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1  INTRODUCTION

1.1 | Recombinant protein production

At present, operators try to ensure process performance

| Moritz von Stosch?> | Michael Melcher®* | Mark Duerkop’® |

Abstract

In bioprocesses, specific process responses such as the biomass cannot typically be
measured directly on-line, since analytical sampling is associated with unavoidable
time delays. Accessing those responses in real-time is essential for Quality by Design
and process analytical technology concepts. Soft sensors overcome these limitations
by indirectly measuring the variables of interest using a previously derived model
and actual process data in real time. In this study, a biomass soft sensor based on 2D-
fluorescence data and process data, was developed for a comprehensive study with
a 20-L experimental design, for Escherichia coli fed-batch cultivations. A multivari-
ate adaptive regression splines algorithm was applied to 2D-fluorescence spectra and
process data, to estimate the biomass concentration at any time during the process.
Prediction errors of 4.9% (0.99 g/L) for validation and 3.8% (0.69 g/L) for new data
(external validation), were obtained. Using principal component and parallel factor
analyses on the 2D-fluorescence data, two potential chemical compounds were iden-
tified and directly linked to cell metabolism. The same wavelength pairs were also
important predictors for the regression-model performance. Overall, the proposed soft
sensor is a valuable tool for monitoring the process performance on-line, enabling

Quality by Design.

KEYWORDS
bioprocess engineering, chemometric modeling, multivariate adaptive regression spline, process monitor-
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protocol, with deviations leading to post-process investi-
gations. However, process inputs succumb inevitably to
variability, and the quality is examined only at the end of the
process. At this point, it is determined whether the outputs
meet the required standards or whether the batch must be

consistency by operating the process according to a fixed
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technology; PC, principal component; PCA, principal component analysis; QbD, Quality by Design; RMSE, root mean squared error; SGR, specific growth

rate; VIP, importance of the input variables.
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withdrawn [1]. Narrowing the output specifications to guar-
antee higher quality standards results in increasing numbers
of rejected batches. This consequently leads to an enormous
loss of energy, time, money, and goods [2]. Another point
to consider is that the application of fixed process settings
gives rise to variable outputs. This can be troublesome if a
certain biomass is needed for a specific process operation,
for example, induction in Escherichia coli. Thus, it is of great
interest to know the current biomass concentration at any
time during the process.

1.2 | Quality by design and process analytical
technology

Pharmaceutical manufacturing is tightly controlled by the
authorities. The current procedure, namely Quality by Test-
ing, is disadvantageous from an economic aspect and is
associated with long development times. To tackle these
batch-to-batch variations and inconsistencies and to increase
process understanding, the FDA published the process
analytical technology (PAT) guidance for the biopharma-
ceutical industry in 2004. This guidance proposes the use
of risk assessments for the identification of critical process
parameters (CPPs), whose impact on the product’s critical
quality attributes (CQAs) should be studied during process
development [3]. Typically, this is accomplished utilizing
design of experiments (DoE) approaches to analyze the CPPs’
multidimensional impacts on the CQAs. Subsequently, a
monitoring strategy must be defined to ensure that the
process performs as expected and to provide an opportunity
to counteract any input variations that may occur. This allows
for more robust and uniform outputs with respect to quality
assurance and proper risk management [4].

The gathered process knowledge should be used to switch
from a Quality by Testing to a Quality by Design (QbD)
approach [5]. This will lead to a well-understood process to
the extent that the monitored variables and the quality are
guaranteed by the process itself. Although plenty of informa-
tion about QbD and its application is already available, QbD
is still far from being implemented as the new state of the art,
in particular for upstream bioprocess operations [6], due to the
lack of appropriate monitoring tools.

1.3 | Advanced on-line sensor systems
and soft sensors

Progress has been seen regarding on-line monitoring tools
for the PAT concept, not only for microbial but also for
mammalian cell cultures. Many optical sensor systems using
different spectroscopic techniques are currently used in
the industry [7]. For instance, simple in situ microscopic
techniques are already in use [8], as well as more advanced
Raman spectroscopy [9] or infrared spectroscopy [10]
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PRACTICAL APPLICATION

We propose a workflow to establish a soft sensor
with an exceptional generalization capacity and wide
applicability. The presented soft sensor is able to
accurately estimate biomass concentrations on-line.
Therefore, no analytical time delay occurs. This is
of great interest to manufacturers, for monitoring
and controlling their processes. For example, using
this soft sensor, the induction could be always initi-
ated at a defined biomass concentration. Moreover,
the described modeling algorithm lists the predic-
tive importance of all possible model parameters,
enabling process understanding under the QbD con-
cept. Furthermore, the soft sensor performance was
tested by applying it to fermentations with different
parameter settings as used for the design space char-
acterization (up to three altered parameters). Despite
the new fermentation settings, accurate estimations
were obtained, which demonstrates the ability of the
soft sensor to monitor the biomass concentration of
different processes in real time.

