
Sun et al. Genet Sel Evol  (2016) 48:77 
DOI 10.1186/s12711-016-0255-4

RESEARCH ARTICLE

Contributions of linkage disequilibrium 
and co‑segregation information to the  
accuracy of genomic prediction
Xiaochen Sun*, Rohan Fernando and Jack Dekkers

Abstract 

Background:  Traditional genomic prediction models using multiple regression on single nucleotide polymorphisms 
(SNPs) genotypes exploit associations between genotypes of quantitative trait loci (QTL) and SNPs, which can be 
created by historical linkage disequilibrium (LD), recent co-segregation (CS) and pedigree relationships. Results from 
field data analyses show that prediction accuracy is usually much higher for individuals that are close relatives of the 
training population than for distantly related individuals. A possible reason is that historical LD between QTL and SNPs 
is weak and, for close relatives, prediction accuracy of SNP models is mainly contributed by pedigree relationships and 
CS. Information from pedigree relationships decreases fast over generations and only contributes to within-family pre-
diction. Information from CS is affected by family structures and effective population size, and can have a substantial 
contribution to prediction accuracy when modeled explicitly.

Results:  In this study, a method to explicitly model CS was developed by following the transmission of putative QTL 
alleles using allele origins at SNPs. Bayesian hierarchical models that combine information from LD and CS (LD-CS 
model) were developed for genomic prediction in pedigree populations. Contributions of LD and CS information to 
prediction accuracy across families and generations without retraining were investigated in simulated half-sib data-
sets and deep pedigrees with different recent effective population sizes, respectively. Results from half-sib datasets 
showed that when historical LD between QTL and SNPs is low, accuracy of the LD model decreased when the training 
data size is increased by adding independent sire families, but accuracies from the CS and LD-CS models increased 
and plateaued rapidly. Results from deep pedigree datasets show that the LD model had high accuracy across gen-
erations only when historical LD between QTL and SNPs was high. Modeling CS explicitly resulted in higher accuracy 
than the LD model across generations when the mating design generated many close relatives.

Conclusions:  Our results suggest that modeling CS explicitly improves accuracy of genomic prediction when his-
torical LD between QTL and SNPs is low. Modeling both LD and CS explicitly is expected to improve accuracy when 
recent effective population size is small, or when the training data include many independent families.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The feasibility of obtaining genotypes of dense single 
nucleotide polymorphisms (SNPs) with genome-wide 
coverage has improved accuracy of estimated breeding 
values by genomic prediction [1–6]. To date, most statis-
tical models for genomic prediction are based on multi-
ple regression of phenotypes on SNP genotype covariates 

(SNP models). The estimated SNP effects are used to pre-
dict genomic estimated breeding values (GEBV) for selec-
tion candidates, which are usually progeny of individuals 
in the training population [7]. Linkage disequilibrium 
(LD) between quantitative trait loci (QTL) and SNPs was 
initially thought to be the only source of genetic informa-
tion that contributes to accuracy of genomic prediction 
using SNP models, until [8] and [9] showed that co-seg-
regation (CS) of QTL with SNPs and pedigree relation-
ships that are implicitly captured by SNP genotypes also 
contribute to prediction accuracy.
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Co-segregation is an important source of information 
that contributes to accuracy of genomic prediction [9, 
10]. Alleles co-segregate when they originate from the 
same parental chromosome. Thus, in this study, CS is 
defined as a non-random association between the grand-
parental allele origins of two linked loci. For instance, the 
maternal alleles of an individual at two loci co-segregate 
when both alleles originate from the same grand mater-
nal chromosome [11, 12]. With high-density genotyping, 
the probability that a QTL allele co-segregates with its 
two adjacent SNP alleles is high. For example, the average 
distance between adjacent SNPs on the Illumina Bovine 
SNP50 BeadChip is 50 kb [13, 14], and the average 
recombination rate between two adjacent SNPs is only 
around 0.0005 per meiosis, assuming a typical crossover 
rate of 1 % per million base pair.

In analyses of field datasets using SNP models, 
high accuracy of genomic prediction has been mainly 
observed among close relatives [1, 2, 15, 16], and predic-
tion accuracy decreases rapidly when the validation indi-
viduals are separated from training individuals by more 
generations [5, 16–18]. The latter does not agree with 
results from simulation studies in which the LD between 
QTL and SNPs was high [7–9, 19]. These results suggest 
that LD between QTL and SNPs is low in current live-
stock populations, and that prediction accuracy of the 
SNP model mainly comes from CS and pedigree relation-
ships that are implicitly captured by SNP genotypes [8, 
10, 16, 17, 20].

Simulation studies have shown that both LD and 
CS information contribute to prediction accuracy of 
the genomic best linear unbiased prediction (GBLUP) 
model [9]. Information from historical LD was persistent 
across generations and contributed to prediction accu-
racy across families and across validation generations. 
CS information that is captured implicitly by GBLUP 
was not persistent across families or generations, and 
its contribution to prediction accuracy decreased when 
the number of unrelated families increased in the train-
ing population [9]. Simulation studies of an aquaculture 
breeding program [21] showed that the contribution of 
CS information to prediction accuracy was similar across 
a wide range of SNP densities, while the contribution of 
LD information dropped significantly with decreasing 
SNP density, indicating that the accuracy due to CS was 
not affected by the level of LD. In a study using data from 
Italian Brown Swiss bulls, the effect of LD and CS infor-
mation on prediction accuracy was investigated for the 
GBLUP model, with the covariance structure of genomic 
breeding values constructed either using LD or CS infor-
mation at SNPs [10]. The GBLUP model that fitted both 
LD and CS had a similar accuracy as that fitting only 
CS, which was slightly higher than that fitting only LD 

[10]. Their results also suggest that when historical LD 
between QTL and SNPs is low, prediction accuracy for 
closely related individuals mainly comes from CS instead 
of LD.

Although LD between SNPs has been shown to be siz-
able in livestock populations [14, 22–24], LD between 
SNPs and unobservable QTL can be much lower than LD 
between SNPs, which is probably due to the difference in 
minor allele frequencies (MAF) of SNPs and QTL. QTL 
for economically important traits are likely to have low 
MAF either because the traits have been subject to direc-
tional selection for a long time [25–27], or because some 
QTL are the result of mutations that occurred more 
recently than the mutations that caused SNPs [25, 27, 
28]. SNPs included on SNP chips usually have moderate 
to high MAF due to ascertainment bias from sequenc-
ing and prototype genotyping of reference samples [13]. 
Since LD between loci that have different MAF is low, 
LD information contributes little to prediction accu-
racy when most QTL have much lower MAF than SNPs 
(Detailed discussion is provided in Additional file  1). 
Modeling CS explicitly can increase accuracy when his-
torical LD is low because CS information follows trans-
mission of QTL alleles among related individuals, which 
is independent of the level of LD between QTL and SNPs.

