t1 (ms) t2 (ms) d (ms)

1A 76.97 76.96 75 73.22 73.22 75

1B 86.91 86.91 80 128.24 81.73 85

2A 88.31 88.31 30 72.47 72.47 80

2B 83.80 83.80 60 71.82 71.82 80

3A 78.53 78.52 90 72.31 72.31 100

3B 93.71 93.71 80 133.76 133.76 80

4A 91.96 91.96 125 95.88 34.27 80

4B 77.52 77.52 70 100.46 100.46 50

5A 113.28 113.28 5 91.43 91.43 15

5B 76.18 76.18 75 74.65 74.65 100

6A 93.08 93.08 110 112.16 112.16 100

6B 78.41 78.41 120 110.89 110.89 100

Values are provided for t1 , t2 and d which can be substituted into Eqn. 16.
doi:10.1371/journal.pone.0109959.t002
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In conclusion we have defined the transfer functions ĤHL=R,H,F ,

ĤHL=R,H,E , ĤHL=R,K,F and ĤHL=R,K ,E which can be substituted into

the equations used within RunBot’s reflexive control system, Eqn.

6a, 6b, 6c and 11. The other parameters within the control system

measuring joint extreme flexion/extension angles (BL=R,H=K )

remain unchanged in order to prevent damage to RunBot’s

mechanical structure. The angles utilised to signal AEA of the hip

joint (which promote knee extension of the ipsilateral leg at

terminal swing) were also maintained, see Table S2.

The final equations for both legs which define RunBot’s control

system are as follows:

UL=R,H,F (t)~BL=R,H (t):ĤHL=R,H,F (t) �H(G’C(t)) ð17aÞ

UL=R,H,E(t)~BL=R,H (t):ĤHL=R,H,E(t) �H(G’I (t)) ð17bÞ

UL=R,K,F (t)~BL=R,K (t):ĤHL=R,K ,F (t) �H(G’C(t)) ð17cÞ

UL=R,K ,E(t)~BL=R,K (t):ĤHL=R,K ,E(t) �H(B’I ,H (t)) ð17dÞ

Results

In this section we will first discuss the results of calculating the

transfer functions from the EMG and foot contact data followed

by the results of applying the transfer functions to RunBot’s

reflexive control system.

Transfer functions
Recall, that the final functions after curve fitting were defined as

ĤHL=R,H,F , ĤHL=R,H,E , ĤHL=R,K ,F and ĤHL=R,K ,E , and were applied to

RunBot using Eqn. 17a, 17b, 17c and 17d. To analyse the transfer

Table 3. Results of the curve fitting for knee flexion/extension.

ĤHL=R,K ,F ĤHL=R,K ,E

Set t1 (ms) t2 (ms) d (ms) t1(ms) t2(ms) d (ms)

1A 83.11 83.11 115 103.84 103.84 425

1B 105.02 105.02 115 134.63 134.59 440

2A 94.47 94.47 110 107.71 107.71 430

2B 76.58 76.58 120 139.47 139.47 435

3A 69.09 69.09 140 77.13 77.12 460

3B 113.76 113.76 125 94.56 94.56 495

4A 108.96 108.96 90 136.61 136.54 450

4B 82.99 82.85 105 150.33 150.33 415

5A 95.95 95.95 110 131.17 131.17 410

5B 82.99 82.85 105 148.99 148.99 420

6A 78.37 78.37 150 151.75 151.75 425

6B 97.24 97.22 130 123.34 123.34 495

Values are provided for t1 , t2 and d which can be substituted into Eqn. 16. As RunBot has a knee structure controlled by a motor and springs, the d values for the knee
joint transfer functions which correspond to the delay between the trigger and tstart , were set to zero.
doi:10.1371/journal.pone.0109959.t003

Table 4. Sets of transfer functions applied to RunBot’s control system.

Set No. Description

1A/B Mean average of all subjects.

2A/B Mean average of male subjects only.

3A/B Mean average of female subjects only.

4A/B Each transfer function is from the subject who had the

minimum final MSE value from the adaptive filtering.

5A/B ĤHL=R,H=K ,F=E from a single male subject (subject C).

6A/B ĤHL=R,H=K ,F=E from a single female subject (subject H).

