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Abstract

Background: The objectives of the present study were to evaluate the performance of a time-to-event data
reconstruction method, to assess the bias and efficiency of unanchored matching-adjusted indirect comparison
(MAIC) methods for the analysis of time-to-event outcomes, and to propose an approach to adjust the bias of
unanchored MAIC when omitted confounders across trials may exist.

Methods: To evaluate the methods using a Monte Carlo approach, a thousand repetitions of simulated data sets
were generated for two single-arm trials. In each repetition, researchers were assumed to have access to individual-
level patient data (IPD) for one of the trials and the published Kaplan-Meier curve of another. First, we compared
the raw data and the reconstructed IPD using Cox regressions to determine the performance of the data
reconstruction method. Then, we evaluated alternative unanchored MAIC strategies with varying completeness of
covariates for matching in terms of bias, efficiency, and confidence interval coverage. Finally, we proposed a bias
factor-adjusted approach to gauge the true effects when unanchored MAIC estimates might be biased due to
omitted variables.

Results: Reconstructed data sufficiently represented raw data in the sense that the difference between the raw and
reconstructed data was not statistically significant over the one thousand repetitions. Also, the bias of unanchored
MAIC estimates ranged from minimal to substantial as the set of covariates became less complete. More, the
confidence interval estimates of unanchored MAIC were suboptimal even using the complete set of covariates.
Finally, the bias factor-adjusted method we proposed substantially reduced omitted variable bias.

Conclusions: Unanchored MAIC should be used to analyze time-to-event outcomes with caution. The bias factor
may be used to gauge the true treatment effect.
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Introduction

Comparative effectiveness evidence is essential for clinical
decision and formulary policy making, heath technology as-
sessments, and economic evaluations. When direct com-
parisons and network meta-analyses (NMA) are infeasible,
population-adjusted indirect comparison methods may be
used for evidence syntheses of comparative effectiveness
[1]. Such methods include matching-adjusted indirect com-
parison (MAIC), simulated treatment comparisons (STC),
and multi-level network meta regression (MLNMR) [1, 2],
among which MAIC is relatively popular [1, 3]. The process
of conducting an MAIC has been described extensively in a
number of previous studies [3—5]. At its core, the MAIC
method utilizes the individual-level patient data (IPD) from
the trial of an intervention (usually a manufacturer’s own
product) and the published aggregate data from the trial of
a comparator intervention, and re-weights the patients with
IPD such that their characteristics are balanced with those
of the patients from the aggregate data of the comparator’s
trial [3]. The weights can be obtained using propensity
scores estimated with method of moments or entropy bal-
ancing, either of which is calculated using the observed
characteristics that need to be balanced [3, 5]. The outcome
of the patients with IPD calculated with re-weighting is
then compared with that of the published aggregate data to
obtain the relative effect [3].

MAIC has received increasing popularity in the
evidence-based medicine community and health tech-
nology assessment agencies [1, 6, 7]. It has been mostly
implemented in an anchored approach in which a com-
mon comparator, such as the placebo group, is available
across trials [6]. The relative effect in the analyses of
time-to-event outcomes or survival analyses in anchored
MAIC, usually quantified as hazard ratio (HR), is calcu-
lated by taking the ratio of HRs from different trials or
the difference of logHRs [8]. Because of the common
comparator, anchored MAIC estimates are theoretically
not biased by the existence of unbalanced prognostic
variables that are not effect modifiers [6]. In the less fre-
quently used unanchored MAIC approach, a common
comparator is not available and the outcomes from the
re-weighted IPD and the published aggregate data must
be compared directly. Hence, a key difference of un-
anchored MAIC from anchored MAIC is that the former
compares outcomes across trials whereas the latter con-
ceptually compares treatment effect across trials. How-
ever, at least two additional complexities arise in the
unanchored analyses of time-to-event outcomes that
may potentially nullify the properties of anchored MAIC.
First, unbalanced prognostic variables can themselves
contribute to the outcome and may become confounders
without adjustment. Realizing such potential drawbacks,
Phillipo et al. recommended that unanchored MAIC was
not always advisable [1]. Second, HRs are estimated
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using regression techniques such as Cox regression that
requires the IPD of the published study instead of the
published aggregate data, which distinguished itself from
unanchored MAIC for linear-scale outcomes in which
the aggregate outcomes were compared after reweight-
ing. Such data is typically not available to researchers
and is obtained through reconstruction of digitized
Kaplan-Meier (K-M) curves [9, 10]. For ease of distinc-
tion, we refer to the reconstructed IPD using digitized
K-M curves as RIKM hereinafter.

