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A B S T R A C T   

We aim to understand the spatial inequality in Coronavirus disease 2019 (COVID-19) positivity rates across New 
York City (NYC) ZIP codes. Applying Bayesian spatial negative binomial models to a ZIP-code level dataset (N =
177) as of May 31st, 2020, we find that (1) the racial/ethnic minority groups are associated with COVID-19 
positivity rates; (2) the percentages of remote workers are negatively associated with positivity rates, whereas 
older population and household size show a positive association; and (3) while ZIP codes in the Bronx and 
Queens have higher COVID-19 positivity rates, the strongest spatial effects are clustered in Brooklyn and 
Manhattan.   

1. Introduction 

Since the outbreak of the novel coronavirus disease 2019 (COVID- 
19), New York City (NYC) has become the epicenter of the pandemic in 
the United States (US) (Wadhera et al., 2020). Specifically, NYC ac-
counts for 2.5 percent of the total US population; however, it makes up 
almost 10 percent of the total confirmed cases and more than 18 percent 
of COVID-19 deaths nationwide (authors’ calculation) in the early stage 
of the pandemic. Even after the spread of COVID-19 virus has been 
contained, the COVID-19 deaths in NYC still make up almost 6 percent of 
total deaths in the US by April 2021. This heavy burden has exacerbated 
the existing health disparities along with several social dimensions in 
NYC, such as race/ethnicity and income. For example, the age-adjusted 
case rate is at least 40 percent higher among Hispanics (7944.51 per 
100,000 people), in contrast to non-Hispanic whites (5658.60) and 
Asian/Pacific-Islanders (4860.94 per 100,000 people). Similarly, the 
risk of contracting (or dying of) COVID-19 increases with neighborhood 
poverty (NYC Health Department, 2021a). 

Although several studies have explored racial/ethnic and socioeco-
nomic health disparities in COVID-19 outcomes in NYC (Almagro and 
Orane-Hutchinson, 2020; Whittle and Diaz-Artiles, 2020), little 

attention has been paid to the spatial health disparities within the city 
until recently. For example, Hamidi and Hamidi (2021) use spatial lag 
models to understand if subway ridership is associated with COVID-19 
infection rates and Cordes and Castro (2020) identify the COVID-19 
positivity rate hotspot with spatial clustering analysis techniques. 
Spatial health disparities are related to the sociodemographic processes 
underlying a certain disease and/or the dynamics between an environ-
ment and the populations who live in it (Davidson et al., 2008). A study 
(Wadhera et al., 2020) in NYC finds that the Bronx consistently shows 
the highest hospitalization and death rates and Manhattan is the least hit 
among the five boroughs. The authors suggest that this spatial inequality 
is concerning as the disadvantaged populations in NYC (e.g., the poor) 
suffer from COVID-19 more than others. Another study (Gonza-
lez-Reiche et al., 2020) sequences the COVID-19 virus in the early stage 
of the pandemic and identifies spatial clusters of related viruses in both 
Brooklyn and Manhattan. These studies mainly focus on describing the 
spatial inequality patterns in NYC and do not investigate the de-
terminants associated with these spatial inequalities. 

This study aims to investigate the extent to which the spatial 
inequality in COVID-19 positivity rates across NYC ZIP codes can be 
explained by various sociodemographic variables (e.g., racial/ethnic 
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composition and occupations) and how spatial structure1 is associated 
with the distribution of COVID-19 positive cases. As spatial health in-
equalities are often geographically clustered, it is imperative to adopt 
spatial modeling to obtain unbiased coefficient estimates (Voss et al., 
2006) and to understand how spatial structure among ZIP codes may 
contribute to spatial inequality (Haining and Haining, 2003; Pfeiffer 
et al., 2008). Prior county-level studies have overlooked spatial depen-
dence (Mahajan and Larkins-Pettigrew, 2020; Millett et al., 2020; Zhang 
and Schwartz, 2020) and limited research has adopted spatial analysis 
(Mollalo et al., 2020). Spatial dependence may bias the statistical esti-
mates of relationships of interest and considering spatial errors may 
account for spatial confounding due to unmeasured variables. 

2. Data and methods 

The unit of analysis is the modified ZIP codes created by the NYC 
Department of Health and Mental Hygiene (DOHMH). Due to the 
concern about the uneven distribution of population across the con-
ventional ZIP codes, the NYC DOHMH solidifies the conventional ZIP 
codes by integrating ZIP codes with small population size into those with 
a large population. This approach yields comparable population size 
across the modified ZIP codes, which helps calculate stable rates (NYC 
Health Department, 2020a). This study uses the boundaries of the 
modified ZIP codes for analysis and visualization (and we discuss the 
generalizability issue in the discussion section). 

