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Abstract: The antioxidant, antimicrobial, antiproliferative, and enzyme inhibitory properties of
five extracts from aerial parts of Salvia pachyphylla Epling ex Munz were examined to assess the
prospective of this plant as a source of natural products with therapeutic potential. These properties
were analyzed by performing a set of standard assays. The extract obtained with dichloromethane
showed the most variety of components, as they yielded promising results in all completed assays.
Furthermore, the extract obtained with ethyl acetate exhibited the greatest antioxidant activity, as well
as the best xanthine oxidase inhibitory activity. Remarkably, both extracts obtained with n-hexane
or dichloromethane revealed significant antimicrobial activity against the Gram-positive bacteria;
additionally, they showed greater antiproliferative activity against three representative cell lines of
the most common types of cancers in women worldwide, and against a cell line that exemplifies
cancers that typically develop drug resistance. Despite that, other extracts were less active, such as
the methanolic or aqueous; their results are promising for the isolation and identification of novel
bioactive molecules.

Keywords: Salvia pachyphylla; plant extracts; antioxidant; antimicrobial; antiproliferative;
enzyme inhibitory

1. Introduction

The genus Salvia belongs to a large family of flowering plants, Lamiaceae, which comprises
about 252 genera and 7200 species [1,2]. Several species of Salvia are cultivated for their aromatic
features and serve as flavorings, food condiments, cosmetics and perfume additives, and folk
medicines [3]. Considering the latter, scrutiny of their chemical constituents have revealed
the presence of a vast assortment of active compounds, some of them with antibacterial [4–7],
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antiviral [8,9], antitumor [10–13], antioxidant [14–17], antidiabetic [18,19], and antiparasitic [20]
properties. Additionally, some species have been used etnopharmacologically for the treatment
of mental and nervous illness [21], as well as for gastrointestinal conditions [22,23]. Furthermore,
phytochemical studies have led to the isolation of many types of diterpenoids, such as abietane,
ictexane, labdane, neoclerodane, and phenalenone [24–26], triterpenes and sterols [27], along with
anthocyanins, coumarins, polysaccharides, flavonoids, and phenolic acids [22].

Salvia pachyphylla Epling ex Munz (blue sage) is a perennial herbaceous plant distributed from the
state of California (USA) to the peninsula of Baja California (Mexico) [28]. The traditional medicine of
Native American communities has taken advantage of the curative goods of blue sage and, currently,
serves to treat flu symptoms, menstrual depression, and hysteria [29]. Several abietane diterpenoids
with pharmacological properties have been isolated from the aerial parts of S. pachyphylla [30].
Considering the therapeutic potential of this plant, our study was directed towards identifying specific
biological activities existing in different extracts from the aerial parts of S. pachyphylla. This approach
represents the initial stage of a major survey aimed to isolate and identify phytochemicals with
pharmacological potential.

Despite the recent dominance of synthetic chemistry as the foremost method to generate new or
improved therapeutic agents, there is still a potential for plants to serve as a natural source of novel
drugs [31]. Interestingly, the chemical diversity of natural products is complementary to the diversity
found in synthetic libraries. However, natural products are sterically more complex and have a greater
diversity because of their long evolutionary selection process [32].

Examples of successful medicines derived from natural products include antibiotics,
enzyme inhibitors, immunosuppressive drugs, and antiparasitic agents [33]. The antitumor area
is likely the greatest impact of drugs derived from plants, where vinblastine, vincristine, taxol,
and camptothecin have improved the effectiveness of chemotherapy of some of the deadliest cancers.

Here, we reported the antioxidant, antimicrobial, antiproliferative, and enzyme inhibition
properties of five extracts (obtained with n-hexane, dichloromethane, ethyl acetate, methanol,
and water) from the aerial parts of S. pachyphylla. These properties were examined performing a
set of standard in vitro assays.