techniques. Fluorescence spectroscopy techniques are also
associated with the group of advanced sensors. Fluorescence
spectroscopy is based on determining the specific excitation
and emission wavelengths of a compound in order to identify
it qualitatively and quantitatively, in the range of the measured
2D-fluorescence spectrum [11,12]. This sensor type, together
with other spectroscopic methods, is suitable for on-line
applications, since continuous, non-invasive, and nonde-
structive measurements are possible and no sample needs to
be drawn, thereby eliminating the risk of contamination. In
addition, the determination of various compounds within a
single measurement renders these techniques fast and robust,
as well as cost-efficient. 2D-fluorescence spectroscopy is
very sensitive and allows fluorescing molecules to be moni-
tored inside and outside the cell. This technique has already
been used to monitor microbial cultures and has been shown
to reveal information about the physiological status of the
cells [13].

Changes in the on-line signals, (e.g., fluorescence) can
be used for chemometric modeling, to build so-called soft
sensors for estimating various bioprocess quality attributes
or variables of interest in real time. In particular, multivariate
data analysis (MVDA) is used to investigate the correlations
between on-line and off-line measurements. With the help
of machine learning methods, these on-line signals can be
translated into the corresponding off-line variables [14].
Hence, it is possible to estimate and monitor specific com-
plex variables via unspecific on-line signals in real time and
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moreover, to estimate non-fluorescent substances via their
stoichiometric relationship to fluorescent compounds within
the process [15].

1.4 | Multivariate data analysis and regression
models

Unsupervised methods for exploratory data analysis, for
example, parallel factor analysis (PARAFAC) [16] or princi-
pal component analysis (PCA) [17], are applied to gain deeper
knowledge and to reveal information hidden within the data.
In this way, important chemical compounds can be identi-
fied and further insights into the physiology of the cell can
be obtained. An effective way of extracting information from
process data and building soft sensors exploiting the hard-
ware sensors used is MVDA [18]. These types of soft sensors
are based on data and do not necessarily need further knowl-
edge or mechanistic understanding. Some frequently applied
machine learning methods make use of partial least squares
regression, but non-linear methods such as random forest, arti-
ficial neural networks and support vector machines are also
in use [19]. A powerful approach that takes strong interac-
tions between variables into account and is also able to model
non-linearities, is the multivariate adaptive regression spline
(MARS). Due to its dynamic adaptability in selecting sub-
sets of local variables, this algorithm can be seen as an ideal
candidate for process modeling. The MARS algorithm has
not been used for soft sensor-building in upstream processes
to date. MARS is considered as an extension of linear mod-
els and is well suited to dealing with high dimensional input
data [20].

Data preprocessing should also be taken into considera-
tion before model-building, in order to develop a more robust
model, for example, by using the z-score, that is, autoscal-
ing [21]. This enables more accurate comparability between
different processes by contemplating only the change over
time instead of the quantity of the measured units [22]. The
common way to validate the developed model is to apply the
model to an independent test set, also referred to as an external
validation set, which has not been used for model training.

This work presents a new soft sensor based on 2D-
fluorescence data and other on-line process data. MARS was
used for model-building, due to its simplicity compared to
other algorithms that can deal with a large number of input
variables, multi-collinearity and non-linearity. The soft sensor
performance for on-line monitoring of the biomass is assessed
for the 27 distinct experiments of a complete DoE study,
as well as for two DoE-independent test runs. Exploratory
data analysis was performed to gain insight into the data
and to investigate the fluorescence spectra. The important
wavelengths for biomass sensing and the potential under-
lying chemical compounds accounting for cell metabolism,

were identified and described in detail using PCA and
PARAFAC.

2 | MATERIALS AND METHODS

2.1 | Process conditions

E. coli (HMS174 (DE3)) was cultivated in fed-batch fermen-
tations at a 20-L scale, expressing recombinant human Cu/Zn
superoxide dismutase. All details of the bacterial strain, plas-
mid, cultivation, induction conditions, and on-line and off-
line monitoring, have already been described elsewhere [23,
24]. The impact of three CPPs on the process performance
using DoE, was studied. These were temperature (30, 34, and
37°C), the induction ratio (0.2, 0.5, and 0.9 umol IPTG/g cell
dry mass) and the specific growth rate (SGR) (0.10, 0.15, and
0.20 hours (h)~!). The SGR was held constant by an expo-
nential substrate feed. All corresponding reactor volumes of
the fed-batch fermentations are provided in Supporting Infor-
mation Figure S1. This resulted in a 3-D design space with
27 CPP combinations. This design extends the space investi-
gated in the earlier study.