2.1. Measures and data sources 

Dependent variable: The total number of positive COVID-19 cases in 
a ZIP code serves as our dependent variable and the number of tests is 
treated as the offset variable. The data come from the NYC DOHMH as of 
May 31st, 2020. The NYC government suggests that the positivity rate 
should be lower than 5 percent (NYC Health Department, 2020b) to 
contain the pandemic. Since the end of May 2020, NYC has consistently 
observed a positivity rate lower than this threshold. Thus, this study 
focuses on the COVID-19 data between March and May. ZIP code is the 
most granular geographic unit at which the data are available in NYC. A 
total of 200,051 positive COVID-19 cases was reported but 6417 cases 
without identifiable ZIP code were excluded from the analysis. Our final 
sample consists of 177 ZIP codes with 193,634 positive cases (96.79% of 
total cases). 

According to NYC DOHMH (NYC Health Department, 2021b), an 
individual who got a positive result (i.e., diagnosed with COVID-19) 
should not be re-tested during the 90 days from the date of the previ-
ous test. The reason is that those who have recovered from COVID-19 
may still yield a positive test result. Moreover, people who work 
outside the home or work/live in a congregate setting are encouraged to 
get tested every month. Given these NYCDOH recommendations, the 
number of tests (i.e., the offset variable) may be inflated with those who 
do not contract COVID-19. However, the number of positive cases (i.e., 
the dependent variable) is unlikely to be influenced by the multiple tests 
of COVID-19 patients, unless an individual contracts COVID-19 again 
after s/he recovered from the previous infection. That is, our dependent 
variable tends to underestimate, rather than overestimate, the actual 
positivity rate at the ZIP code level. 

Covariates: We consider four groups of covariates: demographic 
characteristics, socioeconomic status, worker characteristics, and 

household characteristics. Recent studies have found that age, race/ 
ethnicity, and population density are related to COVID-19 infections 
(Raifman and Raifman, 2020; Rocklöv and Sjödin, 2020; Tenforde et al., 
2020) and socioeconomic status has been regarded as the fundamental 
cause of disease (Link and Phelan, 1995). People with longer commuting 
time have a heightened risk of infection while those working from home 
may have a reduced risk (Baker et al., 2020). Similarly, large household 
size and poor housing conditions may be associated with higher posi-
tivity rates. Data on these covariates are from the 2014–2018 American 
Community Survey 5-year estimates.2 

Demographic characteristics include five variables: percentage of non- 
Hispanic Blacks, percentage of Asians, percentage of Hispanics, percentage of 
population ages 65 and above, and population density (1000 people per 
square mile). 

Socioeconomic status includes three variables: disadvantage index, 
income inequality, and percentage of adults (19–64) who are uninsured. The 
disadvantage index was constructed by applying principal component 
analysis (PCA) to the following variables: percentage of population who 
had received a bachelor’s degree or higher (factor loading = − 0.881), 
logged household income (− 0.940), percentage of population living 
below poverty level (0.848), unemployment rate (0.850), percentage of 
female-headed households (0.919), percentage of households receiving 
public assistance income (0.891), and percentage of workers who were 
employed in the “COVID-essential” occupations3 (0.843). The PCA re-
sults suggest that one factor explains almost 80% of the overall varia-
tion. Income inequality is measured with the Gini index. For both 
variables, higher values reflect higher neighborhood disadvantage and 
income inequality. 

Worker characteristics in a ZIP code included two variables: per-
centage of non-remote workers who commute by public transportation and 
percentage of workers who work at home. 

Finally, as for household characteristics, we consider three variables: 
average household size, percentage of housing units that were built before 
1990, and sanitation facilities index. The sanitation facilities index is an 
average score of two standardized variables: percentage of housing units 
without complete plumbing facilities and percentage of housing units 
without complete kitchen facilities. Lower scores indicate better sani-
tation facilities among ZIP codes. 

2.2. Bayesian spatial modeling 

Given the nature of our dependent variable, we first examine 
whether a Poisson distribution, which assumes that the mean value 
equals the variance, fits our data with Dean’s PB score test (Dean, 1992). 
The results indicate that the equivalence assumption is rejected and the 
dependent variable is overdispersed.4 Consequently, we use the negative 
binomial regression, which relaxes the equivalence assumption and al-
lows for overdispersion, to investigate the associations between the in-
dependent variables and positive COVID-19 case counts (Agresti, 2003). 
It can be expressed as follows: 

1 Spatial structure refers to the geographical relations among ZIP codes in 
New York City, and this spatial structure is associated with ZIP code level 
covariates, including both dependent and independent variables. Our analysis 
with this spatial structure aims to explain the spatial variation in positive 
COVID-19 cases by considering the potential impacts of covariates that are 
embedded in this spatial structure but unattended in the analysis. This 
approach echoes the definition proposed by Bennett and Haining (1985). 

