
Genome analysis

DeepSimulator1.5: a more powerful, quicker and lighter

simulator for Nanopore sequencing

Yu Li 1,†, Sheng Wang1,2,*,†, Chongwei Bi3, Zhaowen Qiu4, Mo Li3 and Xin Gao1,*

1Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center

(CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia, 2Tencent AI lab, Shenzhen

518000, China, 3Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and

Technology (KAUST), Thuwal 23955-6900, Saudi Arabia and 4Institute of Information and Computer Engineering, Northeast Forestry

University, Harbin 150040, China

*To whom correspondence should be addressed.
†The authors wish it to be known that these authors contributed equally.

Associate Editor: John Hancock

Received on August 12, 2019; revised on November 17, 2019; editorial decision on December 20, 2019; accepted on January 3, 2020

Abstract

Motivation: Nanopore sequencing is one of the leading third-generation sequencing technologies. A number of
computational tools have been developed to facilitate the processing and analysis of the Nanopore data. Previously,
we have developed DeepSimulator1.0 (DS1.0), which is the first simulator for Nanopore sequencing to produce both
the raw electrical signals and the reads. However, although DS1.0 can produce high-quality reads, for some sequen-
ces, the divergence between the simulated raw signals and the real signals can be large. Furthermore, the Nanopore
sequencing technology has evolved greatly since DS1.0 was released. It is thus necessary to update DS1.0 to accom-
modate those changes.

Results: We propose DeepSimulator1.5 (DS1.5), all three modules of which have been updated substantially from
DS1.0. As for the sequence generator, we updated the sample read length distribution to reflect the newest real
reads’ features. In terms of the signal generator, which is the core of DeepSimulator, we added one more pore
model, the context-independent pore model, which is much faster than the previous context-dependent one.
Furthermore, to make the generated signals more similar to the real ones, we added a low-pass filter to post-
process the pore model signals. Regarding the basecaller, we added the support for the newest official basecaller,
Guppy, which can support both GPU and CPU. In addition, multiple optimizations, related to multiprocessing con-
trol, memory and storage management, have been implemented to make DS1.5 a much more amenable and lighter
simulator than DS1.0.

Availability and implementation: The main program and the data are available at https://github.com/lykaust15/
DeepSimulator.

Contact: sheng.wang@kaust.edu.sa or xin.gao@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Because of its creative design and distinctive properties, i.e. portabil-
ity, polymerase chain reaction-freeness and ultra-long reads, the
Nanopore sequencing technology, which recognizes the nucleotides
by detecting the electrical current signal changes when DNA or
RNA molecules are forced to pass through a molecular pore (Li
et al., 2018), has achieved great success in recent years (Loman and
Watson, 2015; Mueller et al., 2019). Despite its clear advantages,
Nanopore sequencing poses a number of computational challenges,
for which various methods and algorithms have been developed

(Han et al., 2018; Senol Cali et al., 2019; Wang et al., 2018).
Among them, simulators are an important type of tools (Baker et al.,
2016; Li et al., 2018; Rohrandt et al., 2018; Yang et al., 2017; Yue
and Liti, 2019). DeepSimulator (DS) (Li et al., 2018), which we pre-
viously developed, was designed to simulate the Nanopore sequenc-
ing technology ‘deeply’, not only from the overall design aspect but
also from the concrete algorithm aspect. Regarding the overall de-
sign (Fig. 1), we used three modules to mimic the real experimental
procedures, which enable the simulator to simulate both the raw
electrical current signals and the reads. As for the ‘deep’ algorithms,
we deployed a specific deep learning model (Lam et al., 2019;

VC The Author(s) 2020. Published by Oxford University Press. 2578

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 36(8), 2020, 2578–2580

doi: 10.1093/bioinformatics/btz963

Advance Access Publication Date: 8 January 2020

Applications Note

http://orcid.org/0000-0002-3664-6722
https://github.com/lykaust15/DeepSimulator
https://github.com/lykaust15/DeepSimulator
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz963#supplementary-data
https://academic.oup.com/


Li et al., 2019), bi-directional long short-term memory (Bi-LSTM),
which can capture both local and context information of the input
sequences, to model the relation between the input sequences and
the corresponding raw signals. Such designs can incorporate the
error profile into the simulated signals and reads implicitly, which
has been proved to benefit the simulation performance greatly (Li
et al., 2018).