Explicit modeling of CS information for genomic pre-
diction was proposed and developed by Luan et al. [10]. 
In Luan et  al. [10], CS was modeled at each SNP locus 
using the method in Fernando and Grossman [29], and 
a realized relationship matrix using CS information was 
constructed by averaging across all SNPs with equal 
weights. The method for modeling CS in Luan et al. [10] 
can be improved in two aspects. First, since CS signals 
span long genomic distances, modeling CS across mul-
tiple SNPs is expected to capture the same amount of 
CS information as modeling at each SNP, but modeling 
across multiple loci can substantially improve computa-
tional efficiency. Second, Luan et  al. [10] assumed that 
the contribution of CS information at each SNP was the 
same. The variance at QTL can vary due to differences in 
allele frequencies and effects at the QTL, and these vari-
ances can be treated as unknowns and marginalized in a 
Bayesian analysis. In this study, a new method is devel-
oped to model CS explicitly. The CS model follows the 
transmission of putative QTL within 1-cM genomic win-
dows. A detailed description of a Bayesian hierarchical 
model for genomic prediction using CS is provided, and a 
Gibbs sampling algorithm for prediction of breeding val-
ues is derived.

Persistence of prediction accuracy across validation 
generations without retraining (long-term accuracy) 
is an important criterion to evaluate contributions of 
LD and CS information to prediction accuracy. Habier 
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et  al. [9] showed that LD information was more persis-
tent than the CS information that is implicitly captured 
by SNP genotypes because CS information decays across 
generations due to recombination within large chromo-
some segments. Modeling CS explicitly at small putative 
QTL regions is expected to improve accuracy across gen-
erations because recombination is less likely to happen 
within small chromosome segments. The contribution of 
CS information to accuracy across generations by mod-
eling CS explicitly has not been studied.

Recent effective population size (Ne) is another impor-
tant factor that affects the contribution of CS information 
to long-term accuracy. For a given size of the training 
and validation populations, individuals are more closely 
related when recent Ne is smaller and CS information is 
expected to contribute more to long-term accuracy in 
that case for two reasons. First, CS is generated as asso-
ciations between loci over long chromosome regions. 
Smaller recent Ne causes higher CS due to stronger drift 
and selection of alleles in recent generations. Second, 
with smaller recent Ne, fewer founder alleles are each 
inherited by relatively more offspring, and, thus, the val-
ues of founder alleles can be estimated more accurately 
when more data is available for each allele. In livestock 
populations, recent Ne is affected by the mating design 
and can vary greatly between breeding programs. There-
fore, it is important to study the effect of recent Ne on the 
contribution of CS information to long-term accuracy of 
genomic prediction.

The objectives of this study were (1) to develop a 
Bayesian statistical method to model CS explicitly by 
following the transmission of putative QTL alleles of 
pedigree founders, (2) to investigate contributions of LD 
and CS information to the accuracy of genomic predic-
tion across unrelated families and validation generations 
without re-training, and (3) to investigate the effects of 
historical LD, recent Ne, and MAF of QTL on the advan-
tage of modeling LD and CS explicitly to improve pre-
diction accuracy.

Methods
Genomic prediction models using LD, CS and combined 
LD‑CS information
Definitions of LD, CS, and pedigree relationship are pre-
sented for a population with known pedigree information 
following Habier et  al. [12]. LD is defined as all non-
random associations between allele states in pedigree 
founders. These associations result in greater similar-
ity between individuals that have the same marker allele 
states due to QTL that are in LD with the markers. CS 
is defined as non-random association between allele ori-
gins in pedigree generations. These associations result in 
higher covariances between relatives that have the same 

marker allele origins than those conditional only on pedi-
gree relationships due to CS between QTL and markers. 
Similarly, relatives that have different marker allele ori-
gins will have lower covariances than those conditional 
only on pedigree relationships. Once LD is defined within 
pedigree founders, all the “new” associations created in 
pedigree generations can be explained by co-segregation 
and pedigree relationships. Since pedigree relationships 
quickly dissipate with generations, their contribution 
to long-term accuracy is small [8, 12]. Therefore, this 
study only focuses on the contributions of LD and CS 
information.

Following Meuwissen et  al. [7], the statistical model 
that uses LD information for prediction of GEBV for a 
quantitative trait is written as:

where y is an n× 1 vector of trait phenotypes of n train-
ing individuals, β is a vector of non-genetic fixed effects, 
X is the design matrix for fixed effects, Z is an n×m 
matrix with each row containing genotypes (coded 
as 0/1/2) at m SNPs of each training individual, α is an 
m× 1 vector of allele substitution effects of the m SNPs, 
and e is an n× 1 vector of residuals. Informative prior 
distributions are usually given to α to allow simultaneous 
estimation of all SNP effects.

In the LD model (1), QTL effects are not explicitly fit-
ted but SNPs are used as surrogates for QTL due to LD. 
The genotypic value at the QTL that is captured by sur-
rounding SNP genotypes can be viewed as the condi-
tional expectation of this genotypic value given SNP 
genotypes. When LD between QTL and SNPs is not 
complete, the true genotypic value at the QTL deviates 
from its conditional expectation. Therefore, under low 
LD, the LD model can only capture part of the genetic 
variance at QTL.

The CS model is given by

where y is an n× 1 vector of trait phenotypic values of 
n training individuals, β and X are the same as in the LD 
model (1), vj is a vector of the values of founder alleles 
at the jth putative QTL, with nq the number of putative 
QTL, Wj is the covariate matrix for vj, and e is an n× 1 
vector of residuals. As in the LD model, informative prior 
distributions are given to vj’s to allow simultaneous esti-
mation of the value of founder alleles. Definitions of the 
value of founder alleles vj and their covariates Wj are 
given in the next section.

The model that fits both LD and CS (LD-CS model) 
includes the LD and CS terms from models (1) and (2),

(1)y = Xβ+ Zα+ e,

(2)y = Xβ+

nq
∑

j=1

Wjvj + e,
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In the LD-CS model (3), the conditional expectation 
of the genotypic value at a putative QTL is captured by 
surrounding SNP genotypes in the LD term, while the 
genotypic value at a putative QTL are explicitly fitted in 
the CS term. When LD between QTL and SNPs is not 
complete, deviations between QTL genotypic values and 
their conditional expectations on SNP genotypes are cap-
tured by the CS term. Therefore the LD-CS model (3) is 
expected to capture most genetic variance at QTL under 
incomplete LD.