2 NYC DOHMH combined several ZIP code tabulation areas into one ZIP code. 
When we created the independent variables for these ZIP codes, we first sum-
med up the raw counts from the surveys and then calculated final values.  

3 The “COVID-essential” occupations include construction and extraction 
occupation; farming, fishing, and forestry occupation; installation, mainte-
nance, and repair occupation; material moving occupation; production occu-
pation; transportation occupation; office and administrative support 
occupation; sales and related occupation; building and grounds cleaning and 
maintenance occupation; food preparation and serving related occupation; 
healthcare support occupation; personal care and service occupation; and 
protective service occupations.  

4 The Dean’s PB score statistic is 282.80 (without covariates) and 53.85 (with 
all covariates), respectively. Both have a p-value less than 0.001. The likelihood 
ratio (LR) tests also yield the same conclusion (LR = 4718.53 and 678.93, 
respectively). 
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μi =E[yi] = exp

(

ln(Ti)+ β0 +
∑K

k=1
βkxki

)

(1)  

where μi refers to the mean of the COVID-19 cases (i.e., E[yi]) and Ti 
indicates the number of tests performed in a ZIP code (as an individual 
cannot be diagnosed with COVID-19 without a test), which is known as 
the population at risk. Should both parameters be combined, a negative 
binomial regression estimates the mean incidence rate of COVID-19 case 
per test (i.e., positivity rates). β0 is the intercept and the coefficient βk is 
a parameter assessing the relationship between covariates xk and μi. 
Overdispersion in this model is measured by the parameter, α, that re-
flects the level of overdispersion (the larger the value is, the greater the 
variance is). Additional modeling details are provided in Appendix A. 

Beyond the conventional model specification above, we expand 
equation (1) by considering different sets of error terms, which can be 
expressed as equation (2): 

μi = exp

(

ln(Ti)+ β0 +
∑K

k=1
βkxik + hi + wi

)

(2) 

hi is a random error specific to each ZIP code i, which is independent 
and identically distributed (IID) and follows a normal distribution with a 
mean of 0 and a variance parameter σ2

h , which is defined as 1/ τh (τh is a 
precision parameter). In addition, wi refers to the spatially structured 
errors and follows a normal distribution that is conditional on other 
neighboring locations w− i, which can be expressed as below: 

wi

⃒
⃒
⃒
⃒
⃒
w− i ∼ N

(
∑

j∼i
wj
/

ni, σ2
w

/
ni

)

(3)  

where σ2
w/ni refers to the variance parameter and is defined as 1/ τw (τw 

is the precision parameter for spatial errors), j ~ i denotes ZIP code j is a 
neighbor of the ith ZIP code, and ni is the total number of neighbors of 
the ith ZIP code. Explicitly, given a set of neighbors, wi is assumed to 
have a mean equal to the mean of these neighbors and a variance that is 
a function of the number of neighbors. Such a specification of spatially 
structured errors has been commonly used in the conditional autore-
gressive (CAR) model (Besag et al., 1991). The spatially structured er-
rors capture the processes associated with the variables that are not 
included in the analysis. For example, the level of compliance with 
precautionary actions (e.g., face masking) is not available at the ZIP 
code level and may be reflected in spatially structured errors. Any two 
ZIP codes sharing a common boundary or a vertex are defined as 
neighbors. Though there is a concern about whether the choice of spatial 
weight matrix alters results, recent research suggests that this concern is 
little supported by theories (LeSage and Pace, 2014). 

We use the integrated nested Laplace approximation (INLA) method 
and the R-INLA package in R to obtain the Bayesian estimates for all 
models.5 The INLA generates the posterior distributions of parameter 
estimates (e.g., βk) and we will present the results with the rate ratios 
and 95 percent credible regions (Banerjee and Fuentes, 2012). The 
Deviance Information Criterion (DIC) will be used to compare different 
models. Generally, a DIC difference that is greater than ten between two 
models suggests that the one with the lower value is preferred (Spie-
gelhalter et al., 2002). 