Previous discussion of and studies on the properties of
MAIC have focused on anchored analyses of linear-scale
outcomes [3-6]. The properties of unanchored MAIC in
the context of time-to-event analysis have not been inves-
tigated so far yet the literature is gradually picking up the
approach without appreciating the unique profiles of this
estimator [11-13]. This represents a major methodo-
logical gap that needs to be filled. Specifically, single-arm
trials accounted for 50% of all US Food and Drug Admin-
istration (USFDA) accelerated hematology and oncology
approvals in 2015, which continued to surge to 80% in
2018 [14]. In light of this, it is expected that more com-
parative effectiveness studies and economic evaluations
have to utilize unanchored MAIC on time-to-event out-
comes at the absence of common comparators. However,
due to the two aforementioned complexities, several ques-
tions that are related to the properties of unanchored
MAIC on time-to-event outcomes remain to be answered.
First, does RIKM represent the original survival data well
enough? This is the premise that unanchored MAIC based
on RIKM can be used for indirect comparison. Although
this has been partially addressed when the data recon-
struction method was originally proposed, the validation
of data reproducibility was only conducted by comparing
the summary measures of survival data underlying one
single graph to the summary measures of the recon-
structed version of the same graph [9]. Surprisingly, there
has been an absence of attempt to validate the reconstruc-
tion method using simulation, which was likely due to the
requirement of labor-intensive manual operation. Specific-
ally, such a simulation analysis involves digitizing the
curve of each repetition that mandates manually defining
the coordinates, identifying the curve, and exporting the
data. This process is unlike typical simulation studies that
can be fully automated with programming. Hence, a
simulation-based evaluation of the performance of the re-
construction approach is needed to verify its utility. Sec-
ond, what are the properties of unanchored MAIC on
time-to-event outcomes with respect to bias and efficiency
in different scenarios? For example, is it unbiased if all
prognostic variables are captured in the creation of weight
as in the case of linear outcomes regardless of fundamen-
tally different statistical processes? Also, is it unbiased if
prognostic factors and effect modifiers are unbalanced
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across trials? A simulation study may be effective to reveal
its performance in such scenarios. Third, is there a statistical
approach to estimate the boundary of the true effect if un-
anchored MAIC estimates are indeed biased by unbalanced
and unobserved covariates? We examined if the concept of
bias factor that is borrowed from observational cohort studies
can be used for this purpose. To answer such questions, we
conducted a simulation study to investigate the properties of
unanchored MAIC on time-to-event outcomes in different
scenarios. The results can shed light on the above-mentioned
issues and help to guide the appropriate use of the un-
anchored MAIC on time-to-event outcomes.

Methods

Simulated data
Two scenarios were simulated to investigate the proper-
ties of unanchored MAIC on time-to-event outcomes.
Under each scenario, hypothetical data of breast cancer
patients were simulated for two single-arm trials. For
simplicity, the interventions in the trials were called
treatment A and B, respectively. It was assumed that re-
searchers had access to the IPD of treatment A but not
to that of comparator B. The purpose of unanchored
MAIC was, therefore, to compare the effectiveness of B
versus A. The outcome in the trials was recurrence-free
survival time (RFS), which was defined as the time from
the start of the intervention to the earlier of all-cause
death and disease In both

recurrence. scenarios,

Table 1 Parameters used in the simulation of the A and B arms
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unbalanced covariates across trials were simulated by de-
sign. In the present study, an effect modifier was defined
as a variable that interacted with the intervention in the
data generation of time to event and a prognostic factor
was a variable that itself loaded on time to event. In the
first scenario, effect modifiers of treatments were not in-
cluded. The same set of prognostic factors were simu-
lated for each arm (or trial), which were age, an
indicator variable for menopausal status (postmeno-
pausal vs. not), and indicator variables for tumor grades
(1, 2, and 3). The B arm data also contained an indicator
of treatment B. The estimated effect of B in relation to
A using unanchored MAIC was captured by the HR as-
sociated with this indicator. The prognostic factors of
the A arm were set so such that the patients in the A
arm were in less severe conditions than the B arm. In
other words, the A arm had lower average values of the
prognostic factors that were negatively associated with
RES. Age was a continuous variable and was simulated
using normal distributions truncated at the lower and
upper bounds, while the other prognostic factors were
indicators simulated using Bernoulli distributions. The
specifications of the distributions used for the prognostic
factors of the two arms are listed in Table 1. The sample
sizes of the A and B arms were arbitrarily set at 1000
and 800, respectively.