Statistical modeling of CS information
Co-segregation of alleles at two loci means that these 
alleles share identical grand-parental allele origins, i.e. 
they both originate from the same chromosome of a par-
ent. The indicator of parental allele origin at one locus is 
a Bernoulli variable. In this study, the allele origin indi-
cator equals 0 if it originates from its grand-maternal 
allele, and 1 if it originates from its grand-paternal allele. 
When allele origins of parents and offspring at a SNP are 
known, the probability that the allele origin of a putative 
QTL linked to the SNP is grand-paternal (equals 1) can 
be calculated using recombination rates between QTL 
and SNPs, which is termed the probability of descent 
of the QTL allele (PDQ). Suppose that allele origins are 
known for an individual’s maternal alleles at two SNPs M1 
and M2. Then, assuming no interference, the PDQ at the 
putative QTL is calculated as follows when the origins 
of both SNP alleles are the mother’s maternal allele, i.e. 
Om
1 = 0 and Om

2 = 0,

where Om
i  is the maternal allele origin at Mi for i = 1, 2 , 

Om
Q is the maternal allele origin at the QTL, r1 is the 

recombination rate between M1 and QTL, r2 is the 
recombination rate between QTL and M2, and r12 is the 
recombination rate between M1 and M2. Recombination 
rates r1, r2 and r12 can be calculated from the map dis-
tance between M1 and M2 using mapping functions [30].

In most cases, positions of QTL are not known, and 
genome-wide CS information is modeled for putative 
QTL within each non-overlapping genomic window of a 
certain length. In this study, putative QTL were fitted at 
genome windows of lengths 0.5, 1 and 2 cM, respectively, 

(3)y = Xβ+ Zα+

nq
∑

j=1

Wjvj + e.

(4)

Pr(Om

Q = 0|Om

1 = 0,Om

2 = 0)

=
Pr(Om

1 = 0,Om

Q = 0,Om

2 = 0)

Pr(Om

1 = 0,Om

2 = 0)

=
(1− r1)(1− r2)

1− r12
,

to study the impact of window length on the accuracy of 
the CS and LD-CS models. Within each genomic win-
dow, the putative QTL is assumed to be located at the 
midpoint of SNPs M1 and M2 that are flanking the win-
dow. It follows that r1 = r2 = 0.5[1− exp(−dM1M2)] and 
r12 = 0.5[1− exp(−2dM1M2)], where dM1M2 is the dis-
tance between M1 and M2 in Morgan. Transmission of 
putative QTL alleles is followed by PDQ calculated using 
allele origins of M1 and M2. When there is no recombina-
tion between M1 and M2, the PDQ of the putative QTL is 
either 0 or 1, indicating the transmission of grand mater-
nal or paternal QTL allele, respectively. When recom-
bination occurs between M1 and M2, the PDQ of the 
putative QTL is 0.5, meaning that the value of the recom-
binant QTL allele is the average of the values of the two 
parental QTL alleles.

The method for modeling CS uses PDQ to follow the 
transmission of founder alleles at putative QTL. The true 
breeding value (TBV) of an individual is the summation 
of the value of its maternal and paternal alleles (denoted 
as vm and vp, respectively) of putative QTL across the 
genome. At each putative QTL, the values of founder 
QTL alleles were assumed independent. The values of 
non-founder QTL alleles are linear combinations of the 
values of founder QTL alleles, with covariates deter-
mined by the PDQ. The covariates of maternal and pater-
nal QTL alleles of a non-founder individual i (w′m

i  and 
w′p

i , respectively) were calculated recursively as

and

where PDQm
i  (PDQp

i ) is the maternal (paternal) PDQ for 
non-founder i, and w′m

dam (w′p
sire) is the dam’s maternal 

(sire’s paternal) covariates for founder QTL alleles. Vec-
tors w′m

dam and w′p
sire at each QTL have dimension equal 

to twice the number of pedigree founders.
Vectors w′m

i  and w′p
i  comprise the rows in the inci-

dence matrix WH that relates the values of QTL alleles 
of all individuals with those of founders. The incidence 
matrix that relates TBV with the values of founder QTL 
alleles (W) was derived by the summation of every two 
rows in WH that correspond to the paternal and maternal 
QTL alleles of the same individual, i.e.

where In is the identity matrix with dimension n. The vec-
tor of TBV of all individuals (gCS) can be written as

where v is the vector of values of founder alleles at all 
putative QTL.

(5)w′m
i = PDQm

i w
′m
dam + (1− PDQm

i )w
′p
dam,

(6)w′p
i = PDQ

p
i w

′m
sire + (1− PDQ

p
i )w

′p
sire,

W =
(

In ⊗ [1, 1]
)

×WH,

gCS = Wv,



Page 5 of 18Sun et al. Genet Sel Evol  (2016) 48:77 

Prediction of breeding values
Method BayesA and BayesB were used to estimate SNP 
allele substitution effects and values of founder QTL 
alleles. Details of Bayesian inference using BayesA and 
BayesB are given in Additional file  2. The value of πSNP 
for BayesB in the LD and LD-CS models was calculated as 
1− Number of QTL

Number of SNPs. The value of πCSE for BayesB in the CS 
and LD-CS models was 0.95, indicating the proportion of 
founder alleles that have an ignorable effect on TBV. The 
Gibbs sampler was run for 21,000 iterations, with the first 
1000 discarded as burn-in. Point estimates of SNP effects 
and values of founder alleles at putative QTL were poste-
rior means calculated from the MCMC samples.

Simulation of the base population
Contributions of LD and CS information to prediction 
accuracy were investigated using simulated datasets of 
paternal half-sib designs with different numbers of inde-
pendent sire families, and extended pedigrees with three 
mating designs that differed in recent Ne. Parents of half-
sibs and founders of extended pedigrees were random 
samples from the same base population, following closely 
the simulations of Habier et al. [8, 16] and Sun et al. [31].

The simulated genome comprised two chromosomes, 
each 1 Morgan long. Each chromosome was evenly cov-
ered by 4000 SNPs. Fifty candidate QTL were randomly 
positioned within each cM of the genome. The mutation 
rate for QTL and SNPs was 2.5× 10−5 per meiosis per 
locus. The number of crossovers per chromosome was 
sampled from a Poisson distribution with mean 1.0, and 
the positions of the crossovers were sampled from a uni-
form distribution.

Two scenarios were simulated for historical LD between 
SNPs in the base population. In the scenario of high histori-
cal LD between SNPs, the base population was generated as 
follows. The initial generations comprised a population with 
Ne = 500 that was randomly mated for 500 generations to 
generate LD between closely linked loci, after which the 
population was shrunk to Ne = 200 and randomly mated 
for another 100 generations to create LD over longer genetic 
distances. In the next 10 generations, the population was 
linearly scaled up to an actual size of 2000 as the base popu-
lation. In the scenario with no historical LD between SNPs, 
a population of actual size 2000 was generated as base pop-
ulation with SNP and QTL alleles randomly sampled with 
frequency 0.5. This resulted in a population that was both 
in linkage equilibrium and in Hardy-Weinberg equilibrium.

In the base population, 2000 SNPs with MAF higher 
than 0.05 on each chromosome and one segregating QTL 
within each cM of the genome were sampled according 
to their MAF, depending on the scenario (Table  1). In 
the Common QTL scenario, all QTL had MAF between 
0.01 and 0.5. In the Rare QTL scenario, all QTL had MAF 

between 0.01 and 0.06. Additive QTL effects were ran-
domly sampled from a standard normal distribution. The 
TBV were obtained as the summation of all QTL allele 
values for a given individual. Allele substitution effects 
of QTL were scaled in the base population to achieve a 
genetic variance equal to 4.29. Normally distributed ran-
dom errors with mean 0 and variance 10.0 were added to 
TBV to generate phenotypes for a quantitative trait with 
a narrow sense heritability of 0.3.