Different sets of transfer functions were applied to RunBot’s control system to establish whether a stable gait pattern can be produced by combining transfer functions
from the range of subjects or by just using functions from individual subjects. We also wanted to examine whether there is a difference between the two treadmill
walking trials, where A = sequence 1 (25 steps per speed) and B = sequence 2 (100 steps per speed). For example, set 5A is using transfer functions from a single male
subject (subject C) from treadmill sequence 1. Videos S3 to S14 show RunBot walking using each of these sets of transfer functions.
doi:10.1371/journal.pone.0109959.t004
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functions in generating walking with RunBot, 12 different transfer

function sets were applied and tested using the reflexive model to

identify the robustness of the employed methodology in defining

the transfer functions and whether the two different treadmill

walking trials have an effect on the functions, see Table 4.

Identical transfer functions were applied to the right and left legs

as the assumption was made that the activity in both legs was the

same.

RunBot performance
The next stages were to apply the different transfer functions

sets to the defined reflexive control system in RunBot, and to

analyse the resultant gait.

Figure 6. Plots of the different transfer functions tested with RunBot which produced a stable gait. The number of samples for the hip
motors was set to 200 (1000 ms). This is the same frequency used during the normal operation of RunBot II. Knee flexion/extension was set to 100
samples or 500 ms. (A) Represents the transfer function coefficients from the curve fitting for the hip flexion. Hip flexion of the leg is triggered by the
contralateral heel strike. (B) Hip extension is triggered by the ipsilateral heel strike. (C) Knee flexion of the leg is triggered by the contralateral heel
strike and knee extension (D) is triggered by the anterior extreme angle (AEA) of the hip to drive knee extension at terminal swing.
doi:10.1371/journal.pone.0109959.g006

Table 5. Comparison of function characteristics.

ĤHL=R,H,F ĤHL=R,H,E

Gait Set tp (ms) td (ms) tp (ms) td (ms)

Stable 1B 175 215 190 255

3B 190 230 220 330

4B 155 190 165 245

5A 140 275 125 225

6A 220 230 230 275

6B 215 195 225 270

Unstable 1A 160 190 160 180

2A 135 215 130 175

2B 155 205 165 175

3A 280 195 185 180

4A 225 225 130 145

5B 155 185 185 185

The duration (td ) and peak time (tp) of the hip transfer functions were compared to determine the influence on whether RunBot’s gait is stable or unstable. ĤHL=R,H,E

needs to have a longer duration than ĤHL=R,H,F to produce a stable gait pattern.

doi:10.1371/journal.pone.0109959.t005
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Stable walking was defined as a controlled gait cycle with no

stumbles or falls for more than 10 rotations of the circular path.

Transfer function sets: 1A, 5B, 3A, 2A, 2B and 4A caused RunBot

to stumble and fall while the remainder: 1B, 5A, 6A, 6B, 3B and

4B produced a stable gait pattern (See Videos S3 to S14).

Comparison plots of the calculated transfer functions which

worked with RunBot can be seen in Fig. 6. On comparing the

function characteristics (Table 5) an obvious difference was found

in the hip extensor transfer functions that produced stable gait

compared to those sets which did not. The sets which featured a

longer td (where td is the time period from 50% of the peak

amplitude on the rise to 50% of the amplitude on the fall) in the

hip extensor function were more likely to produce a stable gait.

From this information we can determine that if td is too short, the

stance hip cannot extend backwards to the desired angle which

will cause the foot of the swing leg to scuff the ground and cause a

stumble. There was no consistent difference between different

knee transfer functions between the sets that worked and those

which did not.

To analyse RunBot’s gait using the different transfer function

coefficients, RunBot’s limbs were video tracked as it walked in a

circular path, see Fig. 7. A step is initiated when the stance leg foot

makes contact with the ground. The swing leg hip then flexes

forward and the knee flexes, lifting the foot off the ground. Once

the hip reaches the anterior extreme angle (AEA) the knee is

triggered into extension until the foot of the swing leg makes

contact with the ground. This then triggers the contralateral leg

motors and so on.