The RFS were simulated using Weibull distributions.
The shape and scale parameters of the Weibull

A arm B arm
Sample size 1000 800
Mean age 53 56
Standard deviation of age 11 12
Range of age [21, 80] [23, 85]
Menopausal status (% post-menopausal) 40 50
tumor grade =1 (%) 20 10
tumor grade =2 (%) 65 70
tumor grade =3 (%) 15 20
Distribution Weibull Weibull
Scale parameter 0.00000004  0.00000004
Shape parameter 2.2 2.2
Coefficients of variables (logHR)
Age (yearly increment) 0.02 0.02
Menopausal status 05 0.5
Indicator variable for tumor grade =2 03 03
Indicator variable for tumor grade =3 0.6 0.6
B indicator NA —0.5 (in the scenario without effect modifier) / -04 (in the scenario with effect modifier)

B indicator X menopausal status interaction ~ NA

Maximum follow-up time (days) 2500 2500

—0.2 (only applicable to the scenario with effect modifier)

Abbreviation: HR Hazard ratio; NA Not applicable
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distribution and the coefficients of the prognostic factors
in the linear component of the Weibull distribution are
displayed in Table 1. Random censoring was included based
on a uniform distribution that was truncated at 2500 days. In
the second scenario, not only the prognostic factors were un-
balanced but also menopausal status was both a prognostic
factor and an effect modifier of B. There was no change to the
A arm. Hence, the A arm was directly taken from the simula-
tion in scenario 1. Whereas the coefficients of the other prog-
nostic factors remained the same in the B arm across the
scenarios, that of the B indicator was changed from - 0.5 in
the first scenario to — 04 in the second scenario. In addition,
an interaction term of the B indicator and menopausal status
was included in the linear component to incorporate the
modification effect. The coefficient of the interaction term was
set at — 0.2 such that the expected treatment effect was the
same across the two scenarios. The simulated data in the B
arms were used to generate aggregate characteristics and K-M
curves, which correspond to the published data of typical
single-arm clinical trials. One-thousand sets of triplet time-
to-event data (one for the A arm, one for the B arm without
any effect modifiers, and one for the B arm with an effect
modifier) were simulated. Subsequent analyses of the statis-
tical performance of unanchored MAIC using different
analytic strategies were conducted between the A arm and
the B arms within each set. The results from the 1000 repe-
titions formed the distributions of the estimates using alter-
native MAIC strategies which are described later. As
mentioned previously, each repetition in the present study
involved digitizing the hypothetically published K-M curve
of the B arm and required heavy manual operation. Hence,
the number of repetitions was restricted to 1000.

Validation of digitization-based reconstruction method
The validation of the reconstruction method was based
on comparison of the 1000 repetitions of RIKM and the
simulated data for the generation of the curves. RIKM of
both B arms (with and without the effect modifier) were
compared to the corresponding simulated raw data using
Cox regressions with an indicator of being reconstructed
data and a variable representing the time-varying effect
of the “being reconstructed” indicator. The hypotheses
were that the HRs of the indicator and the time-varying
effect would both equal one if the reconstructed data
sufficiently mirrored the raw data. To quantify the as-
sessment, the mean HRs were estimated as

N

—=C 1 THre
HRI( = N Z (HRj,k)

j=1

and
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T
ARY = NZ(HR?:’k)

=1
where HR; and HR, are respectively the mean HRs of
the reconstruction indicator and the time-varying effect,
N is the number of repetitions in each scenario, and
HRY
the reconstruction indicator and the time-varying effect
from the jth repetition of the kth (1st or 2nd) scenario.
Also, the percentages of the 95% confidence intervals
(ClIs) that covered one were calculated for both estimates
in both scenarios. It was expected that the percentages
were at least 95%.