2.2 | Data set

The data set consisted of 33 fermentations, with 27 experi-
ments from the DoE study, together with two duplicates and
one quintuplicate. Furthermore, two differing CPP settings,
still located in the investigated space, were used as a test
set. All CPP settings within the design space are listed in
Supporting Information Table S1. The biomass (target vari-
able) was measured once prior to the induction and there-
after at hourly intervals, via thermogravimetric analysis. The
five variables available on-line (accumulated feed in grams,
base in grams, inductor in umol, temperature in°C and inlet
air in standard liters per minute), as well as the 120 excita-
tion/emission (ex/em) wavelength pairs measured by a 2D-
fluorescence probe (BioView®, Delta Light & Optics, Den-
mark), were utilized as input data for model-building. The
inlet air and the stirrer speed (not used for model-building),
were used to keep the dissolved oxygen set point at 30%
during the fermentations. The 2D-fluorescence probe mea-
sured the cultivation broth ranging from ex270/em310 up to
ex550/em590, in 20-nm steps.

Exploratory data analysis and soft sensor development
were performed using MATLAB (2016b, MathWorks, USA),
together with the three freely available packages ARES-
Lab [25], N-way [26], and drEEM [27]. A graphical overview
of the complete development process for the soft sensor, from
the data gathering stage to until the final model, is provided
in Supporting Information Figure S2.



BAYER ET AL.

Engineering

2.3 | Data preprocessing

2.3.1 | Standardization of the fluorescence data

To take the change in the measured spectra into account,
rather than the absolute quantity, the 120 ex/em pairs were
standardized along the time domain. This was done for each
observation prior to modeling using the MATLAB function
zscore.

2.3.2 | Time alignment

The on-line data set used for training (values available every
3 min), consisted of 125 variables and 11126 observations and
was time-aligned to the respective sampling points of the sin-
gle target variable (values available every hour), consisting of
690 observations (12 to 25 per fermentation).

2.4 | Exploratory data analysis of the
fluorescence data using PCA and PARAFAC

PCA and PARAFAC, as described by Bro [28], were used
on the complete fluorescence data set to gain more specific
insights into the data and the underlying structures. First,
a PCA was performed on the fluorescence data, to unveil
the latent structures that explain most of the variance in the
data. To determine the location of the underlying fluorescent
compounds in the spectrum, PARAFAC was also applied.
PARAFAC, unlike PCA, decomposes the fluorescence matri-
ces not only into scores and loadings but also into a third
dimension, resulting in three different modes. In the case of
the fluorescence data, the first mode represents the sample and
is directly proportional to its concentration. The second mode
represents the excitation and the third mode represents the
emission wavelength of the respective analyte. By joining the
second and third modes, the location of the respective factor in
the 2D-fluorescence spectrum is displayed. Thus, PARAFAC
overcomes the rotational freedom of PCA, making it a better
choice for the analysis of fluorescence spectra.

2.5 | Model development

For model training, all fermentations were used. In total,
three different models were developed: one using the five
available on-line process variables mentioned above, one
with only the fluorescence data, and one with both types of
data merged. The best input to the model with respect to
accurate biomass estimation for internal validation, was used
as the final model. The established single-response models
were based on the MARS algorithm. This algorithm is well
suited to regression modeling of high-dimensional data. It is
flexible and based on the expansion of spline basis functions
as described by [29]. The model-building comprises two
phases, the forward selection followed by the backward
deletion of input variables. Detailed information about the

29
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MARS algorithm, the workflow for building the MARS
model, the basic functions included in the final model and
exemplary trajectories of the used inputs, are provided in the
Supporting Information Figure S3.

2.5.1 | Relative input variable importance

The importance of the input variables (VIP) was assessed for
subsequent use. The VIP is defined by the square root of the
generalized cross-validation of the MARS model excluding
that variable (still including all basis functions), minus the
square root of the corresponding full MARS model’s gener-
alized cross-validation. For ease of interpretation, all relative
VIPs were scaled in such a way that the most important vari-
able possessed a value of 100.

2.5.2 | Model performance criteria

To guarantee that the developed models possess optimal gen-
eralization capabilities, various performance criteria were
considered. To validate the models, the root mean squared
error (RMSE) (Eq. (1)) and the percentage model error
(Eq. (2)) were computed, together with the number of obser-
vations (), the respective value of the biomass concentration
(v),the index (i = 1:N) and its estimated counterpart ().

1 A 32
RMSE = \/ﬁ « 2 (v = 0) (D

Yo = Yo

Error [%] = 100 * Z g 2)
N Ya)

The SD in Eq. (3) was calculated using the measured value

(), the mean value (y,,.,,) and the number of observations

(N) for each time point (¢).