We adopt the CAR model and the Bayesian approach for two reasons. 
First, the conventional spatial econometrics/regression models were 
developed for continuous dependent variables that follow a normal 
distribution. However, our dependent variable, the number of positive 
COVID-19 cases, is a count variable and fits the spatial generalized linear 
modeling approach better. The CAR model follows the Markov property 
and has been commonly used in spatial generalized linear modeling 

(Goodchild and Haining, 2004; Ver Hoef et al., 2018). While the count 
variable can be converted into positivity rates, the distribution of posi-
tivity rates is highly skewed to the right. Variable transformation be-
comes necessary in order to use the conventional regression methods, 
which makes the interpretation less intuitive. 

The other reason is that for models like spatial lag or spatial Durbin 
model, the regression estimates cannot be directly interpreted because 
the spatial lag parameter needs to be further decomposed (LeSage and 
Pace, 2009). By contrast, spatial error models estimate a spatial error 
parameter that captures the potential effects of variables unattended in 
the model. Both spatial lag and spatial error estimates reflect the average 
effects across space and do not allow users to estimate the effects specific 
to each ecological unit. Since the goal of our analysis is to control for the 
potential bias caused by spatial structure and to further separate the 
structured effects from the unstructured ones, the CAR model serves this 
goal better than spatial regression models. 

2.3. Analytic strategy 

We first implement the descriptive analysis by the five boroughs of 
NYC and test if there is any significant difference across boroughs with 
one-way ANOVA. Showing results by borough is to understand the dif-
ferences across boroughs and the potential role of spatial structure/ 
inequality. We then conduct various models to investigate how the in-
dependent variables are associated with COVID-19 cases. The first 
model is the conventional negative binomial model without any error 
terms (i.e., equation (1)). The second model considers the ZIP-code 
specific IID errors (i.e., equation (2) without wi), and the third model 
further includes the spatially structured errors (i.e., equation (2)). We 
visualize both IID and spatially structured effects. The first model serves 
as the baseline model and the second model aims to understand if there 
is any ZIP code specific error that may confound the relationships be-
tween the covariates and positive cases. The final model aims to answer 
if spatially autocorrelated errors alter our findings. 

3. Results 

For ease of discussion, we create Fig. 1 to show ZIP codes in NYC 
boroughs. Table 1 presents descriptive statistics calculated for all NYC 
ZIP codes and by each borough. Several findings are notable. First, as of 
May 31st, on average, a ZIP code in NYC reports 1094 positive COVID- 
19 cases. Importantly, the total number of positive cases varies across 
boroughs as the Bronx (1762 cases) has more than three times as many 
cases as Manhattan (540 cases). Second, the one-way ANOVA results 
suggest that all variables, except for the percentage of population ages 
65 and above and sanitation facilities index, are different across bor-
oughs. Third, NYC is racially and ethnically diverse as non-Hispanic 
Blacks and Asians account for almost 20% and 15% of the population, 
respectively. Among these boroughs, the Bronx has the highest per-
centage of non-Hispanic Blacks and Hispanics, whereas Queens has the 
highest percentage of Asians. Third, these boroughs are different in 
terms of their socioeconomic status. In particular, ZIP codes in the Bronx 
are the most socioeconomically vulnerable, as reflected in their disad-
vantage index and percentage of uninsured adults. By contrast, ZIP 
codes in Manhattan have the lowest average disadvantage index. Fourth, 
overall, in NYC more than half of workers commute by public trans-
portation (56%). Nonetheless, the distribution of workers who work 
from home is uneven because four of the five boroughs have, on average, 
less than five percent of workers who can work from home, except for 
Manhattan (6.65%). Lastly, as for household characteristics, ZIP codes in 
Brooklyn are more likely to have old housing units (built before 1990) 
without complete sanitation facilities compared to their counterparts 
elsewhere. 

The Bayesian negative binomial regression results are presented in 
Table 2. Before we discuss the key findings, we note that the variance 
inflation factors (VIFs) among the independent variables are all lower 

5 The comparisons between INLA and Markov chain Monte Carlo can be 
found in (Carroll et al., 2015). 
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than 10 (see the VIF column), a commonly used criterion for multi-
collinearity correction (Kutner et al., 2004). This suggests that multi-
collinearity should not be a concern in our analysis. We summarize the 
notable findings as follows. 

First, across the three models, the associations between racial/ethnic 
groups and COVID-19 positivity rates are stable and the rate ratios range 
between 1.0020 and 1.0034. For example, every 10-percent-point in-
crease in non-Hispanic Blacks is associated with a 2-percent increase 

(1.0020∧10 = 1.0202) in COVID-19 positivity rate in a ZIP code. 
Moreover, the rate ratio of the percentage of older adults is 1.0111 in 
Model 1 but it slightly decreases to 1.0088 in Model 3 (95% CR: (1.0021, 
1.0156)). 