and HRY, are respectively the estimated HRs of

Strategies of unanchored MAIC on time-to-event
outcomes
The general data analytic steps of unanchored MAIC are
1) balancing the IPD with the aggregate data to obtain
weights; 2) digitization for RIKM; and 3) pooling the
IPD and the RIKM to conduct weighted survival ana-
lysis. Two methods have been proposed to balance the
prognostic factors of the IPD data with those of aggre-
gate data, namely propensity score matching using a
method-of-moments logistic regression and entropy bal-
ancing [1, 15]. Phillipo et al. noticed that the two
methods are equivalent in reducing bias yet the latter
generates smaller standard errors [1]. Also, entropy bal-
ancing generates equal weighted sample sizes of the two
groups [16]. In the present study, entropy balancing was
used to balance the prognostic factors and to obtain
weights. Both the mean and the variance of age were
used for balancing. This reflects real-world practice be-
cause the variance of characteristics such as that of age
is usually reported in the publication of clinical trials.
The other covariates including the indicator of meno-
pausal status and the indicators of tumor grades were
balanced on the percentages. These variables were di-
chotomous variables of which the balance of the second
moment follows that of the first moment [17]. Table 2
lists a statistical summary of the prognostic factors of
the A arm before and after balancing as well as the tar-
get aggregate data of the B arm using one of the repeti-
tions as an example. Three analytic strategies were
evaluated for unanchored MAIC in the first scenario.
The first strategy was an unweighted analysis ignoring
the unbalanced prognostic factors across trials. In the
second strategy, all prognostic variables were included
when conducting entropy balancing to create weight. In
the third strategy, the indictors for menopausal status
and tumor grades were omitted in the creation of
weight.

In the second scenario, four analytic strategies were
evaluated. Similar to the first scenario, the first and
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Table 2 Example of entropy balancing
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A arm B arm
Pre-balance Post-balance Aggregate data (target of balance)
Mean age (years) 5255 56.14 56.14
Variance of age 1253 143.0 1429
Postmenopausal (%) 40.00 5212 5213
Tumor grade 2% (%) 65.20 72.86 72.88
Tumor grade 3% (%) 14.40 18.37 1838

@ Tumor grade 1 was a left-out reference group

second strategies were an unweighted analysis and a
weighted analysis using all prognostic factors, respect-
ively. The third strategy was a weighted analysis omitting
the effect modifier (menopausal status) in the creation of
weight, while the fourth strategy further dropped tumor
grade indicators from the balanced variable list.In all
analyses, Cox regressions were used to estimate the HRs,
and the comparison of strategies was based on logHRs.

Performance of unanchored MAIC

To quantify the performance of unanchored MAIC in
the analysis of time-to-event outcomes, the bias, the
Monte-Carlo variance (MCV), the mean squared error
(MSE), and the percentages of CI coverage of the esti-
mates were evaluated for each strategy. Among these,
MCYV is the squared of the empirical standard errors
[18], which is a measure of the efficiency of the estima-
tor. The bias was calculated as

N —
%;( logHR; - ( -0.5)),

the MCV was calculated as

N

1 — N2
- logHR, - logHR)
N—I;(Og T 08 )

and the MSE was calculated as

;I]_i ( logl-/[—ﬁj —(—0.5))2

where ﬁi, is the estimated HR from the jth repetition

in each scenario and HR is the mean of ﬁl?, over N
repetitions.

In addition to these quantities, the effective sample
size (ESS) was also calculated [19]. Although not an indi-
cator of the performance of MAIC estimates, ESS was
informative in that its value should be close to the true
sample size of the B arm when the characteristics of the
two arms were balanced without having to rely on ex-
treme weights [3]. A flowchart of the overall process of
simulation, analysis, and comparison is illustrated in Fig.

S1. Engauge Digitizer 10.11 [20] was used to digitize the
K-M curves (screenshots of digitizing and exporting dis-
played in Figs. S2, S3, S4). Reconstruction of RIKM was
implemented using Stata ipdfc routine and all statistical
analyses were conducted using Stata 14 (StataCorp LLC,
College Station, Texas, the United States of America) [10].