Although the first version of DeepSimulator (DS1.0) has been
recognized and used by a number of users (https://github.com/
lykaust15/DeepSimulator) (Yue and Liti, 2019), there is still a large
room for improvement. For example, though the final simulated
reads have almost the same error distribution as the real reads, for
some sequences, the divergence between the simulated raw signals
and the real signals can be large, which can be inconvenient for the
users who care about the signal outputs. In addition, the Nanopore
technology has evolved greatly since DS1.0 was released. It is thus
necessary to update DS significantly to accommodate those changes,
such as the extended reads’ length. Here, we present a substantially
updated version of DS, DeepSimulator1.5 (DS1.5), which is more
powerful, quicker and lighter than DS1.0. In this new version, we
have updated all the three modules substantially. Regarding the se-
quence generator, we updated the sample read length distribution to
reflect the newest real reads’ features. In terms of the signal gener-
ator, which is the core of DS, we added one more pore model, the
context-independent pore model, which is much faster than the pre-
vious context-dependent pore model. Furthermore, to make the gen-
erated signals more similar to the real ones and to make the
simulator flexible enough to simulate signals with variant qualities
reflecting the real-world complex situations, we added a low-pass
filter to post-process the pore model signals. As for the basecaller,
we added the support for the newest state-of-the-art basecaller,
Guppy. Unlike Albacore, Guppy can support both GPU and CPU. In
addition, multiple optimizations, related to multiprocessing control,
memory and storage management, have been implemented to make
DS1.5 a much more amenable and lighter simulator than the origin-
al DS1.0.

2 Workflow and implementation

Here, we summarize the main workflow of DS1.5. The simplified
comparison between DS1.5 and DS1.0 can be found in Figure 1.

2.1 Sequence generator
DS was designed to simulate the entire Nanopore sequencing pro-
cedure, including sequence generator, raw signal generator and
basecaller. Given the target genome sequence, the sequence gener-
ator samples sequences from the genome, which correspond to the

DNA segments that pass through the molecular pore in the real
experiments. Although this module is conceptually simple, we have
included the following updates into DS1.5 to meet the needs of dif-
ferent users. Previously, by default, this module can only sample the
linear genome. Now, we equipped it with the power to sample the
circular genome or generate the reads without sampling.
Furthermore, based on the feedback of the users (https://github.com/
lykaust15/DeepSimulator/issues/13), we have made it easier to con-
trol the number of sampled reads and the coverage. Moreover, al-
though the three read length distributions discussed in Li et al.
(2018) have covered most of the circumstances in Nanopore
sequencing, the overall average read length has become longer since
the release of DS1.0. To accommodate this (https://github.com/
lykaust15/DeepSimulator/issues/21), we have added an option for
the users to specify the desired mean read length with the distribu-
tion still fitting the real case. More detailed discussion about this
module can be referred to Supplementary Section S3.1.

2.2 Signal generator
The sampled sequences will go through the signal generator to output
the simulated signals, whose behavior mimics that of a Nanopore
sequencing device. In the signal generator, we use a deep learning-
based pore model to produce the expected signals at each position of
the input sequences. Then, each signal will be repeated several times
based on the pattern in the real signals to produce the simulated sig-
nals (Supplementary Section Section S3.2). In DS1.0, we stopped at
this step, which can be problematic because the output signals of this
step consist of a series of square waves. To more realistically simulate
the real-world Nanopore raw signals, we need to filter those high-fre-
quency components embedded in the square waves. In DS1.5, we use
a low-pass filter to achieve that, whose details can be found in the
Supplementary Section S3.4. The low-pass filter and the thereafter
Gaussian noise (Supplementary Section S3.5) can be used to control
the quality of the output signals effectively. In addition to the re-
designed signal processing pipeline, we have also updated the pore
model, which is of crucial importance to DS. Previously, we imple-
mented that with a Bi-LSTM model, resulting in a context-dependent
pore model. That model works well under most circumstances.
However, its computational requirements limit its application in
large-scale simulations and metagenomic simulations. To overcome
that limitation, we added a context-independent pore model
(Supplementary Section Section S3.3) into DS1.5, which is based on
the official statistics of 6-mers released by Nanopore Tech. The
context-independent pore model is about 50 times faster than the
context-dependent pore model, with acceptable accuracy comprom-
ise. Such an acceleration can broaden the application of DS1.5 great-
ly. We also preserved the context-dependent pore model and gave the
user the freedom to switch between the two. Overall, DS1.5’s per-
formance regarding simulating raw signals has been improved greatly
from DS1.0. More details, including a continuous wavelet transform-
ation analysis (Han et al., 2018, 2019) on the simulated signals, can
be referred to Supplementary Section S5.