1 2
S D) = \/ﬁ D (ym - ymean(z)) )

The confidence band is provided by calculating the upper
and lower 95% confidence interval (CI) in Eq. (4) for each
value (y) and the respective SD for each time point (¢).

95% C Iy =y, =196 x SD, )

2.5.3 | Model validation

Two internal validations were performed. The five-fold cross-
validation (5x-CV) in which a random 20% of the data
were not considered for the model-building, was used to
test the performance. This procedure was repeated four more
times until every observation was used for model validation.
The second validation used the leave-one-batch-out cross-
validation (LoBo-CV) method. For the LoBo-CV, there was
always a complete fermentation that was not considered for
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FIGURE 1 Experimental biomass results of the investigated design space. (A) DoE for the three factors (red), and test fermentations (green).
(B-D): Biomass trends as a function of the SGR for slow (B), medium (C) and fast (D) growth. The induction ratios are presented with different
symbols, that is, 0.2 (dot), 0.5 (square), and 0.9 (triangle), while the varying temperatures are displayed in different colors (30°C in blue, 34°C in

green, and 37°C in orange)

training, and the model, which was built on all the other
fermentations was validated on this particular fermentation.
Again, this procedure was repeated until each fermentation
had been used once as a validation set. The performance of the
three established models regarding the internal validation was
used as the quality criterion for choosing the best input for the
final model. The final model was applied to a test set (external
validation) to investigate how it performed on new data. The
external validation consisted of the two different fermentation
settings, as described previously, which had not been used for
validation.

3 | RESULTS

3.1 | Experimental biomass results

Biomass trends of the 27 characterized DoE points
(Figure 1A) are presented, separated into the three SGRs
(n = 0.10, p = 0.15, and p = 0.20) (Figure 1B-D). The
biomass concentration trajectory shows the variation as a
function of each CPP combination, providing an insight into
the challenge presented to the soft sensor. The respective
time points of induction (after one doubling time) and the
feed stop (after four doubling times in total), are given.

A distinctive tendency towards higher biomass concentra-
tions is visibly associated with lower induction and lower

temperature settings, which were uniform for all SGR set-
tings. For u = 0.10, the maximum difference between the set-
tings is 15.5 g/L (Figure 1B, ranging from 17.7 to 33.2 g/L).
An increase in temperature or induction subsequently causes
lower biomass concentrations over the whole fermentation.
This effect is diminished by increasing the SGR. For u=0.15,
the maximum difference is 12.7 g/L (Figure 1C, 21.6 to
34.3 g/L) and for p = 0.20 it is only 10.5 g/L (Figure 1D,
24 to 34.5 g/L)). The CPP combinations for the test set were
also located in regions where high impacts on the biomass are
reported. Therefore, it can be assumed that they will be quite
challenging for the soft sensor to estimate, producing a suit-
able quality criterion for external validation.

3.2 | Exploratory data analysis of the
2D-fluorescence spectra

To gain deeper process understanding, unsupervised learn-
ing was performed, and the measured data derived from the
advanced on-line probe were inspected. A PCA of the 2D-
fluorescence data set revealed that three to four principal com-
ponents (PC) describe almost all of the variance in the data.
These are PC 1 (58.1%), PC 2 (30.8%), PC 3 (5.8%), and
PC 4 (3.4%), as shown in Figure 2A. To determine the ex/em
pairs that are accountable for the changes in the spectrum,
PARAFAC was performed on the fluorescence data. Two
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2D-fluorescence matrix. The fluorescence-free area and the color scale representing the intensity from dark blue (lowest value) to red (highest value),
are shown. (C) Scatter plot of the scores for PC 1 versus PC 2 for all CPP combinations carried out at an induction ratio of 0.9. The direction (black

arrow) and the different CPP settings (color scale) are indicated

main factors were identified in the 2D-fluorescence spectrum,
as shown in Figure 2B, namely, ex450/em530 (factor 1) and
ex370/em470 (factor 2). These factors correspond to under-
lying fluorescent chemical compounds inside the cell and the
broth, which provide additional insight for soft sensor build-
ing. In the previous findings, it was shown that processes pos-
sess the highest variance with respect to biomass trends and
endpoint values at an induction ratio of 0.9 (Figure 1). Thus,
the PCA scores (PC 1 versus PC 2) for the nine CPP combina-
tions carried out at this ratio are presented in Figure 2C. The
different shapes represent different progressions in the fluo-
rescence spectra, caused by the respective CPP combinations.
For PC 1, no major difference was found between the fermen-
tations. All scores followed the same course, while the second
PC displayed two score groups with contrary trends. All set-
tings at u = 0.10 displayed unique trajectories (black, orange
and turquoise). The courses of the red (30°C and p = 0.15)
and green (30°C and p = 0.20) trajectories follow the shape
of the turquoise one to some extent, but not markedly. It is
not surprising that the scores of the blue (34°C and p = 0.15)
and brown (37°C and p = 0.20) CPP settings are almost iden-
tical, since their biomass trends and endpoints (endpoints at
25.2 and 24.0 g/L) are also very similar. Shapes also matching
these two are observed for the pink (34°C and p = 0.20) and