Using the bias factor to estimate the boundary of the
true effect

For an exposure E, an unmeasured dichotomous con-
founder U, and an outcome D, VanderWeele et al. has
shown that

HR
2220 < bias factor,

H Rtrue

where HR,;, is the observed effect and HR,,,, is the true
effect. The bias factor is calculated as

(HRUD X RRgu)/(HRUD + RREU - 1)

where HRy;p is the maximal possible effect of U on D
and RRgy; is the risk ratio of U=1 of the exposed group
to the non-exposed group [21, 22]. As such, the inequal-
ity HRppye2 HRops suggests that HR;,,, should not be

bias factor

—

smaller than W% in 95% of the repetitions in which
LL AR is the lower limit of the 95% CIL. If so, the stron-

gest plausible effect can be estimated using HR;p and
RRg;;. The former can be estimated using the IPD of the
trial that the researchers can access, the latter can be
based on assumptions or external sources. We calculated
— LL —~
biug—J[‘aRctar and bias%gor
menopausal status as U, following which we summarized

for the two scenarios by setting

the mean bias of log% and the percentages of the
LL o~
was smaller than the true

repetitions in which — Tactor

value. By the set-up of the data simulation, the bias fac-
tor was 1.10 and 1.05 in the two scenarios, respectively
(the calculation was illustrated in online supplementary
materials part II).
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Results

The results of comparing the raw data and RIKM of the
B arms as a validation of the reconstruction method are
listed in Table 3. A graphical example of a raw survival
curve and the counterpart using the digitization and re-
construction method is presented in Fig. S5. The mean
HRs of the recovered indicator in the first and the sec-
ond scenarios were correspondingly 0.959 and 0.960,
whereas the mean HRs of time-varying effect in both
scenarios were 1.00. Also, the percentages of repetitions
in which the 95% CI covered one were 100% in both
scenarios.

The results of the performance evaluation of un-
anchored MAIC for survival outcomes in scenario 1 are
presented in Table 4. In the first scenario, which did not
involve any effect modifiers, the bias of the logHRs using
the unweighted Cox regressions was 0.164. By contrast,
the bias of the weighted Cox regressions that used all
prognostic factors in entropy balancing was substantially
smaller at 0.027. Although less than the unweighted ana-
lyses, the bias of the weighted analyses when the indica-
tors of menopausal status and tumor grades were
dropped from entropy balancing was 0.114. More, the
MCYV of the estimates was the same across all analytic
strategies, which was 0.002. Even more, the MSEs of the
three analytic strategies were 0.029, 0.003 and 0.015, re-
spectively. Finally, the percentages of repetitions in
which the 95% CI covered the true value were 11.2, 93.8
and 39.1% for the unweighted, fully weighted, and par-
tially weighted strategies. None of the coverage reached
the expected 95% although the fully weighted approach
reached a close approximation.

The performance evaluation results related to scenario
2 are listed in Table 5. In the second scenario, the un-
weighted analysis had a bias of 0.173. The fully weighted
analyses had a bias of 0.035. In addition, the bias of the
weighted analyses omitting the effect modifier was 0.079.
More, the weighted analyses omitting both the indicator
of menopausal status and the indicators of tumor grades
had a bias of 0.122. The MCV of the unweighted estima-
tor and the weighted approach omitting both the indica-
tor of menopausal status and the indicators of tumor
grades was 0.002 whereas that of the other two analytic
strategies was 0.003. The MSEs of these four analytic
strategies were 0.032, 0.004, 0.009 and 0.017,
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respectively. The percentages of repetitions in which the
95% CI covered the true value were 7.7, 89.9, 68.7 and
34.1% for the four strategies correspondingly. Similar to
scenario 1, the fully weighted approach in scenario 2 was
the closest to the threshold of 95% but had an even
greater shortage in coverage compared with scenario 1.

By the study design, the ESS of the fully weighted ap-
proach was the same in the two scenarios. Specifically,
the ESS was 791 when all covariates were balanced,
which was close to the true sample size of the B arm. As
expected, the ESS was greater when the list of covariates
for balancing was shorter.