During joint tracking, measurements were taken of average

walking speed, stride length and the knee joint angle. Fig. 8

describes how the walking speed performance of RunBot responds

to the different transfer function sets. The speed result was

calculated as the circumference of the cycle path (2p0:5) divided

by the time for completing one circuit. The stride duration was

calculated as the time for RunBot to complete a rotation of the

circular path divided by the number of strides recorded.

Flexion/extension angle of the knee was calculated to compare

the different transfer function’s effect on RunBot, Fig. 9. RunBot

II has a knee structure which involves springs to mimic the muscle

properties around the human knee joint due to muscle having

linear, spring-like properties. Due to the knee mechanics being

analogous to humans we can study the knee angle during the gait

cycle to analyse the difference in transfer function from the

different transfer function sets which produced a stable gait.

Comparing the averages and female and male individual subject

transfer function sets, the timing for stance and swing is very

similar; the main difference being in the small peak evident during

stance when some of the transfer function sets are applied to

RunBot. This is due to the knee bending following heel strike

because the hip has continued to flex after heel contact and so has

pulled the knee into flexion before extension begins. In compar-

ison to human knee flexion/extension angle during gait the plots

are very similar. The major difference is that in humans there is a

small flexion peak present during stance before swing begins which

is more significant than the small duration peak in RunBot’s knee

motion. In humans this peak is due to the knee bending following

heel strike as the body weight is accepted and transferred onto the

leg as the swing phase of the contralateral leg begins. It also acts to

absorb the impact of the heel strike by extending the contraction

period of the quadriceps muscles.

Another point of interest is in the 3B and 6B knee angle curves,

Fig. 9B and C. The flat peak during knee flexion in the swing

phase is due to the knee flexing to its maximal angle and

remaining in this state before the hip reaches the AEA (which

triggers knee extension). This is in contrast to the other data sets

applied to RunBot and the human knee angle example which

demonstrate a more fluid movement from knee flexion to knee

extension.

To analyse the dynamic stability of RunBot using the different

transfer function sets, phase plots of knee angular velocity versus

the angular position were used, as the movement pattern is cyclic

and we want to see how the performance varies over time, Fig. 10.

Although the gait stability is affected by using the different transfer

function sets, we can see that overall the reflexive control system

produces stable limit cycles. This demonstrates that even when

there is a disturbance to the gait pattern originating from an

unevenness of the ground surface, there is a quick return to the

steady-state behaviour. Fig. 10E is transfer function set 5A, this set

produced the fastest walking speed with RunBot but the phase plot

demonstrates that the limit-cycles are significantly more affected

by perturbations than the other sets and so appears less stable.

Finally, we are now able to identify characteristics of the transfer

functions which worked to produce stable walking in RunBot and

explain why other sets did not:

N Compared to the knee transfer functions, the differences in

hip transfer functions have a more significant effect on the

walking performance as the hip transfer functions are used

to drive the hip motor directly.

N The time delay between the trigger and the hip flexion and

between the trigger and the hip extension of the

Figure 7. Photographs of one RunBot stride duration. The series
of frames corresponds to one stride recorded after applying transfer
functions found from the human study. The time interval between each
adjacent frame is 60 ms. Markers were attached to RunBot’s right leg for
video tacking of the joints for calculation of kinematic data. Heel
contact triggers the stance phase of ipsilateral leg and the swing phase
of the contralateral leg. Leg extension during terminal swing is
triggered by the threshold value for the hip anterior extreme angle
(AEA) being reached during hip flexion.
doi:10.1371/journal.pone.0109959.g007
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contralateral leg should be very similar or the hip flexion

should be longer to produce a stable gait.

N The duration td of hip extension (from 50% of the peak

amplitude on the rise to 50% on the fall) is significant in

establishing a stable gait pattern because the stance leg

needs enough torque to support the body weight and extend

the leg backward while the swing leg flexes forward.

N The duration of hip extension should be longer than hip

flexion to produce a stable gait.

Discussion

The development of a reflexive control system based on filter

functions calculated from human walking data aimed to demon-

strate that using sensory feedback can be a successful method to

generate stable and coordinated limit cycle stepping in a robotic

walker. We have shown that there is a direct causal relationship

between foot contact information and muscle activity during biped

walking. This causal relationship allowed us to calculate filter

functions using established filtering techniques, which reproduce

the activations of the relevant muscles after foot contact. Our

reflexive controller exploits the natural dynamics of the robot for

motion generation without the requirement of central pattern

generators, trajectory planning or tracking control.