Second, none of the three socioeconomic status variables is related to 
COVID-19 positivity rates. ZIP codes with high disadvantage index 
scores do not have high COVID-19 positivity rates. Neither income 
inequality nor the percentage of adults without health insurance is 

Fig. 1. Five boroughs in New York City and the ZIP codes in each borough.  

Table 1 
Means and standard deviations (S.D.) across ZIP codes within each NYC borough.   

The Bronx Brooklyn Manhattan Queens Staten Island NYC One-way 
ANOVA 

n = 25 n = 37 n = 44 n = 59 n = 12 n = 177 

Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. p-value 

Dependent Variable 
Covid-19 Cases 1761.76 786.77 1424.57 692.77 539.95 425.47 1014.34 767.14 1106.42 591.07 1093.98 779.60 <0.05 
Independent Variables 
Demographic Characteristics 

% Non-Hispanic Blacks 27.84 15.41 29.30 28.62 11.52 17.06 17.09 24.79 11.13 11.56 19.37 23.12 <0.05 
% Asians 3.53 3.21 11.29 11.06 14.32 10.26 24.06 16.37 7.48 3.96 14.95 13.95 <0.05 
% Hispanics 53.08 18.16 19.41 13.01 20.47 19.13 24.21 15.22 20.49 11.63 26.10 19.44 <0.05 
% Population Ages 65 
and Above 

13.25 5.31 13.45 4.83 14.28 6.00 15.25 4.56 14.49 2.90 14.30 5.04  

Population Density 44.91 26.86 42.95 15.31 72.46 38.33 26.40 20.10 9.69 3.74 42.79 32.01 <0.05 
Socioeconomic Status  

Disadvantage Index 1.23 0.95 0.24 0.76 − 0.77 1.03 − 0.08 0.56 − 0.07 0.52 0.00 1.00 <0.05 
Income Inequality 0.49 0.04 0.50 0.03 0.53 0.06 0.44 0.03 0.46 0.05 0.48 0.06 <0.05 
% Adults 19–64 
Uninsured 

13.79 4.42 11.55 4.40 6.79 4.13 12.23 6.18 7.76 3.79 10.65 5.57 <0.05 

Worker Characteristics 
% Workers Who 
Commute by Public 
Transportation 

59.69 13.03 64.43 9.70 62.84 12.01 48.48 16.21 31.18 7.78 55.79 16.05 <0.05 

% Workers Who Work at 
Home 

3.37 1.39 4.36 2.04 6.65 2.00 2.71 1.09 2.52 0.82 4.11 2.25 <0.05 

Household Characteristics 
Average Household Size 2.76 0.28 2.67 0.38 2.10 0.36 2.93 0.48 2.83 0.16 2.64 0.500 <0.05 
% Housing Units Built 
Before 1990 

89.06 6.33 89.57 6.54 80.34 21.01 89.16 13.61 76.58 13.03 86.18 14.67 <0.05 

Sanitation Facilities 
Index 

0.11 0.55 0.17 1.17 − 0.28 0.67 0.06 1.14 − 0.03 0.63 0.00 0.96   
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Table 2 
Bayesian negative binomial regression results with different specifications of models in New York city ZIP codes (N = 177).   

Conventional NB 
Model 1 

NB with IID Effect 
Model 2 

NB with Both CAR & IID Effect 
Model 3 

VIF 

Mean 95% CR Mean 95% CR Mean 95% CR 

Intercept 0.1058 (0.0679, 0.1650) 0.1034 (0.0659, 0.1618) 0.1169 (0.0718, 0.1906)  
Demographic Characteristics 

% Non-Hispanic Blacks 1.0020 (1.0010, 1.0040) 1.0024 (1.0010, 1.0039) 1.0022 (1.0005, 1.0039) 3.49 
% Asians 1.0010 (0.9990, 1.0030) 1.0011 (0.9991, 1.0031) 1.0013 (0.9989, 1.0037) 2.38 
% Hispanics 1.0030 (1.0010, 1.0050) 1.0034 (1.0014, 1.0055) 1.0032 (1.0008, 1.0056) 4.96 
% Population Ages 65 and Above 1.0111 (1.0050, 1.0161) 1.0105 (1.0045, 1.0165) 1.0088 (1.0021, 1.0156) 2.23 
Population Density 0.9990 (0.9980, 0.9990) 0.9986 (0.9978, 0.9994) 0.9986 (0.9977, 0.9994) 1.98 