The performance of adjustment methods using bias fac-
tors are presented in Table 6. The mean bias of the bias
factor-adjusted HRs in the log scale was — 0.025 and 0.030
in the two scenarios, respectively. The magnitude of bias
of the adjusted HRs were comparable to that of the fully
weighted approaches in both scenarios. The correspond-
ing percentages of repetitions of which the true value was
not less than the adjusted lower limit (LL) were 93.3 and
91.8%, respectively. These percentages were close to but
did not reach the expectation of 95%.

Discussion

In the present analysis, we examined the performance of
alternative unanchored MAIC approaches to analyze
time-to-event outcomes under the scenarios with and
without an effect modifier. The results contribute to the
information basis for the appropriate use of unanchored
MAIC.

With a simulation, the present study confirmed that
RIKM using the method proposed by Guyot et al. may
sufficiently represent the raw time-to-event data [9].
This finding has two practical implications. First, sec-
ondary analyses using reconstructed IPD is a viable solu-
tion when raw data cannot be accessed. Second, and in a
reversed perspective, studies on properties of methods
related to reconstructed IPD may rely on simulated raw
data instead of reconstructed data.

Our findings also revealed several important properties
of unanchored MAIC. First and foremost, unanchored
MAIC does have the potential to generate unbiased esti-
mates when used to analyze time-to-event outcomes if
all factors that impact either the outcome or the treat-
ment effect are captured. That is, not only the effect

Table 3 Agreement between the raw data and the reconstructed data of the B arms

Scenario 1 Scenario 2
HR of recovered vs. raw indicator 0.959 0.960
Coverage of the 95% Cl of the HR of indicator (% of repetitions) 100 100
HR of time-varying effect 1.000 1.000
Coverage of the 95% Cl of time-varying effect (% of repetitions) 100 100

Abbreviations: HR Hazard ratio; C! 95% Confidence interval
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Table 4 Estimates of log hazard ratio in scenario 1 (without effect modifiers)

Statistical properties Unweighted estimate Weighted estimate

All variables included in weight

Omitted menopausal status and tumor grade from weight

Bias 0.164 0.027
MCV 0.002 0.002
MSE 0.029 0.003
Cl coverage (%) 11.2 938
mean ESS NA 791

0.114
0.002
0.015
39.1
888

Abbreviation: MCV Monte-Carlo variance; MSE Mean squared error; C/ 95% Confidence interval; ESS Effective sample size

modifiers but also the non-effect-modifying prognostic
factors have to be balanced. Consistent with intuition,
dropping some of the prognostic factors in balancing
causes greater bias than balancing with full information
but less bias than the unweighted approach. Second, and
unlike the anchored counterpart, prognostic factors are
important in unanchored MAIC analysis of time-to-
event outcomes even though not being effect modifiers
at the same time. In our simulation analyses, bias arose
when not balancing on the prognostic factors even when
there were no effect modifiers. Also, omitting the effect
modifier which was also a prognostic factor led to non-
trivial bias in the scenario of having an effect modifier.
On top of bias, the confidence interval estimates of this
approach was far from acceptable. As such, the results of
the second scenario indicate that balancing both prognos-
tic factors and effect modifiers is crucial in unanchored
MAIC on time-to-event outcomes. Third, there may be a
trade-off between bias and precision, yet the fully
weighted approach constantly outperformed other ap-
proaches when MSE was used to evaluate the methods
whereas the unweighted approach consistently ranked the
worst. Therefore, the benefit of reducing bias with the
fully weighted approach outweigh the precision loss in the
setting of the present simulation analysis. Fourth, the un-
certainty of unanchored MAIC may be biased or underes-
timated even when the bias of the relative effect is not a
prominent problem because the coverage of the Cls never
reached 95% across all strategies. This property of MAIC
has not been spotted in literature previously and should

be discussed in future applications of unanchored MAIC
on time-to-event outcomes. The reasons of this property
could be multifaceted. The loss of information in the data
reconstruction step, although minuscule, may have con-
tributed to this. More, entropy balancing followed by a
Cox regression may not have fully accounted for bias. The
compound of these sources of uncertainty may result in
the imperfect confidence interval estimates.