As this is an analogue linear system using foot contact as the

main source of feedback, the system has high reliability where the

output is dependent on there being an input. This means that the

system can never enter any unknown or unpredictable state as it is

not a finite state machine and uses no threshold on the input to

determine the output state. If there was a loss of feedback

information relating to foot contact, there would be no output

from the system. We never experienced a loss of foot contact

feedback in using this system with the RunBot robot or during the

data collection with human participants, although a failure of the

foot contact sensors could occur with potential dangerous

consequences for the biped locomotion. The FSRs used in the

study have a typical operation beyond 1,000,000 actuations [37],

making them suitable for use in the detection of foot contact, for

which they have been used previously [25,26,38]. Future

development of the system to improve robustness and fault

tolerance could involve integration of internal forward models with

Figure 8. Box plots comparing RunBot’s stride length (A), stride duration (B) and walking speed (C). Using the transfer function sets
which produced stable walking (n = 10). A box plot comparing the relative walking speed of RunBot using each of the transfer function sets
compared to the average relative walking speed of the human test subjects is also provided (D). Relative walking speed of leg-length/s is calculated
as the scaled walking speed to leg length where RunBot’s leg length is 0.3 m.
doi:10.1371/journal.pone.0109959.g008
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efference copy. As walking is a cyclic and repetitive process, the

system could calculate a prediction (forward model) of the output

and if the actual and predicted outputs differed the system would

halt, bringing the walker to a standing stop.

Foot contact is commonly recorded for use in gait analysis as a

method of determining spatial and temporal parameters such as

stride length, cadence and predicting the onset and timing of gait

cycle events. This information can be used alongside EMG data

for analysis of muscle function to classify normal and identify

pathological gait [39]. For this purpose, the generalised muscle

activity patterns in relation to a normalised gait phase (0 to 100%)

have been long documented [40]. In addition, different strategies

for generating control based on muscle activity and foot contact

information have been studied by others for use in research on

human motor control and in rehabilitation engineering. These

include simulated systems based on human data and control

derived directly from biosignals, an area of research commonly

known as brain-computer interfaces (BCI), for review [41].

However, to the author’s knowledge, the transfer functions which

directly relate foot contact and muscle activity within humans,

either averaged from a population or from an individual, have not

been calculated to create a minimalistic, linear, analogue control

system for applications in gait control.

The relationship between muscle activity and walking speed is

of interest as it influences how foot contact information could be

used as a trigger for muscle activation. It has been documented

Figure 9. Comparison of knee flexion/extension angle of RunBot using transfer function sets which produced a stable gait. The time
is normalised to percent of stride, the mean and standard deviation was calculated from the number of strides recorded from the video tracking. The
mean percent of stride when the contralateral heel strike was recorded is also shown as a line with the standard deviation highlighted.
doi:10.1371/journal.pone.0109959.g009
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that the stance phase of gait decreases as speed increases [42]. And

it has been shown that the timing of certain gait phases occurs

earlier in relative stride time as speed increases, particularly in the

TA, LG, and RF muscles. The EMG patterns also tend to become

more consistent with an increase in walking speed, with slow

speeds causing an EMG pattern dependent on the muscle

characteristics and motion of the specific individual [43].

However, changes to the gait phase timing of muscle activity

during ramp acceleration and deceleration is less well understood

with the majority of studies focusing on EMG analysis at

constant walking speeds. Our results demonstrate that the first

treadmill sequence (25 steps per speed) may have been too

variable, producing an average of the muscle activity with gait

timing influenced detrimentally by the periods of acceleration

and deceleration between the constant speeds. The second

sequence provided a higher number of complete gait cycles at

every steady-state speed which produced an average which was

less skewed by the periods of acceleration and deceleration.

Another reason for the variation in results could be due to the

range of treadmill belt speeds used in the second sequence. This

range was 0.11 m/s smaller than the first which may have

produced a stride average which was more compatible with the

RunBot’s mechanical structure. As RunBot’s design is not a scale

representation of human leg length and mass ratios, the faster

walking speeds used in the first sequence may have produced

stance to swing ratios which were incompatible with RunBot’s

design and construction.