Socioeconomic Status 
Disadvantage Index 1.0439 (0.9910, 1.0997) 1.0420 (0.9892, 1.0979) 1.0507 (0.9945, 1.1105) 8.08 
Income Inequality 1.0212 (0.5560, 1.8757) 1.0544 (0.5703, 1.9493) 0.9849 (0.5199, 1.8635) 3.11 
% Adults 19–64 Uninsured 1.0030 (0.9970, 1.0090) 1.0026 (0.9966, 1.0086) 1.0026 (0.9963, 1.0089) 3.44 

Worker Characteristics 
% Workers Who Commute by Public Transportation 1.0020 (1.0000, 1.0040) 1.0016 (0.9995, 1.0037) 1.0007 (0.9981, 1.0033) 3.30 
% Workers Who Work at Home 0.9666 (0.9512, 0.9831) 0.9662 (0.9500, 0.9827) 0.9675 (0.9504, 0.9849) 3.75 

Household Characteristics 
Average Household Size 1.2324 (1.1503, 1.3218) 1.2333 (1.1500, 1.3229) 1.2135 (1.1223, 1.3118) 3.57 
% Housing Units Built Before 1990 1.0010 (0.9990, 1.0030) 1.0012 (0.9993, 1.0031) 1.0015 (0.9995, 1.0035) 1.70 
Sanitation Facilities Index 0.9910 (0.9704, 1.0121) 0.9894 (0.9683, 1.0109) 0.9894 (0.9679, 1.0114) 1.25 
θ (overdispersion hyperparameter)  4.3598 (4.0861, 4.6083) 4.7047 (4.2507, 5.0930) 5.0295 (4.4078, 5.5826)  
DIC 2148.3800 2108.9000 2104.2400  

+: NB: negative binomial regression; CR: credible region; IID: independent and identically distributed; CAR: conditional autoregressive. When a credible region does 
not include 0, it suggests that a variable is associated with the dependent variable. Bold numbers indicate that 0 is not included in the 95% CR. VIF: variance inflation 
factor. 

Fig. 2. Spatial distribution of COVID-19 positivity rates and patterns of spatially structured and unstructured effects.  
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related to the positivity rates in NYC ZIP codes. However, the results 
indicate that worker characteristics play a critical role in understanding 
why some ZIP codes have higher COVID-19 positivity rates than others. 
Specifically, the percentage of workers who work at home is strongly 
associated with positivity rates because a 10-percent-point increase in 
workers who work at home in a ZIP code would lead to a 28.8-percent 
decrease in COVID-19 positivity rates (Model 1). The percentage of 
workers commuting by public transportation is associated with the 
positivity rate in Model 1 only. 

Third, household characteristics are also closely related to positivity 
rates. Among the three variables, we find the average household size is 
positively related to COVID-19 positivity rates. For example, based on 
Model 1, if the average household size increases by 0.5 (i.e., NYC 
standard deviation, see Table 1), we would expect to observe an 11 
percent increase in the positivity rate in a ZIP code (1.2324, 95% CR: 
(1.1503, 1.3218)). 

Beyond these substantive findings, we visualize the COVID-19 posi-
tivity rates and ZIP code specific effects in Fig. 2, which allows us to 
further assess spatial inequality in COVID-19 positivity rates. As shown 
in Fig. 2(a), high percentages of positive tests are clustered in the Bronx, 
Queens, and Brooklyn. Our covariates are able to explain why some ZIP 
codes in these boroughs have high positivity rates because the IID effects 
(Model 2 and Fig. 2(b)) are smaller for ZIP codes with high positivity 
rates than those with low rates. When we consider both IID and spatially 
structured (i.e., CAR) errors, our results (Model 3 and Fig. 2(c) and (d)) 
suggest that the spatial structure among ZIP codes plays an important 
role in accounting for the spatial distribution of COVID-19 positivity 
rates. The ZIP codes in Brooklyn and Manhattan are more likely to be 
affected by their neighbors, compared with the ZIP codes in Queens. 
That is, the distribution of COVID-19 seems to be more spatially con-
nected in Brooklyn and Manhattan than other boroughs, and the high 
positivity rates in Queens (and some ZIP codes in the Bronx) are a result 
of the ZIP-code level features considered in our regression. 