2. Results

2.1. Antioxidant Screening

The antioxidant activity was evaluated using the β-carotene-linoleic acid assay and the
1,1-diphenyl-2-picrylhydrazyl DPPH radical-scavenging capacity assay (Figures 1 and 2). In the
β-carotene-linoleic test, the best activity was detected in the ethyl acetate extract (84%), immediately
followed by the dichloromethane extract (83%); all five extracts showed higher activity, as compared
with the reference compound α-tocopherol (8%). On the other hand, in the DPPH system, the ethyl
acetate extract remained at the top in this activity, revealing an EC50 of 0.28 mg/mL. In addition, the
extracts obtained with n-hexane or water showed similar values (0.41 and 0.51 mg/mL, respectively).
Remarkably, neither of the extracts exhibited a comparative value with quercetin, the reference
compound (0.003 mg/mL).
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2.2. Antimicrobial Activity

The antimicrobial activity was examined by determining the minimum inhibitory concentrations
(MIC) using five bacterial strains and three antibiotics as the reference (Table 1). Interestingly, the extracts
obtained with n-hexane or dichloromethane showed significant activity against the Gram-positive
Staphylococcus aureus and Enterococcus faecalis, as well as for the Gram-negative Escherichia coli. Furthermore,
E. coli also exhibited considerable sensitivity to the ethyl acetate extract. Remarkably, the methanolic and
the aqueous extracts were inactive against the all bacteria tested. Moreover, Klebsiella pneumoniae and
Acinetobacter baumannii were insensitive to all S. pachyphylla extracts examined.

Table 1. In vitro antimicrobial activity of extracts from aerial parts of S. pachyphylla.

Antimicrobial Activity (Minimum Inhibitory Concentrations (MIC), µg/mL)

Extracts or Controls S. aureus ORSA a E. faecalis E. coli K. pneumoniae A. baumannii

n-Hexane 62.5 125 250 250 >1000 >1000
Dichloromethane 62.5 125 250 250 >1000 >1000

Ethyl acetate 1000 250 >1000 250 >1000 >1000
Methanol 1000 >1000 >1000 >1000 >1000 >1000

Water 1000 >1000 >1000 >1000 >1000 >1000

Oxacillin * 0.48 125 31.2 0.487 >1000 >1000
Cephalothin * 0.48 62.5 31.2 1 >1000 62.5
Vancomycin * 0.48 1.95 1.95 >250 >1000 250

* Used as a reference compound. a Oxacillin-resistant Staphylococcus aureus.
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2.3. Xanthine and Acetylcholinesterase Inhibitory Assay

The enzymatic evaluation results are shown on Table 2. In the acetylcholinesterase inhibition
assay, the extracts did not show a remarkable activity, only the dichloromethane extract presented a
slight activity with an IC50 of 191.7 µg/mL; however, such a result is far away from the positive control
galantamine (0.278 µg/mL). In the xanthine oxidase inhibition assay, better results were obtained,
with IC50 values for the ethyl acetate and methanol extracts standing out with 11.7 and 19.5 µg/mL,
respectively, although they did not surpass the drug allopurinol, used as control (0.842 µg/mL).
The rest of the extracts did not show significant activity.

Table 2. Acetylcholinesterase (AChE) and Xanthine Oxidase (XO) inhibitory activity of the extracts
from aerial parts of S. pachyphylla.

IC50 (µg/mL)

Extracts or Controls AChE XO

n-hexane >400 254.5 ± 31.7
Dichloromethane 191.7 ± 13.1 86 ± 6.0

Ethylacetate 314.3 ± 43.2 11.7 ± 2.4
Methanol >400 19.5 ± 0.47

Water >400 61.8 ± 0.9

Galantamine * 0.278 ± 0.01 ND
Allopurinol * ND 0.842 ± 0.078

* Used as a reference compound. Values are mean ± SD, n = 3. ND, not determined.

2.4. Antiproliferative Activity

The antiproliferative activity was obtained by measuring the concentration needed to decrease
cell propagation by 50% (GI50) using six human cancer cell lines and three well-known anti-cancer
drugs (Table 3). All extracts exhibited a degree of effectiveness against all cell lines tested. Specifically,
extracts obtained with dichloromethane or n-hexane were the most active against all the evaluated
cell lines, showing GI50 values between 5.4 and 11 µg/mL. Both extracts showed higher cytotoxicity
against cell lines SW1573, T-47D, and WiDr, with concentrations of 6.6, 11, and 8.6 µg/mL and 7.7, 9.9,
and 9.9 µg/mL for n-hexane and dichloromethane extracts, respectively; in both cases, the extracts
surpassed the positive control etoposide (GI50 of 15, 22, and 23 µg/mL against SW1573, T-47D,
and WiDr, respectively) and cisplatin (GI50 of 15 and 26 µg/mL against T-47D and WiDr, respectively).