Comparing the walking speeds achieved using each of the

different transfer function sets, set 5A produced the fastest average

speed which was from a single male subject. However when scaled

to leg length (Fig. 8), RunBot’s walking speed is approximately half

of what the human subjects achieved walking at a constant average

speed. This could be attributed to reduced energy efficiency in the

robot’s mechanical design by lack of an actuated ankle joint which

would provide the addition of a push off force from the foot at pre-

swing. Currently the knee motor has to lift the weight of the lower

leg without major contribution from a ground reaction force. It

would be interesting to examine whether the addition of an

actuated ankle joint in RunBot, controlled using human muscle

transfer functions as in the hip and knee motors, increased the

relative walking speed of the robot significantly.

In human walking, several studies have indicated that ground

reaction forces influence the locomotor activity of the leg [44–46]

and the action of plantar pressure signals from the foot sole have

been implicated in the reflex regulation of locomotion [47–49].

Research involving spinalised and decerebrated animals has

suggested that afferents from the foot sole interact with the

neuronal circuits involved in stepping. Sensory afferents in the sole

of the foot signal spinal interneuronal circuits which can delay or

suppress the initiation of swing, encouraging the stance phase as

well as contribute to the correct placement of the foot during

stepping [48,50–52]. Load receptors can also act to signal

unloading of the limb following heel strike of the contralateral

leg and contribute to the termination of stance [53]. There is a

significant amount of afferent activity originating from the skin of

the foot after ground contact [54], which suggests there is potential

that this information could be used to reinforce the ongoing

muscle activations during stance. In addition, research studying

Figure 10. Phase plots of knee angular velocity versus angular position. Knee angle was calculated from markers positioned on the knee
joint and video camera tracking over ten complete rotations of the circular path. The plots show the limit cycles in the phase plane and demonstrate
the robustness of the reflexive control system, as even when there is a disturbance to the gait cycle there is a rapid convergence to the limit cycle in
only a few steps.
doi:10.1371/journal.pone.0109959.g010
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electrical stimulation of nerves that supply the skin of the foot

suggests that strong reflex activations in various leg muscles can be

triggered during human gait [55].

It can be considered that sensory feedback from the foot sole

may be of major significance in the control of human walking. Our

reflexive controller has used heel contact as a sensory input trigger

to activate muscles relating to flexion/extension of the hip or knee

joints. The only exception to the rule was employing the hip

anterior extreme angle (AEA) to determine the moment for knee

extension at terminal swing because for this event there is no

causal relationship between heel contact and muscle activity. A

stable transition from swing to stance is dependent on the swing leg

becoming sufficiently protracted before ground contact. For this

reason position of the hip is a suitable candidate for producing an

afferent signal regulating swing-to-stance transition [56]. A direct

connection between joint angle and motor output is inspired by

monosynaptic reflexes found in different animals [57] and also in

humans [23]. When the limb of an animal reaches an extreme

position, stretch receptors signal the controller to reset the phase of

the limbs [21]. The role of hip position in regulating the stance-to-

swing transition has been well documented within an animal

model [58,59] and in human infant stepping [60,61]. Hip angle

contribution to swing-to-stance transition during the swing phase

of walking is indicated as the position of the hip closely reflects the

forward motion of the leg. Studies involving decerebrate cats

found that assisting flexion movements of the hip joint shortened

the burst duration within the Iliopsoas hip flexor muscles and

promoted early onset of activity in the Medial Gastrocnemius

producing ankle extension. This is significant as burst activity in

ankle and knee extensors occurs at the swing-to-stance transition

just prior to ground contact [56]. There is also evidence that

feedback from stretch receptors is vital for maintaining the

frequency and duration of regular locomotive movements in some

insects [62]. Our controller demonstrates that feedback of hip

extreme flexion angle is a suitable and effective means of triggering

knee extension at terminal swing, initiating the swing-to-stance

transition and ensuring stability of the walker while protecting the

mechanical hip joint from overflexion.