2.3 Basecaller
After obtaining the signals produced by the signal generator, the
next step is to translate the signals into the final reads, which corres-
pond to the final sequence outputs in the real experiment. Although
the users can feed a customized basecaller to DS, based on our ex-
perience, the users tend to use the default basecaller. Previously, the
default basecaller of DS1.0 is Albacore. In London Calling 2019
(LC19), the Nanopore Tech has officially released a more powerful
basecaller, Guppy. To cope with this evolution, we added both the
GPU and CPU versions of Guppy into DS1.5 and made the GPU one
the default basecaller (https://github.com/lykaust15/DeepSimulator/
issues/20). At the same time, we preserved the option to use
Albacore, in case the users need to do so.

2.4 Overall optimization
In addition to the aforementioned core updates, which are mainly
made to improve the simulation quality, we have performed the

Fig. 1. The overall workflow of DeepSimulator as well as the differences between

DS1.5 and DS1.0. In brief, the DeepSimulator framework contains three modules:

sequence generator, signal generator and basecaller. As shown in the last two rows,

DS1.5 is significantly improved from DS1.0, with a greatly enhanced sequence gen-

erator and signal simulator, multiple new components as well as numerous optimi-

zations. More discussions about the improvement of DS1.5 over DS1.0 can be

referred to Section 2, Supplementary Sections S4 and S5

DeepSimulator1.5 2579

https://github.com/lykaust15/DeepSimulator
https://github.com/lykaust15/DeepSimulator
https://github.com/lykaust15/DeepSimulator/issues/13
https://github.com/lykaust15/DeepSimulator/issues/13
https://github.com/lykaust15/DeepSimulator/issues/21
https://github.com/lykaust15/DeepSimulator/issues/21
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz963#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz963#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz963#supplementary-data
https://github.com/lykaust15/DeepSimulator/issues/20
https://github.com/lykaust15/DeepSimulator/issues/20


following updates to improve the user experience. Firstly, we simpli-
fied the installation process: with only one command and no more
configurations, the entire installation can be done. Secondly, we
added threading management so that the users can control the
resources allocated to the simulator. Thirdly, memory and storage
management are optimized. The execution of DS1.5 is much lighter
than that of DS1.0. On the other hand, all the intermediate results
can still be outputted with optional parameters specified, if the users
are interested in investigating them. Fourthly, we have refined the
user interface as well as the overall code structure to make the code
more readable so that the users can extend the tool or develop cus-
tomized tools based on it. In addition, to help the users get used to
DS with minimum efforts, we have provided multiple case studies
with code in Supplementary Section S6 and the code repository of
DS1.5 on Github.

3 Performances

From the user’s perspective, they can find three major improvements
of DS1.5 regarding the performance. First of all, DS1.5 is much
faster than DS1.0. The overall optimization and the context-
independent pore model have sped up for a typical run 50 times
with little simulation quality compromise, which allows the users to
do large-scale read simulations. Secondly, with the help of the low-
pass filter, the simulated signals from the enhanced signal simulator
can mimic the real-world signals much better than those from
DS1.0. Detailed results and comparisons can be found in
Supplementary Section S3. Thirdly, because of the multiple updates
in DS1.5, the profile of the simulated reads from DS1.5 can keep up
with that of the real reads generated from the newest Nanopore
chemistry.