grey (37°C and p = 0.15) scores. Due to comparable process
behaviors with respect to the biomass trajectory, similar PCA
trends are indicated and their locations in the score plot con-
firmed these findings. The pink trend (endpoint at 29.3 g/L)
is located above the identical blue and brown trends, while
the grey trend (endpoint at 21.6 g/L) is below them. This also
reflects the biomass concentrations. It can be concluded that
different CPP settings lead to varying 2D-fluorescence spec-
tra. By decomposing and investigating these spectra, conclu-
sions about their progress can be made. All these findings
strongly suggest that valuable process information is present
in the 2D-fluorescence data.

3.3 | Comparison of the input variables for soft
sensor development

Subsequently, after the exploratory data analysis of the on-
line data, the optimal data set for model-building was tested
using three different types of input. The performances of soft
sensors using only process data, using only 2D-fluorescence
data and using merged input data (both types) were consid-
ered. For the decision-making, the best performance with
LoBo-CV (internal validation) was investigated and presented
(Figure 3). Four fermentations from the investigated space
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TABLE 1 Performance results of the developed models with respect to R* and RMSE (both rounded to two decimal places), indicated as
concentrations, and the percentage error (rounded to one decimal place), are presented. The different inputs for building the model are indicated. The
results for the external validation (test sets #1 and #2) are only given for the final model (using merged data)

R2
Process data/
fluorescence/merged

Training 0.97/0.99/0.99

5x-CV 0.97/0.97 /0.99

LoBo-CV 0.96/0.92/0.98

Test #1 -/-10.66

Test #2 -/-70.98

and the respective model performances are shown. To allow
for meaningful comparison and statements, different biomass
trends are presented. Two fermentations with consistently
increasing concentrations (Figure 3A and B), one reaching a
plateau (Figure 3C) and one with a decreasing concentration
(Figure 3D), were chosen. The performance criteria (R?,
RMSE, and the percentage error) for the three established
models, are provided in Table 1. The estimation of the soft
sensor using solely process data (grey) always, without excep-
tion, underestimates or overestimates the measured values,
with an RMSE of 1.42 g/L (7%). Using 2D-fluorescence data
(orange) as input to the model led to visually more reliable
models, even though the RMSE was higher, reaching 2.04 g/L
(10.0%). This occurs due to peaks and fluctuations in the

RMSE (g/L) Error (%)

Process data/ Process data/
fluorescence/merged fluorescence/merged
1.15/0.74 /1 0.45 57137722
1.28/1.20/0.58 6.3/59/29
1.42/2.04/0.99 7.0/10.0/4.9
-/-12.62 -/-/13.8

-/-10.69 -/-13.8

estimations, which are not observed for the model developed
using the process data. Only the established soft sensor using
both kinds of data (blue) can accurately estimate every trend,
resulting in an RMSE of 0.99 g/L. (4.9%). This demonstrates
that both data sets possess relevant and complementary infor-
mation for building a robust model and further highlights the
importance and advantage of this advanced sensor type.

3.4 | Soft sensor performance of the final
model

Based on the results shown in Figure 3, the soft sensor devel-
oped using the merged data set was chosen as the final model.
To evaluate the quality of the established soft sensor, its
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FIGURE 4 Performance of the final model on the external validation data set. (A-B) The biomass trends for the first (A) and the second (B)
test set + SD including the 95% CI and the estimation from the developed soft sensor, are presented. (C) Scatter plot of the model performances on
the 5x-CV (red dots), the LoBo-CV (blue squares) and the two test fermentations (yellow and green dots), are shown. (D) The VIP of the process
(grey) and 2D-fluorescence data (orange) derived from the MARS algorithm

performance on the test set, consisting of two fermentations
with (partly) different CPP settings, was considered, that is,
external validation was performed. The model’s estimation
of biomass concentration for the test fermentation, which was
executed using three different CPP settings, shows an over-
estimation after the first half of the process (Figure 4A) with
respect to the off-line measured concentrations. Although the
general shape of the trajectory is reproduced, the endpoint
is still overestimated at 27 g/L, rather than the analytically
measured 24.7 g/L. The estimation of the process with only
one different CPP is able to follow the off-line trend and
results in a more satisfying endpoint value of 22.7 g/L, rather
than 20.9 g/L (Figure 4B). The higher deviation from the
measured values for the first test process is also visible in the
scatter plot (Figure 4C), while the results for the second pro-
cess are located within the error magnitude of the two internal
cross-validations. Since the training error is negligibly small,
at 0.45 g/l (2.2%), these results are not displayed in the
scatter plot, for greater clarity. The remaining variance in the
test sets might result from a factor that is not considered in the
model input or from a function of included factors interpreted
in an insufficient way by the model. To evaluate which
input variables are important for the estimation, the VIP was
determined for the five process parameters as well as for the
120 ex/em pairs. As shown in Figure 4D, only a few inputs
are important for building the model. These were therefore