Compared to classical control systems used in robotics

including, finite-state machines, trajectory tracking, machine

learning and CPGs, our controller is based on actual human

walking data. We have created a closed-loop system based on the

causal relationship between the foot contact information and the

muscle activation signals (in humans), which translates to motor

activation at the limbs in the robot. The result is so-called limit

cycle walking which is defined by Hobbelen and Wisse (2007) as a

nominally periodic sequence of steps which although not locally

stable at every instant in time, is stable as a whole [63]. Limit cycle

walking allows a walker to adapt its gait to the changing natural

dynamics producing a convergence to a desired motion following

any deviation from the desired trajectory, using only zero or low

feedback gains. As can be expected this is more energy efficient

than using high feedback gain to force the walker to remain on an

intended path, which is a constant fight against natural deviations

[63]. Our controller demonstrates limit cycle walking in RunBot as

the motion is able to return naturally to the desired trajectory

following a disturbance, after only a short time and without CPGs

or trajectory control.

The precise function of load dependent reflexes and the extent

to which reflex responses generated by sensory input from

peripheral receptors contribute to human bipedal gait in

comparison to other mammals is not thoroughly understood. It

is still unclear how significant spinal networks are in the generation

of human walking and whether the functional effect of load

receptors and reflexes play a similar role in human muscle

activation as in the animal models.

Neurophysiological studies have revealed in different animal

species that during locomotion (including walking, flying, swim-

ming etc.), motor neurons are being driven by CPGs. These

central networks have been observed to work independent of

sensory or descending inputs carrying specific timing information

and generate the rhythm and pattern of the locomotor bursts of

the motor neurons [64,65]. CPGs were first successfully demon-

strated in the oscillatory output of the deafferented locust wing in

response to non-rhythmic stimulation of the nerve cord which was

maintained in the complete absence of sensory input [66–68].

CPGs have been identified and documented in mammals such as

the cat but for humans they have yet to be conclusively described

as the experimental procedures used cannot be replicated (for

review see [69]). The significant amount of evidence for locomotor

CPGs in various different animals suggests it would be very

unusual if a similar system was completely absent in humans.

However humans are unique among mammals as habitual bipeds

making comparison to an animal model difficult. The lack of

evidence could be due to other mechanisms being of primary

importance such as contribution from reflexive and supraspinal

controls. One significant observation highlighting differences

between potential human CPGs and those found in other species

is that following a complete spinal cord injury, humans become

completely paralysed below the level of injury and locomotor

activity is typically not evident for many years [70], whereas

rhythmic stepping can be evoked in a cat after complete spinal

transection ([64] for review). A study of patients with spinal cord

injuries (SCI) by Dietz et al. (2002) describes a limited

coordination between the legs suggesting the coupling between

any CPGs is weak when the input from supraspinal structures is

reduced [71]. Similarly, an extensive study on Macaque monkeys

with transected spinal cords failed to produce hind leg stepping

using procedures similar to those used on cats, which raises doubt

over the existence of locomotor CPGs in primates. However,

rhythmic alternating activity could be generated if part of the

spinal cord was left intact and more successfully when locomotor

centres in the brain stem were stimulated in decerebrate animals

with an intact spinal cord [70,72,73]. The conclusion from

primate studies is that if a CPG is present in primates then it is

more dependent on intact supraspinal control than is found in the

cat [70].

Unlike a CPG, a reflex is a local motor response to a local

sensory input. In the locomotion of human and animals, various

reflexes act together to control the limbs and their integration

contributes to the regulation of the locomotor gait cycle [74]. The

concepts that have emerged from walking studies are that reflexes

are dependent on task, phase and context and they require

modulation using sensory feedback from peripheral afferents in

order to function effectively in locomotion where the initial

conditions are changing on every step [74–78].

Within a human model, feedback on the current status of the

walking process is fed back from different sensory organs located

locally in muscles and tendons and peripherally from the vestibular

and visual systems. At high walking speeds, coordination between

the sensory input and motor output needs to act quickly with

efficiency and these high dynamic walking demands are currently

not possible using existing artificial robotic control systems

[15,18,20].

We believe that our controller demonstrates that complex

behavioural patterns can result from a simple model for

locomotion and gait control based on reflexes. An achievement
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where much of the biological complexity within the true human

motor control system has been omitted.