In addition, we proposed an approach to estimate the
boundary of the true effect when unanchored MAIC on
time-to-event outcomes is likely biased due to omitted
covariates. Simulation results showed that the proposed
method was imperfect but were not necessarily un-
usable. This approach involves calculating the bias fac-
tor, which requires knowledge or assumptions of the
extent of omitted variable unbalance (RRg;;). In practice,
the extent of omitted variable unbalance may be un-
known in most situations. Possible solutions including
using external data to estimate a plausible value of RRg,
or calculating the adjusted HRs and the boundaries by
toggling RRg;; over a possible range. For example, if the
percentages of post-menopausal individuals among
breast cancer patients range from 35 to 65% across dif-
ferent trials and observational studies, then the range
can be used to obtain the extremes of RRg;; estimates,
and, for that matter, the boundaries of bias factor-
adjusted treatment effect estimates. Of note, when the
treatment effect is suspected to be overestimated rather
than underestimated, the upper limit should be multi-
plied by the bias factor to estimate the boundary.

Table 5 Estimates of log hazard ratio in scenario 2 (with an effect modifier)

Statistical Unweighted Weighted estimate

properties estimate
All variables Omitted the effect modifier Omitted the effect modifier (menopausal status)
included in weight (menopausal status) from weight and tumor grade from weight

Bias 0.173 0.035 0.079 0.122

MCv 0.002 0.003 0.003 0.002

MSE 0.032 0.004 0.009 0.017

Cl coverage 7.7 89.9 68.7 341

(%)

mean ESS NA 791 827 888

Abbreviation: MCV Monte-Carlo variance; MSE Mean squared error; C/ 95% Confidence interval; ESS Effective sample size



Jiang and Ni BMC Medical Research Methodology (2020) 20:241 Page 8 of 9
Table 6 Bias factor-adjusted HR and lower limits of the 95% Cl of HR using menopausal status as an omitted variable

Scenario 1 Scenario 2
Mean bias of adjusted HR in the log scale —-0.025 0.030
Adjusted LL of the Cl of HR < true effect (% of repetitions) 933 91.8

Abbreviations: HR, hazard ratio; Cl 95% Confidence interval; LL Lower limit

Several limitations should be noted when interpreting
the results. First, we only used Weibull distribution to
simulate the data sets. The data generation process in
the real world may not necessarily approximate a Wei-
bull distribution. Especially, survival curves in oncology
are sometimes characterized by a high death rate due to
nonresponse at the beginning or a plateau at the tail due
to cure [23], which may not be sufficiently represented
by single-index survival functions. As such, the
generalizability of our findings is possibly limited due to
the specific situations. Second, only 1000 repetitions
were conducted for each scenario of data generation due
to the labor-demanding process of manually completing
part of the K-M curve digitization. Although the number
of repetitions matches that of a previous simulation
study in the realm of MAIC [5], the possibility of insuffi-
cient repetitions to reveal the properties could not be
fully ruled out. Third, the same specification of shape
and scale parameters of the Weibull distribution was
used in the simulation of both A and B arms, which may
be reasonable if the populations are adequately
homogenous across trials. However, the scenarios of dif-
ferent underlying survival distributions across trials were
not probed. Such complexity almost infinitely compli-
cates the examination and discussion of any evidence
synthesis methods. Fourth, the scenarios we explored
were not exhaustive. For example, the coefficient specifi-
cations of covariates, the differences in the prognostic
factors across trials, and the treatment effect were not
extensively varied to examine the performance of un-
anchored MAIC under other scenarios. Such practice
was largely hampered by the hefty manual work required
to digitize the graphs. A byproduct of the limited num-
ber of scenarios for characteristic differences was that
the impact of extreme weights due to larger differences
in the IPD and the aggregate data could not be investi-
gated, which was also reflected by the ESS of the fully
weighted approach. Finally, censoring was simulated
using a uniform distribution that was unrelated to the
treatment, the effect modifier, and the prognostic fac-
tors. How non-random censoring impacts the perform-
ance of unanchored MAIC and MAIC in general in the
analysis of time-to-event outcomes should be investi-
gated in future.

Conclusions
Reconstructed IPD from digitized K-M curves may suffi-
ciently represent the raw time-to-event data. Also,

unanchored MAIC may be used in the analysis of time-
to-event outcomes across single-arm trials. However, it
should be used with caution of unmeasured prognostic
factors and effect modifiers as well as suboptimal Cls.
More, the bias factor-adjusted estimate can be used as
an approximation of the boundary of the true effect at
the presence of omitted variables.
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