For each pedigree, 50 replicated datasets were indepen-
dently simulated for each scenario in Table  1. All repli-
cated datasets used the same initial SNP positions but 
had different randomly sampled QTL effects and, after 
selection of loci based on MAF, had different positions of 
QTL and SNPs.

Simulation of half‑sib datasets
To study contributions of LD and CS information to 
prediction accuracy across unrelated families, paternal 
half-sib families from different numbers of sires were 
simulated. From the base population, s sires and 20× s 
dams were randomly sampled without replacement as the 
parents of half-sib offspring. Each of the s sires was mated 
with 20 dams, with each dam producing one offspring. 
Within each sire family, 10 random half-sib offspring 
were used in the training population and the other 10 for 
validation. Independent datasets were generated for dif-
ferent numbers of sire families, s = 1, 2, 5, 10, 50, 100 and 
200, corresponding to training population sizes of 10, 20, 
50, 100, 500, 1000 and 2000, respectively.

Simulation of pedigree population designs
To study the effect of recent Ne on long-term accuracy 
due to LD or CS information, three mating designs with 

Table 1  Minor allele frequencies (MAF) of  QTL and  SNPs 
and  the level of  historical linkage disequilibrium (LD) 
in the base population of simulated scenarios

a The scenario with MAF of QTL between 0.01 and 0.50, and MAF of SNPs 
between 0.06 and 0.50
b The scenario with MAF of QTL between 0.01 and 0.06, and MAF of SNPs 
between 0.06 and 0.50
c The scenario with high LD in the base population created by historical 
generations
d The scenario with linkage equilibrium in the base population by 
independently sampling genotypes of QTL and SNPs

Scenario Common QTLa Rare QTLb

High LDc No LDd High LD No LD

MAF of QTL 0.01–0.5 0.01–0.06

MAF of SNPs 0.06–0.5

LD between QTL and SNPs >0 =0 ≈0 =0

LD between SNPs >0 =0 >0 =0
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different recent Ne were simulated. The mating designs 
were represented by three pedigrees with 13 non-over-
lapping generations but different numbers of parents 
and offspring per mating. The founders (first generation) 
of all three pedigrees comprised five sires, each mated 
with 10 dams. Sires and dams of the first generation were 
randomly sampled from a base population of size 2000. 
Every mating in the first generation produced six male 
and six female progeny (second generation).

In pedigree 1, five sires and 50 dams were randomly 
selected in each generation starting from the 2nd genera-
tion. Each sire was mated with 10 dams, each producing 
six male and six female progeny. Pedigree 1 represents 
a balanced nested design where a small number of sires 
was selected in each generation and each sire on average 
contributed equally to the next generation. The Ne for 
pedigree 1 was calculated as Ne =

4×5×50
5+50 = 18.2 [32].

In pedigree 2, all 300 sires and 300 dams from genera-
tion 2 were used as parents. Each sire was mated with 
one dam, producing one male and one female progeny. 
Pedigree 2 represents an outbred population where all 
individuals survived, but each individual had a relatively 
limited contribution to future generations. Since each 
individual contributes an equal number of gametes to 
the next generation, and the variance of family sizes is 
zero, the Ne of pedigree 2 is approximated by 2N = 1200 , 
where N is the actual population size of each generation 
(600 for pedigree 2) [32].

In pedigree 3, five sires and 70 dams were randomly 
selected in each generation starting from the second gen-
eration. One sire was mated with 50 dams, each dam pro-
ducing five male and five female progeny, representing 
an influential sire family. Each of the other four sires was 
mated with five dams, each dam producing two male and 
three female progeny, representing four small sire fami-
lies. Pedigree 3 represents an unbalanced nested design, 
where the genetics of one individual dominates future 
generations. The Ne of pedigree 3 was much less than 
18.2.

The first five pedigree generations, with size 2455 (ped-
igree 1 and 2) and 2475 (pedigree 3), were used for train-
ing. Each of the following eight generations, with size 
600, were used for validation. Prediction accuracy was 
calculated as the correlation between GEBV and TBV in 
each validation generation.

In all simulated datasets, allele origins were assumed 
known without error at all SNPs. Putative QTL were fit-
ted within each 1-cM genome and PDQ were calculated 
using the simulated true allele origins. In addition, for 
pedigree 1, allele origins at all SNPs were either assumed 
known without error, or imputed using the LDMIP soft-
ware, with default parameter settings [33]. Putative QTL 
were fitted within every 0.5, 1 and 2 cM and PDQ were 

calculated using either true or imputed allele origins, to 
investigate the impacts of length of genomic windows to 
model CS and unknown allele origins.

Results
Half‑sib designs
In the Common QTL scenario with high historical LD, 
prediction accuracy of the LD model increased from less 
than 0.2 with one half-sib family and quickly plateaued 
around 0.8 when the number of half-sib families exceeded 
50, which corresponds to a training size of 500 (Fig.  1). 
Accuracy of the LD-CS model could not be distinguished 
from that of the LD model at all training sizes. Accuracy 
of the CS model increased from 0.2 and plateaued around 
0.4 when the training size exceeded 500, which was much 
lower than accuracies of the LD or LD-CS model (Fig. 1). 
These results suggest that when LD between QTL and 
SNPs is high, the LD model has high accuracy by captur-
ing information from both LD and CS, and modeling CS 
explicitly in addition to LD does not improve prediction 
accuracy.

In the Rare QTL scenario with high historical LD 
between SNPs, the actual level of historical LD between 
QTL and SNPs was low due to all QTL having much 
lower MAF than SNPs. Accuracy of the LD model 
increased with training size from 0.1 to about 0.45, which 
was much lower than accuracy with the Common QTL 
scenario (Fig. 1). Accuracy of the CS model also increased 
with training size and plateaued around 0.4, which was 
similar to the Common QTL scenario. Accuracy of the 
LD-CS model increased and became significantly higher 
than accuracy of both the LD and CS models when the 
training size exceeded 100 (10 half-sib families) (Fig. 1). 
These results suggest that when LD between QTL and 
SNPs is low, the contribution of CS information is more 
important than when LD between QTL and SNPs is 
high, and that modeling CS explicitly in addition to LD 
improves prediction accuracy across unrelated families.