Implications
A reflexive controller based on human data has implications

for locomotor training after spinal cord injury. Functional

electrical stimulation (FES) is commonly recruited as a rehabil-

itation strategy for SCI to exercise and strengthen weakened

muscles as well as artificially replace muscle activation that is

missing or lacking (for review see [6]). FES uses small electrical

currents to directly stimulate peripheral nerves, alpha motor

neurons, to cause muscle contraction. For gait rehabilitation, FES

is applied to nerves which innervate leg muscles with particular

motor functions during the swing and stance gait phases,

activating them (artificially) with timing consistent with a normal

walking gait cycle [79–84]. Research within the last decade has

suggested walking function is vastly improved in individuals with

incomplete SCI undergoing functional electrical stimulation

(FES) therapy [5].

Sophisticated FES devices have been designed to enable

patients with SCI to stand, walk and sit but the most common

form of commercial stimulator systems available are primarily for

correcting drop-foot and for standing in individuals with

paraplegia (for review see [85]). The most simple method of

control used by stimulator systems, including the Parastep I

(Sigmedics, Inc., Fairborn, OH) [86,87], is open-loop control to

provide stimulation pulses to assist in standing or walking by

coordinating the activation of muscles. Open-loop involves no

direct feedback back to the controller about the actual state of the

system and so there are complications in generating accurate

control of movement generation using these systems due to

difficulty in predicting the correct timing of stimulus, non-

linearity of the neuromuscular-skeletal system and inability for

modulation during deviations from an ideal gait cycle [6].

Providing sensory feedback from the patient to the FES device

should allow improvement in control of the generated movement

and produce walking which is more normal than seen with open-

loop systems, improving speed and efficiency [88]. Feedback

allows a modulation of the stepping by the walking, adapting the

gait in compensation for changes within the terrain or environ-

ment.

Automatic control was examined by Popovic et al. (2005) as an

alternative for push button control, using a pre-programmed

multi-channel electrical stimulation system for stroke patients [89].

Stimulation of the Quadriceps, Gastrocnemius, and Tibialis

Anterior was applied for support during stance, push-off at

terminal stance, and to provide stability at foot contact, as well as

during the swing phase. The timing used for stimulation was pre-

set to mimic the onset and switching off of muscle activity found in

healthy individuals during slow pace walking. Issues with the

system involved the timing, which was based on data from from

healthy individuals, and hence did not match the timing of

voluntary activity in stroke patients. It was also found that patients

with stroke, modified their muscle activation when their muscles

were stimulated, especially if the stimulation applied to the muscles

was not in phase with any voluntary contraction.

Closed-loop control has been studied using two different forms

of sensory feedback; biological signals generated by the individual

(EMG, ENG or EEG) and signals derived from artificial sensors.

Research involving gait event detection have traditionally been

based on a single type or an integration of different body-worn

sensors typically positioned on the thigh, shank or foot to measure

ambulation and have included accelerometers [90,91], gyroscopes

and FSRs [92], and accelerometers and FSRs [93]. Many closed-

loop control strategies for FES applications in SCI individuals

have been reported in the literature. These fall into categories

which include dynamic controllers, finite state controllers and

artificial networks (for full review of FES control see [94]). Similar

to controllers developed for bipedal robotic walkers, the different

controllers applied to FES have issues with computational power.

These issues include: (i) high gain requirements for error

correction, (ii) complicated algorithms for trajectory control, and

(iii) difficulties in implementing the control strategy on a human

model (with complications such as latency, muscle spasticity,

voluntary control and fatigue). None of these control methods

have managed to produce an adaptive gait pattern based on self-

stabilising dynamic processes as observed in natural walking,

which may explain why open-loop controllers remain the most

common in commercial FES systems.

A study by Kojovic et al. (2009) compared the automatic FES

control system, proposed by Popovic et al. (2005) [89], with an

FES control system using rule based IF-THEN type finite state

control and incorporating artificial feedback from force sensing

resistors and accelerometers [93]. They found that this alternative

provided timing for muscle activation which was in synch with

required voluntary movements. Pappas et al. (2001) combined a

gyroscope, measuring the angular velocity of the foot, with force

sensing resistors (FSRs), to determine toe-off and heel strike which

enabled then to detect the swing phase of gait [92]. Their system

success rate was above 96% for subjects with impaired walking.