retained in the backward deletion phase of model-building
and included in the algorithm. The list of all variables with
VIP scores above zero, in descending order, is presented in
Supporting Information Table S2. The highest importance
for the process parameters was given to the accumulated feed
(scoring the maximum value of 100) and the accumulated
inductor (scoring 2.8). For the 2D-fluorescence data, only
19 of the 120 available variables were taken into account in
model-building. The chosen variables are mostly collinear,
due to the fact that they are neighbors (ex/em + 20 nm). These
collinear ex/em pairs do not carry extra information but are
still included in the model for noise reduction and enhanced
robustness. This finally results in only two important ex/em
pairs, namely, ex450/em530 (scoring 2.9) and ex370/em470
(scoring 4). These are identical to the two ex/em pairs deter-
mined via PARAFAC. The final model performance with
respect to the RMSE of the 5x-CV is fairly small, at 0.58 g/L
(2.9%), and the LoBo-CV also displays good accuracy with
an RMSE of 0.99 g/L (4.9%). The results for the external val-
idation show an RMSE score of 2.62 g/L (13.8%) with three
altered CPPs and 0.69 g/L (3.8%) with one altered CPP, high-
lighting the estimation qualities of the established soft sensor.
This is in good accordance with the off-line measurement
used as the reference, where an SD of 3.41% was observed.
The performance of the final model on the test set is presented
in Table 1.
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4 | DISCUSSION

The impact of the CPP settings on the biomass is shown in
Figure 1. The different concentrations and endpoints result
from diverse metabolic burdens, for example, recombinant
protein production, stressing the cells. With slow SGR set-
tings, more resources are available for protein synthesis.
When the SGR increases, cells focus more on their own
growth and neglect protein production. As a result, fewer
product is present and stress levels are lower. This results in
higher biomass concentrations, even though the other CPP
settings, except the SGR, stay the same. The product for-
mation, metabolism and cellular stress levels also increase
with higher temperature settings, again leading to decreased
biomass values. The maximum impact is seen when consid-
ering the opposing corners of the investigated design space,
resulting in more than 50% difference, at 16.3 and 34.5 g/L.

The insights into the fluorescence data via PCA and
PARAFAC (Figure 2) strongly support the assumption that,
in fact, it is possible to monitor intracellular fluorescent sub-
strates, especially the ex/em wavelengths of the two chem-
ical compounds identified via PARAFAC are similar to
those from flavins (riboflavin, flavin mononucleotide and
flavin adenine dinucleotide) for factor 1 [30] and nicoti-
namide adenine dinucleotide phosphate for factor 2 [31].
These molecules are directly linked to cell physiology and
important metabolic pathways. Flavins are overproduced dur-
ing exponential growth and act as electron carriers [32]. Simi-
larly, nicotinamide adenine dinucleotide phosphate is a major
component of the electron transfer chain [33]. It is conceiv-
able that different DoE settings result in diverse concentra-
tions and consumption rates. Since metabolic activities are
temperature-dependent, it is indicated that these changes and
deviations in cell physiology caused by different CPP combi-
nations are measured by the 2D-fluorescence probe. This is
also hinted at by the two observable score groups of PC 2.
They are caused by two different observed ex/em wavelength
clusters in the loadings of PC 2. One group contained a clus-
ter with wavelengths ex450/em510-550 and the second group
contained a cluster with wavelengths ex510-530/em550-590.
These show different trends over the fermentation and cause
the opposing trend in the PCA score plot. However, more
investigation into the cell is required in the future, for exam-
ple, taking cell lysis into account or deliberately provoking
metabolic shifts and measuring the response in the fluores-
cence spectra.

In addition, the added value and advantage of using a 2D-
fluorescence probe for on-line biomass estimation is demon-
strated across CPP settings, and also for fermentations with
altered CPP settings. With the process data alone, only dis-
crete and accumulating/rising values are introduced into the
model. Thus, fermentations with steady or decreasing con-
centrations are especially difficult to estimate, as previously

shown (Figure 3). Using 2D-fluorescence in addition allowed
the cell physiology and metabolism to be examined and the
potential underlying chemical compounds to be identified.