4 Conclusions and discussion

In this work, we reported a new version of the previously published
work on simulating the Nanopore sequencing, DeepSimulator1.5. In
this updated version, we have updated all the three modules of
DeepSimulator significantly with several crucial overall optimiza-
tions, resulting in a more powerful, quicker and lighter simulator.
This major update can remarkably broaden its applications in large-
scale sequencing simulations as well as studies focusing on the
Nanopore signals. In the future, we will further equip
DeepSimulator with the capability to simulate RNA sequencing and
DNA modifications (Liu et al., 2019; Xiao et al., 2018; Ye et al.,
2016).

Acknowledgments

We would like to thank all the users that have discussed with us on Github,

which have definitely improved DeepSimulator greatly, resulting in

DeepSimulator1.5. We want to thank Jia-Xing Yue especially for his con-

structive feedbacks.

Funding

This work was supported by the King Abdullah University of Science and

Technology (KAUST), under award number FCC/1/1976-18-01, FCC/1/

1976-23-01, FCC/1/1976-25-01, FCC/1/1976-26-01, URF/1/3412-01-01,

URF/1/3450-01-01 and FCS/1/4102-02-01.

Conflict of Interest: none declared.

References

Baker,E.A.G. et al. (2016) SiLiCo: a simulator of long read sequencing in

PacBio and Oxford Nanopore. bioRxiv, page 76901, doi: 10.1101/076901.

Han,R. et al. (2018) An accurate and rapid continuous wavelet dynamic time

warping algorithm for end-to-end mapping in ultra-long nanopore sequenc-

ing. Bioinformatics, 34, i722–i731.

Han,R. et al. (2019) Novel algorithms for efficient subsequence searching and

mapping in nanopore raw signals towards targeted sequencing.

Bioinformatics, doi:10.1093/bioinformatics/btz742.

Lam,J.H. et al. (2019) A deep learning framework to predict binding prefer-

ence of RNA constituents on protein surface. Nat. Commun., 10, 1–13.

Li,Y. et al. (2018) DeepSimulator: a deep simulator for nanopore sequencing.

Bioinformatics, 34, 2899–2908.

Li,Y. et al. (2019) Deep learning in bioinformatics: Introduction, application,

and perspective in the big data era. Methods (San Diego, Calif.), 166, 4–21.

Liu,Q. et al. (2019) Detection of DNA base modifications by deep recurrent

neural network on oxford nanopore sequencing data. Nat. Commun., 10,

2449.

Loman,N.J. and Watson,M. (2015) Successful test launch for nanopore

sequencing. Nat. Methods, 12, 303–304.

Mueller,C.A. et al. (2019) Capturing the dynamics of genome

replication on individual ultra-long nanopore sequence reads. Nat.

Methods, 16, 429.

Rohrandt,C. et al. (2018). Nanopore simulation—a raw data simulator for

nanopore sequencing. In: 2018 IEEE International Conference on

Bioinformatics and Biomedicine (BIBM), pp.1–8.

Senol Cali,D. et al. (2019) Nanopore sequencing technology and tools for gen-

ome assembly: computational analysis of the current state, bottlenecks and

future directions. Brief. Bioinform., 20, 1542–1559.

Wang,S. et al. (2018) Wavenano: a signal-level nanopore base-caller via simul-

taneous prediction of nucleotide labels and move labels through

bi-directional wavenets. Quant. Biol., 6, 359–368.

Xiao,C.-L. et al. (2018) N6-methyladenine DNA modification in the human

genome. Mol. Cell, 71, 306–318.

Yang,C. et al. (2017) Nanosim: nanopore sequence read simulator based on

statistical characterization. GigaScience, 6, 1–6.

Ye,P. et al. (2016) MethSMRT: an integrative database for DNA

N6-methyladenine and N4-methylcytosine generated by single-molecular

real-time sequencing. Nucleic Acids Res., 45, D85–D89.

Yue,J.-X. and Liti,G. (2019) simuG: a general-purpose genome simulator.

Bioinformatics, 35, 4442–4444.

2580 Y.Li et al.