The main difference between the previously discussed control

schemes and ours presented here is that our approach uses linear

transfer/filter functions which do not require any thresholding.

Although bipedal robots featuring finite-state machines can exhibit

a stable limit cycle [95], it is well known from behaviour based

robotics [96] that systems acting without any thresholds or states

are very robust. Our controller uses a filter, which translates

linearly the input of the heel contact into a muscle stimulation

signal. The only threshold we had to employ was on the hip

anterior extreme angle (AEA) to determine the trigger time for

knee extension at terminal swing; however this threshold is not

critical and could probably be replaced by a soft threshold.

In the future we would like to adapt the simple reflexive control

system employed by RunBot into an FES controller for gait

rehabilitation, which could assist stepping and promote limit cycle

walking in patients with spinal cord injuries.

In summary, the results presented here demonstrate a simple

method for controlling walking by establishing the underlying

relationship between ground contact information from the feet

and muscle activity, which could be of great importance and has

significant potential in the development of bipedal robotics and in

rehabilitation strategies.

Supporting Information

Table S1 The final mean square error result for each
subject for each muscle transfer function from the
adaptive filtering. The transfer functions were calculated using

the EMG activity recorded from the subject’s right leg with heel

contact information from both the right and left foot. Transfer

functions related to the Lateral Gastrocnemius (LG), Rectus

Femoris (RF) and Biceps Femoris (BF) are given, contralateral heel

contact are labelled (CH) and ipsilateral heel contact (IH).

(EPS)

Table S2 Values for the extreme angle of each joint
(HL=R,H=K ). RunBot II features an elastic knee structure so real-

time tracking of the knee joint angle is not possible. Instead, the

motor position voltage (V) is used to predict the knee joints
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reaching the joint angle threshold. The hip angles differ from left

to right leg due to the effect of RunBot being constrained to a

circular walking path and are different values than those

documented from humans due to the mechanical structure and

the need of RunBot to keep its centre of mass forward.

(EPS)

Table S3 The gain of the motor amplifier (aL=R,H=K ).
(EPS)

Video S1 Experimental set-up. Video demonstrating the

experimental set-up used to record muscle activity (EMG) and foot

contact information from the human test subjects.

(MP4)

Video S2 EMG and foot contact recording during
human treadmill walking.
(MP4)

Video S3 RunBot walking using transfer function set
1A.
(MP4)

Video S4 RunBot walking using transfer function set
1B.
(MP4)

Video S5 RunBot walking using transfer function set
2A.
(MP4)

Video S6 RunBot walking using transfer function set
2B.
(MP4)

Video S7 RunBot walking using transfer function set
3A.
(MP4)

Video S8 RunBot walking using transfer function set
3B.
(MP4)

Video S9 RunBot walking using transfer function set
4A.
(MP4)

Video S10 RunBot walking using transfer function set
4B.
(MP4)

Video S11 RunBot walking using transfer function set
5A.
(MP4)

Video S12 RunBot walking using transfer function set
5B.
(MP4)

Video S13 RunBot walking using transfer function set
6A.
(MP4)

Video S14 RunBot walking using transfer function set
6B.
(MP4)

Data S1 File information for Data S2 to S21.
(GZ)

Data S2 Subject A.
(GZ)

Data S3 Subject B.
(GZ)

Data S4 Subject C.
(GZ)

Data S5 Subject D.
(GZ)

Data S6 Subject E.
(GZ)

Data S7 Subject F.
(GZ)

Data S8 Subject G.
(GZ)

Data S9 Subject H.
(GZ)

Data S10 Subject I.
(GZ)

Data S11 Subject J.
(GZ)

Data S12 Subject A.
(GZ)

Data S13 Subject B.
(GZ)

Data S14 Subject C.
(GZ)

Data S15 Subject D.
(GZ)

Data S16 Subject E.
(GZ)

Data S17 Subject F.
(GZ)

Data S18 Subject G.
(GZ)

Data S19 Subject H.
(GZ)

Data S20 Subject I.
(GZ)

Data S21 Subject J.
(GZ)
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