In the Common QTL and Rare QTL scenarios without 
historical LD, the LD, CS and LD-CS models had simi-
lar accuracies when the training size was less than 500 
(Fig. 2). The CS and LD-CS models had higher accuracy 
than the LD model when the training size exceeded 500. 
Accuracy from the LD model decreased from 0.35 to 0.25 
when the training size exceeded 500 (Fig. 2). These results 
suggest that when there is no historical LD between QTL 
and SNPs, accuracy of the LD model comes from implic-
itly capturing CS information, but the ability to capture 
CS information decreases when a large number of unre-
lated families are included in the training population. 
Without historical LD, the CS model has much higher 
accuracy than the LD model due to explicitly capturing 
CS information.
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Pedigree mating designs
In the Common QTL scenario with high historical LD, 
the LD model had higher accuracy than either the CS or 
LD-CS model (Fig. 3). For all three pedigrees, the LD-CS 
model had slightly lower accuracy than the LD model, 
but the CS model had much lower accuracy than the LD 
model. Accuracies from the LD and LD-CS models only 
decreased marginally across the eight validation genera-
tions, but the accuracy of the CS model decreased rap-
idly (Fig. 3). These results suggest that when historical LD 
between QTL and SNPs is high, the LD model has persis-
tently high accuracy across validation generations with-
out retraining by accurately capturing QTL effects. The 
CS model estimates only the values of founder alleles, 
and the values of recombinant alleles that are gener-
ated across generations cannot be accurately estimated. 
Accuracies of the LD and LD-CS models were simi-
lar for all three pedigrees, because accuracy was mostly 

contributed by LD that was generated historically, which 
was not eroded within a limited number of generations.

Reductions in accuracy for the CS model across vali-
dation generations were less severe in pedigrees 1 and 3 
compared with pedigree 2 (Fig. 3). The reason is that the 
number of founder alleles was much smaller in pedigrees 
1 and 3 than in pedigree 2 and, thus, the values of founder 
alleles could be estimated more accurately due to more 
data available per founder allele. Similar trends in predic-
tion accuracy were observed for BayesB compared with 
BayesA, except that the difference in accuracy between 
the LD and LD-CS models was smaller for BayesB than 
for BayesA, especially in pedigrees 1 and 3 (Fig. 3).

In the Rare QTL scenario with high historical LD, the 
CS and LD-CS models had higher accuracy than the LD 
model (Fig. 4). The reduction in accuracy across valida-
tion generations was larger for the LD model than for 
the CS and LD-CS models, especially for pedigrees 1 
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and 3. These results suggest that when LD between QTL 
and SNPs is low, the accuracy of the LD model mostly 
comes from capturing CS information, and this infor-
mation decreases across validation generations due to 
recombination. In pedigrees 1 and 3, the LD-CS model 
had slightly higher accuracy than the CS model when 
using BayesA, but accuracies of the CS and LD-CS mod-
els were almost the same when using BayesB (Fig. 4). In 
pedigree 2, the LD-CS model had significantly higher 
accuracy than the CS model for both BayesA and BayesB. 
This is because when recent Ne is large, as in pedigree 2, 
the CS model has a disadvantage due to a large number 
of segregating alleles, each with relatively little data that 
contribute to the estimation of its value. Modeling LD in 
addition to CS improves prediction accuracy by implic-
itly capturing extra CS information. In conclusion, the 
contribution of CS information to prediction accuracy 
is more important in pedigrees with few parents than in 
pedigrees with many parents, because with few parents, 

the value of founder QTL alleles can be estimated more 
accurately due to more data being available.

In the Rare QTL scenario with high historical LD, accu-
racy of BayesB was higher than that of BayesA for the CS 
model (Fig.  4). This is because when QTL alleles have 
low MAF, the proportion of founder alleles that carry 
the favorable QTL allele is low. BayesB is more effective 
than BayesA to accurately estimate the value of the small 
proportions of founder alleles that carry favorable QTL 
alleles.

In the Common QTL scenario without historical LD, 
the LD, CS and LD-CS models had almost the same 
accuracy in either pedigree 1 or 3; while in pedigree 2, 
the LD model had much lower accuracy than the CS and 
LD-CS models (Fig.  5). When there is no historical LD, 
only CS information contributes to prediction accuracy. 
Recent LD between linked QTL and SNPs was created 
quickly within several generations in pedigrees 1 and 
3 due to high genetic drift, in which case the LD model 
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can capture as much CS information as the CS model. 
The creation of recent LD was slower in pedigree 2 due 
to much less drift compared with pedigrees 1 and 3, and 
hence the LD model could only capture part of the CS 
information.

In the Rare QTL scenario without historical LD, the 
CS and LD-CS models had similar accuracies, which 
was higher than the accuracy of the LD model (Fig.  6). 
This is because high LD cannot be created within several 
recent generations due to the difference in MAF between 
QTL and SNPs. Method BayesB had higher accuracy 
than BayesA for the CS and LD-CS models, because the 
value of the small proportion of founder alleles that carry 
favorable QTL alleles was estimated more accurately 
using BayesB than BayesA. In contrast, method BayesB 
had lower accuracy than BayesA for the LD model, 

because more SNPs were fitted by BayesA than by BayesB 
and hence captured more CS information [9].

Impact of unknown allele origins
To study the impact of unknown allele origins on the 
accuracy of the CS and LD-CS models, prediction accu-
racy was also compared for models using simulated true 
allele origins and allele origins imputed by the LDMIP 
software [33] in the simulated datasets of Pedigree 1 with 
high historical LD. In the Common QTL scenario, the 
CS model using imputed allele origins had lower accu-
racy when using imputed allele origins than when using 
true allele origins, and the accuracy decreased faster over 
generations, while the LD-CS model had similar accu-
racy using either imputed or true allele origins (Fig.  7). 
The reason is that, when there was high historical LD, 
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the accuracy was mostly contributed by LD, which was 
hardly affected by the accuracy of allele origins. In the 
Rare QTL scenario, the CS and LD-CS models had lower 
accuracy when using imputed allele origins than when 
using true allele origins (Fig.  7). The reason was that, 
when there was no historical LD, the accuracy was mostly 
contributed by CS, which was significantly affected by the 
accuracy of allele origins.

Impact of the length of the genomic window used 
to model CS
To study the impact of the length of the genomic window 
used to model CS on the accuracy of the CS and LD-CS 
models, values of founder alleles at putative QTL were 
fitted at genome windows of lengths 0.5, 1 and 2 cM, 
respectively, in the simulated datasets of pedigree 1 with 
high historical LD. Prediction accuracies of CS models 

that used different window lengths was similar, although 
shorter window lengths tended to have slightly higher 
accuracy in the Common QTL scenario but lower accu-
racy in the Rare QTL scenario (Fig. 8). Prediction accura-
cies of LD-CS models that used different window lengths 
was almost identical in the Common and Rare QTL sce-
narios (Fig.  8). Similar results were also observed for 
BayesA (results not shown). These results indicate that the 
length of the genomic window used to model CS has min-
imal impact on the accuracy of the CS and LD-CS models. 
A possible reason is that only very few windows contain 
recombinations and most of the non-recombinant win-
dows are not affected by window length. Fitting putative 
QTL at each SNP may show a significant advantage over 
e.g. 1-cM bins only when a larger number of observations 
is also available, to compensate for the much larger num-
ber of putative QTL allele effects to estimate.
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Discussion
The objectives of this study were (1) to develop a Bayes-
ian statistical method to model CS information explicitly, 
(2) to study contributions of LD and CS information to 
accuracy of genomic prediction across unrelated families 
and validation generations without re-training, and (3) 
to study the effects of historical LD, recent Ne and MAF 
of QTL on the advantage of modeling LD and CS explic-
itly in improving prediction accuracy. The major focus 
of this study was a theoretical exploration of contribu-
tions of LD and CS information to prediction accuracy 
in pedigree populations. The new CS and LD-CS model 
developed in this study enables precise disentanglement 
of CS information from LD since it models CS explicitly 
using allele origins. The simulation studies that were per-
formed assist in this disentanglement by limiting genetic 
information to LD, CS and pedigree relationships, ruling 