At least two implications can be drawn from the pattern of spatially 
structured errors shown in Fig. 2. One is that the pattern may reflect the 
clusters of religious communities in Brooklyn and Queens. As it has been 
reported that religious communities largely overlap the hotspots of 
COVID-19 positivity rate in NYC (Shapiro and Silva, 2020), our spatially 
structured errors may reflect the potential impact of this factor on our 
dependent variable. The other implication is related to the pattern of 
uptake of preventive health care at the ZIP code level. In contrast to 
those with low spatially structured errors, the ZIP codes with high errors 
are less likely to use preventive health care, which had led to local 
outbreak of infectious disease between 2018 and 2019 in NYC (NYC 
Health Department, 2021c). The willingness to use preventive health 
care or take precautionary actions may affect the level of compliance 
with COVID-19 precautionary measures, such as face masking and social 
distancing, which ultimately shapes the spatial inequality in COVID-19 
positivity rates. 

4. Discussion 

This study advances our understanding of the spatial inequality in 
COVID-19 positivity rates in NYC in two ways. First, we find that the 
relationships between socioeconomic status and demographic compo-
sition and COVID-19 positivity rates are not sensitive to spatial structure 
and can be used to explain why some ZIP codes have low rates but others 
do not. This finding echoes recent county-level studies (Mahajan and 
Larkins-Pettigrew, 2020; Millett et al., 2020). Nonetheless, worker and 
household characteristics are related to the spatial structure as their 
estimates change when spatially structured errors are considered. For 
example, ZIP codes with more workers who commute by public trans-
portation have higher positivity rates and they may also affect the 
positivity rates in neighboring ZIP codes. In addition, the association 
between household size and positivity rate decreases after spatial errors 
are considered. Without a spatial perspective, this relationship may not 

be accurately unveiled. 
Second, the option to work from home has been regarded as a 

privilege for individuals in advantaged positions (Felstead et al., 2002). 
The negative relationship between the percentage of workers who work 
at home and COVID-19 cases lends support to this assertion as ZIP codes 
with high concentrations of workers who can work from home observe 
fewer positive cases, indicating that working from home reduces the risk 
of infection, as well as the positivity rates (McNicholas and Poydock, 
2020). Furthermore, the concentrations of workers commuting with 
public transportation may shape the spatial inequality in COVID-19 
positivity rates in NYC, but this association seems to be subject to the 
spatial relationships among ZIP codes. However, due to the data limi-
tation, we are unable to explicitly test this explanation. Future efforts are 
warranted to investigate how positivity rates are associated with 
COVID-19 fatality rates and whether the prevalence of various chronic 
conditions could serve as a mediator or moderator between positivity 
rates and fatality. 

We situate our findings into the unique context of NYC as follows. 
First, NYC has a diverse population, reflected particularly by its racial/ 
ethnic composition and foreign-born population (Census Bureau, 2020). 
While the black/white residential segregation has declined, minorities 
still consistently live in minority neighborhoods and are exposed to 
poverty and substandard public infrastructure (Alba and Romalewski, 
2012). These features are likely to facilitate the transmission of 
COVID-19 virus, making NYC the epicenter in the early stage of the 
pandemic. Second, according to the NYC Department of City Planning 
(2019), more than 20 percent of NYC workers are in-commuters (i.e., 
commuting to the five NYC boroughs) and almost half of NYC residents 
work in the non-residential borough. The dynamic exchange of workers 
in NYC increases exposure to infection so that the percentage of workers 
working at home is negatively associated with COVID-19 cases. Finally, 
structural inequality (e.g., income inequality and deprivation) is un-
evenly distributed across NYC (as shown in our descriptive statistics and 
thematic maps) and it drives the spatial health inequalities in NYC 
(Cordes and Castro, 2020; Ransome et al., 2016). As found in our study, 
ZIP codes with high concentrations of marginalized populations report 
more positive cases. This association holds even after controlling for the 
spatially and non-spatially structured effects. 

The findings and analytic approach of this study shed some light on 
how place shapes the spatial inequality in COVID-19 positivity rates in 
NYC in at least three ways. First, several recent studies report little ev-
idence for the impact of public transportation infrastructure on COVID- 
19 outcomes (Adams et al., 2021; Hamidi and Hamidi, 2021). Our 
finding that the percentage of workers commuting by public trans-
portation is not related to COVID-19 echoes the extant literature and we 
further find that this association is sensitive to spatial structure. Simi-
larly, the significant and negative association between the percentage of 
workers who work at home and COVID-19 positive cases, to some 
extent, supports the telecommuting and social distancing measures that 
reduce face-to-face contacts. Second, the pattern of spatially structured 
errors may reflect the concentration of religious communities and un-
even spatial distribution of compliance with precautionary actions. 
These variables are not readily available at the ZIP code level and the 
conventional spatial regression approach (e.g., spatial lag model) could 
not unveil the spatial pattern related to these factors. Visualizing the 
spatially structured errors helps us understand the potentially positive 
associations between the omitted variables and COVID-19 positivity 
rates, and geographical proximity to ZIP codes with high concentrations 
of religious communities may be a risk factor for COVID-19 positivity 
rates. Finally, the pattern of spatial effects (Fig. 2) suggests that the 
independent variables included in our analysis account for spatial 
variation in COVID-19 positivity rates better in some areas (e.g., 
southeastern Queens) than others (e.g., northern Brooklyn), which im-
plies the existence of spatial heterogeneity within NYC. That is, the same 
change in a variable may invoke different levels of change in COVID-19 
positivity rates, and this association depends on not only the features of 