The test fermentation with three altered process settings
(Figure 4A) led to completely new metabolic patterns for
which the MARS model was not trained, and therefore
resulted in a high residual value. To overcome these bound-
aries, other CPP levels could be considered and additional
sensors could be utilized. However, these approaches would
need to be accompanied by several additional experiments.
To avoid this time-consuming step most simply, a mechanis-
tic part (white box) can be taken into account to describe this
missing term. This exploitation of both model advantages is
called hybrid modeling, and has already been reported else-
where [34]. Potentially, with this added value, more challeng-
ing processes can also be monitored on-line in the future,
such as the so-called intensified DoE. Hence, through intra-
experimental set-point changes, the dynamics of the specified
design space can be captured [35].

MARS proved to be a suitable algorithm for soft sensor
development (Figure 4). Its characteristics, for example, its
ability to handle nonlinearity and multicollinearity, make it
an ideal candidate for working with this complex input data
and creating meaningful models. Its VIP also determined the
importance of two particular ex/em pairs for accurate biomass
estimation. Moreover, these were identical to the factors iden-
tified by PARAFAC. As discussed above, these wavelengths
probably represent chemical compounds that are representa-
tive of the current biomass state. It is comprehensible that
the highest VIP for biomass estimation is possessed by the
amount of added feed medium (controlling the SGR). How-
ever, the two ex/em variables seem to be responsible for
fine-tuning the precise biomass estimation by the soft sen-
sor, taking the various metabolic burdens into account. This
enables precise on-line monitoring of the biomass with real-
time availability of the current value, which can be exploited
in the QbD concept. All these findings demonstrate that the
established soft sensor is a valuable PAT tool.

The study did not contain experiments using animals or
human subjects.

ACKNOWLEDGMENT

We would like to thank the Austrian Research Promotion
Agency (FFG) for their support (Research Studio Austria,
859219).

CONFLICT OF INTEREST

The authors have declared no conflict of interest.

ORCID

Benjamin Bayer (1) https://orcid.org/0000-0001-5241-4924


https://orcid.org/0000-0001-5241-4924
https://orcid.org/0000-0001-5241-4924

BAYER ET AL.

Engineering

| s

REFERENCES

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Rosano, G. L. and Ceccarelli, E. A., Recombinant protein expres-
sion in Escherichia coli: Advances and challenges. Front. Microbiol.
2014, 5, 1-17.

. Gnoth, S., Jenzsch, M., Simutis, R. and Liibbert, A., Control of culti-

vation processes for recombinant protein production: A review. Bio-
process Biosyst. Eng. 2008, 31, 21-39.

. FDA, Guidance for industry. PAT — A framework for innova-

tive pharmaceutical development, manufacturing, and quality assur-
ance. 2004.

. Rantanen, J. and Khinast, J., The future of pharmaceutical manu-

facturing sciences. J. Pharm. Sci. 2015, 104, 3612-3638.

. Patil, A. S. and Pethe, A. M., Quality by design (QbD): A new

concept for development of quality pharmaceuticals. Int. J. Pharm.
Qual. Assur. 2013, 4, 13-19.

. Zhang, L. and Mao, S., Application of quality by design in the cur-

rent drug development. Asian J. Pharm. Sci. 2017, 12, 1-8.

. Glassey, J., Gernaey, K. V., Clemens, C., Schulz, T. W., et al., Pro-

cess analytical technology (PAT) for biopharmaceuticals. Biotech-
nol. J. 2011, 6, 369-377.

. Joeris, K., Frerichs, J.-G., Konstantinov, K. and Scheper, T., In-situ

microscopy: Online process monitoring of mammalian cell cultures.
Cytotechnology 2002, 38, 129-134.

. Lee, H. L. T., Boccazzi, P., Gorret, N., Ram, R. J. and Sinskey, A. J.,

In situ bioprocess monitoring of Escherichia coli bioreactions using
Raman spectroscopy. Vib. Spectrosc. 2004, 35, 131-137.

Cervera, A. E., Petersen, N., Lantz, A. E., Larsen, A. and Gernaey,
K. V., Application of near-infrared spectroscopy for monitoring and
control of cell culture and fermentation. Biotechnol. Prog. 2009, 25,
1561-1581.

Faassen, S. M. and Hitzmann, B., Fluorescence spectroscopy
and chemometric modeling for bioprocess monitoring. Sensors
(Switzerland) 2015, 15, 10271-10291.

Assawajaruwan, S., Eckard, P. and Hitzmann, B., On-line monitor-
ing of relevant fl uorophores of yeast cultivations due to glucose
addition during the diauxic growth. Process Biochem. 2017, 58, 51—
59.

Teixeira, A. P., Oliveira, R., Alves, P. M. and Carrondo, M. J. T.,
Advances in on-line monitoring and control of mammalian cell
cultures: Supporting the PAT initiative. Biotechnol. Adv. 2009, 27,
726-732.