out the noise that exists in real datasets (e.g. dominance, 
epistasis, imprinting, epigenetics). Investigation on real 
datasets is, however, worthy of future studies for poten-
tial applications of the CS and LD-CS models. In the 
following section, the mechanisms by which LD and CS 
information contribute to prediction accuracy across 
families and generations, as well as the effects of histori-
cal LD, recent Ne and MAF of QTL on prediction accu-
racy are discussed.

Explicit modeling of CS information
In this study, a new method that explicitly models CS 
information was developed for genomic prediction in 
pedigree populations. This method models transmis-
sion of putative QTL alleles within consecutive non-
overlapping genomic windows of sufficiently small length 
(1 cM in this study), such that the recombination rate is 
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Fig. 5  Mean accuracy in three simulated pedigrees in the Common QTL scenario with no historical LD. LD, the LD model; CS, the CS model; LD-CS, 
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so small that the alleles at all polymorphic loci within 
the window are expected to co-segregate for several 
generations. Co-segregation of QTL alleles was mod-
eled using parental allele origins at SNPs that cover the 
genomic window, which are independent of the level of 
LD between QTL and SNPs. This method is applicable to 
any type of pedigree population provided that allele ori-
gins are available (or can be imputed) from founders to 
offspring. The method of modeling CS at putative QTL 
using allele origins at observable SNPs is similar to the 
method developed by Fernando and Grossman [29], but 
has the advantage that it allows estimation of values of 
founder alleles at putative QTL using single site Gibbs 
sampling. In Fernando and Grossman [29], the value of 
paternal and maternal alleles at putative QTL were fit-
ted in the model for every pedigree individual to explain 
its breeding value. The value of QTL alleles is usually 

correlated among individuals that are related by the pedi-
gree, and therefore, the estimation of these values was 
achieved by solving mixed model equations, which 
requires the inverse of the covariance matrix of these 
values for all pedigree members. Computation of the 
Fernando and Grossman [29] method is manageable for 
marker-assisted selection, where the number of molecu-
lar markers is usually small, but would not be feasible for 
genomic prediction. However, for genomic prediction 
using dense SNP panels, the CS model developed in this 
study is computationally tractable because the breeding 
values for all pedigree members are modeled using only 
the QTL alleles of pedigree founders, which are assumed 
independent and MCMC methods can be feasibly imple-
mented to estimate their values.

The CS model (2) developed in this study can also be 
written as an equivalent breeding value model
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Fig. 6  Mean accuracy in three simulated pedigrees in the Rare QTL scenario with no historical LD. LD, the LD model; CS, the CS model; LD-CS, the 
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where

and

The covariance matrix of breeding values due to CS 
(gCS ), GCS, quantifies the genetic covariance among 
individuals due to co-segregation at putative QTL. The 
genetic covariance between two individuals depends 
on the number of common founder alleles that the two 

(7)y = Xβ+ gCS + e,

gCS =

nq
∑

j=1

Wjvj ,

Var(gCS) = GCS =

nq
∑

j=1

WjDjW
′
j , with

Dj = diag
{

σ 2
jk

}nj
k=1.

individuals share through identity-by-descent, averaged 
across nq QTL, with the corresponding QTL effect vari-
ances as weights. This equivalent breeding value model 
(7) was used by Luan et al. [10] in their study on the con-
tributions of CS and LD information to prediction accu-
racy in Italian Brown Swiss bulls. In Luan et al. [10], CS 
was modeled at each SNP locus of the Bovine SNP 50K 
chip, which were assumed to be surrogates of QTL. The 
covariance matrix GCS was constructed independently at 
each SNP, and then averaged across all SNPs using equal 
weights. Compared to Luan et  al. [10], the CS model 
developed herein has three advantages. First, the CS 
model (2) fits putative QTL within short genomic win-
dows, which are much fewer than the number of SNPs 
in the 50K chip. Modeling CS at each SNP is not neces-
sary because CS information is based on linkage and is 
conserved over longer genomic distances. Second, the 
CS model (2) allows different variances of QTL effects 
depending on their allele frequencies and sizes of the 

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Common QTL, BayesA

A
cc

ur
ac

y

LD
CS, True PDQ
CS, Imputed PDQ
LD−CS, True PDQ
LD−CS, Imputed PDQ

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rare QTL, BayesA

Generation

A
cc

ur
ac

y

LD
CS, True PDQ
CS, Imputed PDQ
LD−CS, True PDQ
LD−CS, Imputed PDQ

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Common QTL, BayesB

A
cc

ur
ac

y

LD
CS, True PDQ
CS, Imputed PDQ
LD−CS, True PDQ
LD−CS, Imputed PDQ

1 2 3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Rare QTL, BayesB

Generation

A
cc

ur
ac

y

LD
CS, True PDQ
CS, Imputed PDQ
LD−CS, True PDQ
LD−CS, Imputed PDQ

Fig. 7  Mean accuracy in simulated pedigree 1 with high historical LD using true or imputed allele origins. LD, the LD model; CS, the CS model; 
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QTL effects. Larger QTL effects are estimated with less 
shrinkage, or equivalently larger weights in GCS. Third, 
the computation time for model (2) increases linearly 
with the number of individuals (n) times the number 
of founder QTL alleles 

(
∑nq

j=1 nj
)

, while for the mixed 
model approach in Luan et  al. [10], computation time 
increases cubically with n because it requires the inverse 
of a dense matrix, GCS.