Table 3. Antiproliferative activity of extracts from the aerial parts of S. pachyphylla.

GI50 (µg/mL)

Extracts or Controls A2780 HBL-100 HeLa SW1573 T-47D WiDr

n-hexane 6.0 5.9 6.1 6.6 11 8.6
Dichloromethane 5.4 6.7 8.3 7.7 9.9 9.9

Ethylacetate 6.5 18 40 15 38 53
Methanol 34 64 71 70 >100 >100

Water 52 55 77 74 >100 >100

Cisplatin * ND 1.9 2.0 3.0 15 26
Etoposide * ND 2.3 3.0 15 22 23

Camptothecin * ND ND 0.6 0.25 2.0 1.8

* Used as a reference compound. ND, not determined. Human cancer cell lines: A2780, ovarian carcinoma; HBL-100,
breast carcinoma; HeLa, cervix adenocarcinoma; SW1573, lung carcinoma; T-47D, breast ductal carcinoma; and WiDr,
colorectal adenocarcinoma.
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3. Discussion

Oxidative stress plays a key role in the development of several pathophysiological conditions,
such as neurodegenerative and cardiovascular diseases, cancer, and diabetes; natural antioxidants
ingested in the daily diet protect the cells against the damage produced by an excess of reactive
oxygen species (ROS) [34–37]. There are several techniques for determining the antioxidant capacity;
the difference between these methods lies in the assay principle and the experimental conditions [38].
We worked with two of the most used techniques for the antiradical evaluation: DPPH• and
ABTS•+ [39], Their high popularity is due to the speed, reproducibility, and simplicity of their
procedures. On the other hand, β-carotene gives information regarding the capacity of lipidic
peroxidation inhibition [40]. Several studies suggested a good antioxidant potential from Salvia species
around the world, mainly because of the presence of diterpenes, such as carnosol (1), rosmanol (2),
and isorosmanol (3) (Figure 3) [41]. These three compounds are also described in a phytochemical
study of S. pachyphylla by Guerrero et al. [30].
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Cuvelier et al. [41] also made an antioxidant evaluation of isolated diterpenes from Salvia officinalis
such as carnosol and rosmanol by the Method of Antioxidative Power (AOP test) [42], and established
that the activity of all these components was related to their phenolic structure. Phenolic diterpenes
are widely known to be excellent antioxidants [43,44].

In another study with abietane diterpenes isolated from a dichloromethane extract of
Salvia officinalis L, made by Miura et al. [45] with the Oil Stability Index (OSI) method [46] and the radical
scavenging activity on the DPPH radical, these diterpenes exhibited a remarkably strong antioxidant
activity, which was comparable to the one of the standard α-tocopherol. The authors mention that
the compounds showing strong antioxidant activity were commonly included an ortho-dihydroxy
group in the molecule structure, suggesting that the antioxidant activity is due to the presence of this
ortho-dihydroxy group on the C-ring. This characteristic is also found in the metabolites mentioned
above that can be found in S. pachyphylla extracts.