Mandenius, C. F. and Gustavsson, R., Mini-review: Soft sensors
as means for PAT in the manufacture of bio-therapeutics. J. Chem.
Technol. Biotechnol. 2015, 90, 215-2217.

Skibsted, E., Lindemann, C., Roca, C. and Olsson, L., On-line bio-
process monitoring with a multi-wavelength fluorescence sensor
using multivariate calibration. J. Biotechnol. 2001, 88, 47-57.
Harshman R. A. and Lundy, M. E., PARAFAC: Parallel factor anal-
ysis. Comput. Stat. Data Anal. 1994, 18, 39-72.

Shlens, J., A tutorial on principal component analysis. Internet
Artic. 2005, 1-13.

Mercier, S. M., Diepenbroek, B., Dalm, M. C. F., Wijffels, R. H.
and Streefland, M., Multivariate data analysis as a PAT tool for early
bioprocess development data. J. Biotechnol. 2013, 167, 262-270.
Kadlec, P., Gabrys, B. and Strandt, S., Data-driven soft sensors in
the process industry. Comput. Chem. Eng. 2009, 33, 795-814.
Friedman, J., Multivariate adaptive regression splines. Ann. Stat.
1991, 2, 1152-1174.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

in Life Sciences

Curtis, A., Smith, T., Ziganshin, B. and Elefteriades, J., The mystery
of the Z-score. Aorta 2016, 4, 124-130.

Rathore, A. S., Mittal, S., Pathak, M. and Mahalingam, V., Chemo-
metrics application in biotech processes: Assessing comparability
across processes and scales. J. Chem. Technol. Biotechnol. 2014,
89, 1311-1316.

Melcher, M., Scharl, T., Spangl, B., Luchner, M. et al., The poten-
tial of random forest and neural networks for biomass and recombi-
nant protein modeling in Escherichia coli fed-batch fermentations.
Biotechnol. J. 2015, 10, 1770-1782.

Luchner, M., Striedner, G., Cserjan-Puschmann, M., Strobl, F. and
Bayer, K., Online prediction of product titer and solubility of recom-
binant proteins in Escherichia coli fed-batch cultivations. J. Chem.
Technol. Biotechnol. 2015, 90, 283-290.

Jekabsons, G., Adaptive regression splines toolbox for MAT-
LAB/octave. 2016, 1-33.

Andersson, C. A. and Bro, R., The N-way toolbox for MATLAB.
Chemom. Intell. Lab. Syst. 2000, 52, 1-4.

Murphy, K. R., Stedmon, C. A., Graeber, D. and Bro, R., Fluo-
rescence spectroscopy and multi-way techniques. PARAFAC. Anal.
Meth. 2013, 5, 6557.

Bro, R., PARAFAC. Tutorial and applications. Chemom. Intell. Lab.
Syst. 1997, 38, 149-171.

Friedman, J. H. and Roosen, C. B., An introduction to multivari-
ate adaptive regression splines. Stat. Meth. Med. Res. 1995, 4, 197—
217.

Mukherjee, A., Walker, J., Weyant, K. B. and Schroeder, C. M.,
Characterization of flavin-based fluorescent proteins: An emerging
class of fluorescent reporters. PLoS One 2013, 8, 1-15.

Li, J.-K. and Humphrey, A. E., Use of fluorometry for monitoring
and control of a bioreactor. Biotechnol. Bioeng. 1991, 37, 1043—
1049.

McAnulty, M. J. and Wood, T. K., Yeeo from Escherichia coli
exports flavins. Bioeng. Bugs 2014, 5, 386-392.

Mclver, L., Leadbeater, C., Campopiano, D. J., Baxter, R. L. et al.,
Characterisation of flavodoxin NADP+oxidoreductase and flavo-
doxin; key components of electron transfer in Escherichia coli. Eur.
J. Biochem. 1998, 257, 577-585.

Von Stosch, M., Oliveira, R., Peres, J. and Feyo de Azevedo, S.,
Hybrid semi-parametric modeling in process systems engineering:
Past, present and future. Comput. Chem. Eng. 2014, 60, 86—101.
Von Stosch, M. and Willis, M. J., Intensified design of experiments
for upstream bioreactors. Eng. Life Sci. 2016, 1-9.

SUPPORTING INFORMATION

Additional supporting information may be found online in the
Supporting Information section at the end of the article.

How to cite this article: Bayer B, von Stosch M,
Melcher M, Duerkop M, Striedner G. Soft sensor based
on 2D-fluorescence and process data enabling real-
time estimation of biomass in Escherichia coli culti-
vations. Eng Life Sci. 2020;20:26-35. https://doi.org/
10.1002/elsc.201900076



https://doi.org/10.1002/elsc.201900076
https://doi.org/10.1002/elsc.201900076