It is generally accepted that LD between QTL and 
SNPs, co-segregation of QTL with SNP alleles, and pedi-
gree relationships at QTL captured by SNPs are the three 
main sources of information that contribute to the accu-
racy of genomic prediction [8–10, 16, 17, 34]. Most pre-
vious studies aimed at disentangling these three sources 
of information were based on multiple regression models 
on SNP genotypes (the LD model). The LD model only 
allows the part of CS information that is implicitly cap-
tured by SNP genotypes to be evaluated, which is highly 
variable depending on the number and density of SNPs, 

the level of historical LD, population structure and pedi-
gree relationships. The CS model developed in this study 
enables precise disentanglement of CS from LD informa-
tion because explicit modeling of CS information using 
parental allele origins does not depend on the level of LD 
between QTL and SNPs. As an intriguing consequence, 
results in this study are in contrast to some typical find-
ings in several previous studies based on the LD model. 
For example, Habier et  al. [9] showed that CS informa-
tion captured by SNP genotypes contributed little to pre-
diction accuracy across half-sib families and prediction 
accuracy decreased rapidly with increasing training size. 
In this study, prediction accuracy from the CS model per-
sisted with increasing training size regardless of histori-
cal LD. This difference is mainly because Habier et al. [9] 
only considered the part of CS information that is implic-
itly captured by GBLUP, while the CS model in this study 
captures most of CS information due to modeling CS 
explicitly.
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Contributions of LD and CS information in half‑sib designs
In the simulated datasets with different numbers of 
unrelated half-sib families, both LD and CS information 
contributed to the accuracy of genomic prediction. Accu-
racy of the LD model relies on the level of LD between 
QTL and SNPs in the base population. Accuracy of the 
CS model relies on accurate estimation of the value of 
founder QTL alleles that are transmitted to half-sib off-
spring within the same family. Accuracy of the LD model 
increased rapidly with increasing training size when LD 
between QTL and SNPs was high, because high LD is 
conserved across families and increasing training size 
brings in more data to improve estimation of SNP effects. 
However, when historical LD is low or zero, accuracy of 
the LD model mainly comes from capturing CS infor-
mation, which only exists within the same half-sib fam-
ily. Consequently, with more unrelated half-sib families 
included in the training population, accuracy of the LD 
model decreased and became lower than accuracy of 
the CS model. This is because only half-sibs from the 
same family contribute to prediction accuracy. In the 
CS model, the value of founder QTL alleles is estimated 
using only information from the same half-sib family, 
while the LD model estimates SNP effects by pooling 
CS information across all families, which is erroneous 
because linkage phase and LD is highly variable across a 
large number of unrelated families.

Contributions of LD and CS information in extended 
pedigrees with different recent Ne

Three mating designs were simulated that differed in 
the number of parents per generation and the number 
of progeny per mating. Pedigrees 1 and 3 resemble the 
breeding program where a few sires are selected and 
intensively used for breeding in each generation. CS 
information made significant contributions to prediction 
accuracy in pedigrees 1 and 3, because a limited number 
of sire alleles segregated among a large number of their 
progeny, and the value of the sires’ alleles can be esti-
mated accurately based on the amount of data available. 
Pedigree 1 is a balanced nested design with identical fam-
ily sizes, which is similar to the structure of nucleus herds 
in swine [35] or poultry [5] breeding programs. Pedigree 
3 is an unbalanced design with an influential sire in each 
generation that has more than 80 % of the total progeny, 
which resembles a dairy cattle population, where artifi-
cial insemination is widely used [36]. CS information 
had a larger contribution in pedigree 3 than in pedigree 
1, because most progeny in a cohort inherited alleles 
from only one sire in pedigree 3. In contrast, pedigree 
2 resembles an outbred population where all individu-
als survive and each mating has very few progeny. The 
number of unique parental alleles is large but each allele 

is transmitted only to very few progeny. As a result, the 
value of founder QTL alleles in pedigree 2 cannot be 
estimated accurately because each allele has only limited 
data available.

The difference between the three mating designs can 
be quantified by recent Ne. The Ne of pedigrees 1 and 3 
was less than 20, while that of pedigree 2 was close to 
200. CS information has a larger contribution to predic-
tion accuracy in a population with a smaller recent Ne 
because individuals tend to be more closely related and 
share more founder alleles at QTL. The importance of 
CS information in the three mating designs was clearly 
illustrated in the scenario without historical LD among 
founders, where the long-term accuracy only stems from 
CS information. As shown in Figs. 5 and 6, the long-term 
accuracy by modeling CS explicitly was most persistent 
for pedigree 3, followed by pedigree 1, and least persis-
tent for pedigree 2. A similar trend was also observed for 
the CS model when both LD and CS information contrib-
uted to prediction accuracy (Figs. 5 and 6).

The contribution of LD information to prediction accu-
racy should not depend on the mating design because 
high historical LD between QTL and SNPs is mostly 
between closely linked loci and hardly erodes within 
several recent generations. However, because the LD 
model also implicitly captures information from CS and 
pedigree relationships [9], accuracy of the LD model is 
affected by the mating design. For example, in the sce-
nario with high historical LD, accuracy of the LD model 
was higher for pedigrees 1 and 3 than for pedigree 2 
(Fig.  5). These results agree with Muir [19], who found 
that prediction accuracy of the GBLUP model decreased 
when recent Ne increased, and this reduction was larger 
when QTL and SNPs were in linkage equilibrium (LE) 
than when they were in LD.

In general, when historical LD is high between QTL 
and SNPs, long-term accuracy is mostly contributed by 
LD information and CS information has little contribu-
tion regardless of recent Ne. However, when historical 
LD is low, CS information contributes most to long-term 
accuracy, especially when the mating design creates a 
very small recent Ne.

The effect of MAF of QTL on contributions of LD and CS 
information
LD quantifies the correlation between allele states at 
QTL and SNPs. The LD model captures this correlation 
using multiple regression on SNP genotypes. Strong cor-
relations can only exist when QTL and SNPs have similar 
MAF, as in the Common QTL scenario. Correlations are 
expected to be low when most QTL have low MAF, while 
SNPs have moderate MAF, as in the Rare QTL scenario. 
In the simulated datasets, the correlation between allele 
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states exists in the form of historical LD and recent CS. 
Historical LD between closely linked loci is hardly eroded 
by recombination. The correlation generated by CS can 
exist between loci over long chromosome regions, which 
erodes fast with recombination. Both forms of correlation 
can be captured by the LD model, however, the LD model 
has persistent long-term accuracy only when histori-
cal LD between QTL and SNPs is high, which requires 
similar MAF between QTL and SNPs. When historical 
LD is low due to most QTL having low MAF, prediction 
accuracy of the LD model mainly comes from implicitly 
capturing CS information, which decreases rapidly across 
validation generations because CS information across 
long chromosome regions erodes fast with recombina-
tion. Similar results have been observed by Habier et al. 
[9] for the GBLUP model.

CS follows the transmission of QTL alleles among 
related individuals, which is independent of historical 
LD. As a result, prediction accuracy from the CS model 
is not affected by the level of historical LD. Accuracy 
due to CS information depends on (1) the length of the 
founder haplotypes that are used to follow transmission 
of putative QTL alleles, which determines the rate of ero-
sion of CS due to recombination; and (2) the accuracy 
with which the value of founder alleles can be estimated, 
which depends on the amount of phenotype data for the 
progeny that inherited the same founder haplotype. The 
CS model that used haplotypes of length 1 cM is expected 
to have only a few recombinations within haplotypes, and 
therefore CS information contributes to long-term accu-
racy provided that the value of founder QTL alleles can 
be estimated correctly with sufficient data.