T.-C. Yang et al.                                                                                                                                                                                                                                



Health and Place 69 (2021) 102574

7

a ZIP code but also those of its neighboring ZIP codes. 
In light of the unique context of NYC, the findings of this study 

cannot be directly generalized to other metropolitan areas. However, the 
associations between the key independent variables (e.g., racial/ethnic 
composition and workers’ features) and COVID-19 positivity rates may 
be extended to other metropolitan areas with comparable segregation, 
demographic, and socioeconomic profiles, such as Chicago City. More-
over, the pattern of spatially structured errors that can be identified with 
the CAR model may capture the unique social and cultural clusters in 
other cities. It is important to focus on the heterogeneity across metro-
politan areas in future research. 

We implemented several sensitivity analyses to check the robustness 
of our findings and conclusions. For example, we separated the percent 
of essential workers from the disadvantage index and this change did not 
make the disadvantage index a significant factor (and the direction of 
the association between essential workers and COVID-19 positivity rate 
follows the expectation). Moreover, we considered more covariates than 
presented in the tables (e.g., percent of foreign-born population) but 
these covariates do not alter our findings. For model parsimony, we 
opted not to include them in this study. Finally, we considered other 
spatial error structures (e.g., combining the spatial and non-spatial ef-
fects into one overall effect) and found that the substantive findings 
remain the same. These sensitivity analysis results indicate that our re-
sults are robust. 

This study has several limitations. First, changing the unit of analysis 
may change our findings and conclusions, which is known as the 
modifiable area unit problem among ecological studies (Fotheringham 
and Wong, 1991). Second, the COVID-19 cases by patients’ character-
istics (e.g., race/ethnicity) are not available so that we are unable to 
analyze data by subgroups. Third, our results cannot be generalized to 
the individual level and any inference to individual behavior should be 
avoided. Fourth, the data and findings may be subject to several meth-
odological concerns (Delgado-Rodriguez and Llorca, 2004), such as 
confounding effects, selection bias (e.g., who got tested), and systematic 
errors (e.g., testing practice/behavior). Finally, the number of tests 
performed is not evenly distributed across ZIP codes and may be affected 
by other ZIP-code level factors, such as trust for the government (un-
available to this study). 

In sum, we find that demographic composition, worker characteris-
tics, and household features explain the high positivity rates in the ZIP 
codes of Queens and the Bronx. The spatial structure among ZIP codes 
matters more in Brooklyn and Manhattan than in other areas. ZIP codes 
with fewer remote workers or larger household sizes may need special 
attention when implementing the reopening policies. Future research 
should explicitly assess the potential impacts of religious community or 
levels of compliance with precautionary measures on COVID-19 posi-
tivity rates.  

Appendix A. Technical details of the negative binomial regression model in this study 

The likelihood of the negative binomial distribution can be expressed as follows: 

Pr(y)=
Γ(y + α)

Γ(y + 1)Γ(α)p
α(1 − p)y  

for y = 0, 1,2,⋯ and α > 0 and does not have to be an integer. The mean value of the negative binomial distribution can be expressed as 

μ=T*exp(η)

where T indicates the total number of tests performed in the study area and η refers to the linear combination of covariates and the hyperparameter α, 
which serves as the overdispersion parameter and can be shown as 

α= exp(θ)

where θ is shape parameter of the negative binomial distribution. In addition, p is a hyperparameter and is written as 

p=
exp(pinter)

1 + exp(pinter)

and pinter refers to the internal presentation of p and INLA gives pinter initial value and prior. 

The mean and variance of the distribution of y are μ = α*
(

1− p
p

)

and σ2 = μ*
(

1 +
μ
α

)
. When α approaches infinity, the negative binomial distri-

bution would become the Poisson distribution. 
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