The effect of prior distributions on prediction accuracy
Prior distributions in BayesA and BayesB [7] were used to 
allow simultaneous estimation of SNP effects α in the LD 
model and the value of founder QTL alleles vj in the CS 
model. GBLUP was also used in this study and had simi-
lar results as BayesA (results not shown). BayesA repre-
sents a method of shrinkage regression without variable 
selection. In BayesA, independent t prior distributions 
are given to αl and vjk. When using the posterior mode 
as the point estimate of a parameter β, the amount of 
shrinkage imposed by a scaled t prior distribution with 
degrees of freedom ν and scale parameter S2, t(0, ν, S2), 
is proportional to log

(

1+ β2

νS2

)

 [37]. The posterior mean 
used in this study is expected to be close to the mode due 
to the almost symmetric posterior distribution at conver-
gence of the MCMC [31]. This means that the estimates 
of small β are heavily shrunk towards zero but large β 
are less shrunk. BayesB represents a variable selection 
method, in which the prior for each αl and vjk is a mixture 
of a point mass at zero and a t distribution elsewhere. 

BayesB results in much heavier shrinkage towards zero 
than BayesA, and consequently the effective number of 
loci fitted in the model is larger in BayesA than in BayesB 
[9].

The effect of using alternate prior distributions on 
the LD model is twofold. When historical LD is high 
between QTL and SNPs, high prediction accuracy is 
usually achieved by the LD model, with nearly unbiased 
estimates of large SNP effects, while effectively shrinking 
small SNP effects towards zero. In the simulated datasets 
of this study, BayesB resulted in higher accuracy than 
BayesA because the number of QTL was much smaller 
than the number of SNPs. When historical LD is low, 
prediction accuracy mainly comes from implicitly cap-
turing CS information, which depends on the effective 
number of SNPs fitted in the model. Then, BayesA results 
in higher accuracy than BayesB due to fitting relatively 
more SNPs, which can capture more CS information 
than BayesB [9].

The effect of prior distributions on the CS model does 
not depend on historical LD, but does depend on the 
MAF of QTL. When the MAF of QTL is high, BayesA 
tends to result in higher accuracy than BayesB because of 
fitting more founder alleles that co-segregate with com-
mon QTL alleles. When the MAF of QTL is low, BayesB 
tends to result in higher accuracy than BayesA, because 
only a small proportion of founder alleles carry QTL and 
their values can be estimated more accurately by variable 
selection of BayesB.

Implementation of LD‑CS model in field datasets
In real livestock populations, persistently high accuracy 
across validation generations using the LD model has 
rarely been observed [5, 16–18], which suggests that his-
torical LD between QTL and SNPs is not perfect, and 
prediction accuracy relies more on CS than on LD infor-
mation [10, 20]. The LD-CS model is recommended to 
improve long-term accuracy due to capturing both LD 
and CS information explicitly. Simulation results in this 
study suggest that the LD-CS model tends to result in 
the highest prediction accuracy of predictions in almost 
all scenarios. Using a similar LD-CS model as model 
(7), Luan et  al. [10] show that in a pedigree population 
of Italian Brown Swiss bulls, LD information does not 
contribute to accuracy beyond that due to CS informa-
tion. Recent studies in pig [28] and Atlantic salmon [38] 
breeding populations showed that the CS model of Luan 
et al. [10] had similar or lower accuracy than the GBLUP 
model, depending on trait heritability, SNP density, and 
the number of generations of pedigree data used to infer 
SNP allele origins. Results from field data suggest that in 
livestock populations, both CS and LD information con-
tribute to prediction accuracy, and modeling CS explicitly 



Page 17 of 18Sun et al. Genet Sel Evol  (2016) 48:77 

can achieve almost the same accuracy as fitting SNP gen-
otypes. Furthermore, the simulation results in this study 
suggest that modeling LD and CS explicitly improves 
prediction accuracy compared to modeling either LD or 
CS, when historical LD between QTL and SNPs is low 
due to most QTL being rare, as represented by the Rare 
QTL scenario.

There are several computational issues in implement-
ing the CS or LD-CS models (2) in field datasets. First, 
obtaining parental allele origins from SNP genotypes for 
all pedigree members can be computationally prohibitive. 
This is usually achieved in two steps. SNP genotypes are 
first phased into haplotypes, which are then used to infer 
parental allele origins using pedigree information [12, 
33]. Our results show that the advantage of modeling CS 
information explicitly in improving prediction accuracy 
depends strongly on the accuracy of allele origins, and 
errors in phasing and allele origin imputation can reduce 
or even nullify the advantage of the CS or LD-CD mod-
els. This problem can become less demanding with the 
availability of higher SNP density, genome re-sequencing, 
and identification of multi-allelic markers such as copy 
number variants and insertions/deletions. Second, the 
computation time for the MCMC algorithm of the CS 
model (2) increases with the number of pedigree found-
ers, because the number of alleles at each putative QTL 
(nj) is twice the number of founders. It is suggested that 
putative QTL be modeled at every 1 cM of the genome to 
reduce the total number of QTL alleles, as justified by the 
fact that recombination occurs very rarely within a 1-cM 
genomic window over several consecutive generations. 
Furthermore, instead of treating the values of QTL alleles 
as independent, they can be clustered according to their 
probability of identity-by-descent with respect to some 
historical common ancestors beyond the pedigree found-
ers [33, 39, 40]. However, when the number of founders is 
large, the equivalent breeding value model (7) is recom-
mended since the mixed model equations have the num-
ber of genotyped individuals as dimension.

Conclusions
In this study, a new method that explicitly models co-
segregation information was developed for genomic 
prediction of breeding values. Breeding values in this CS 
model were modeled as the sum of independent values 
of putative QTL alleles among pedigree founders, which 
were traced down in the pedigree using SNP haplotypes. 
When the training size was increased by adding unrelated 
half-sib families, accuracy of the CS model increased and 
plateaued, but accuracy of the LD model that fits SNP 
genotypes dropped when historical LD between QTL 

and SNPs was low. Modeling both LD and CS informa-
tion improved prediction accuracy compared to mod-
eling either LD or CS, especially when historical LD was 
low and recent CS information contributed substantially 
to prediction accuracy among families, which is probably 
the case for recent genomic evaluation in most livestock 
populations. The effects of recent Ne, historical LD, and 
MAF of QTL on persistence of accuracy across valida-
tion generations without retraining were investigated 
when explicitly modeling LD and CS information. The 
LD model had persistently high accuracy across valida-
tion generations only when historical LD between QTL 
and SNPs was high, which requires that QTL and SNPs 
have similar MAF. When historical LD between QTL and 
SNPs was low, accuracy of the LD model came mostly 
from capturing CS information, which was much lower 
and less persistent than that of the CS and LD-CS mod-
els. The contribution of CS information increased with 
smaller recent Ne, because the number of segregating 
QTL alleles of pedigree founders was smaller and their 
value could be estimated more accurately with sufficient 
data. Since the recent Ne of most livestock populations 
is small and historical LD between QTL and SNPs tends 
to be low, modeling CS explicitly in addition to LD has 
potential to improve long-term accuracy provided that 
the allele origins can be accurately imputed.
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