In the present work, the ethyl acetate extract showed a better antioxidant activity for the two
evaluated techniques, along with the dichloromethane extract in the β-carotene assay. These results
are in accordance to those obtained by Şenol et al. (2010) and Loizzo et al. (2010) [47,48], where the
intermediate polarity extracts (ethyl acetate) from different Salvia species presented better results for
the same antioxidant techniques of β-carotene and the DPPH radical. The phytochemical background,
described above with plants of the Salvia genus, suggests that the abietane-type diterpenes can be
found in the intermediate polarity extracts of S. pachyphylla and could be the responsible for its
antioxidant activity.
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For the antimicrobial susceptibility analysis, one of the more employed techniques is the
calculation of the minimal inhibitory concentration (MIC), which allows researchers to determine easily
the minimum quantity of an analyte capable of inhibiting the visible growth of a microorganism [49].
In the antimicrobial evaluation, n-hexane and dichloromethane extracts only matched the MIC of
oxacillin in the ORSA (125 µg/mL) and got near to cephalotin with the same bacteria (62.5 µg/mL).
Although the reference antibiotics surpassed the extracts activities, it can be noticed that n-hexane
and dichloromethane extracts presented a better activity against Gram-positive bacteria S. aureus and
E. faecalis, and only with E. coli on the Gram-negative evaluated bacteria. From the higher-polarity
extracts (ethyl acetate, methanol, and water), only ethyl acetate presented some degree of activity
with ORSA and E. coli; however, this was still far away from the reference antibiotics. Methanol and
water extracts had even higher MIC than the n-hexane and dichloromethane ones. While our extracts
were less active than the references, it can be pointed out that in general, the better results were
obtained from the low to medium polarity extracts, against the Gram-positive bacteria. Our results
are consistent with those described by Vlietinck et al. [50], who suggested that Gram-positive bacteria
are significantly more susceptible to plant-derived extracts. This may be attributed to the fact that
the cell wall in Gram-positive bacteria consist of a single layer, while the Gram-negative cell wall is
a multilayered and quite complex structure [51]. Previous studies suggested that the antibacterial
activity from Salvia extracts over Gram-negative bacteria such as E. coli depends on the nature of the
studied extract [52]. As has been mentioned before, the biological activity of the Salvia extracts is
related to the presence of abietane diterpenes [53]; in a bioassay-guided study of Rosmarinus officinalis L,
several extracts were evaluated against different microorganisms responsible for initiating dental caries,
Enterococcus faecalis among them, and their MICs showed that the higher antibacterial activity was from
an extract where carnosic acid (4) and carnosol (1) (Figure 3) were identified as the major compounds
by HPLC analysis. As stated before, these metabolites are also found in S. pachyphylla.

On the other hand, Oluwatuyi et al. [54], as part of a project to characterize plant-derived
natural products that modulate bacterial multidrug resistance (MDR), conducted a bioassay-guided
fractionation of a chloroform extract of the aerial parts of Rosmarinus officinalis, leading to the
characterization of the diterpenes carnosic acid (1) and carnosol (2). The antibacterial activities
of these natural products make them interesting potential targets for synthesis.

The screening of natural products in the search of medically relevant enzyme inhibitors remains a
viable approach for isolation of novel compounds with specific pharmacological properties, which still
has a great potential for further studies. Here, two activity assays were used to identify enzyme
inhibitors, within each extract, with therapeutic potential (Table 2): xanthine oxidase (XO) and
acetylcholinesterase (AChE) inhibition assays. Nowadays, the potential of natural products has
not yet been explored in the search of new treatments for the control of Xanthine Oxidase related
diseases [55]. Xanthine oxidase catalyzes the oxidation of hypoxanthine to xanthine and uric acid;
however, under certain conditions, this can generate superoxide. It has been proved that XO inhibitors
can be helpful for the treatment of liver disease and gout [56]. Acetylcholinesterase catalyzes the
hydrolysis of the neurotransmitter acetylcholine into choline and acetic acid [57]. Modulation of
acetylcholine levels using acetylcholinesterase inhibitors is among the major strategies to address
diverse neurodegenerative diseases [58]. Remarkably, extracts with a prospective inhibitory effect
showed a concentration-dependent trend and IC50 values were estimated, with the ethyl acetate extract
that exhibited a significant effect over XO, while the dichloromethane extract showed a considerable
effect on AChE. Unfortunately, other extracts showed a little or poor after-effect on either of the tested
enzyme activities, hence, they were considered as inactive.

Regarding the antiproliferative activity, the effects of the n-hexane and dichloromethane extracts
over A2780 (ovarian carcinoma), HBL-100 (breast carcinoma), and HeLa (cervix adenocarcinoma),
which represent three of the most common cancers in women worldwide, were noticeable. Remarkable
results were also obtained against colorectal adenocarcinoma (WiDr), which exemplifies cell lines that
typically show drug resistance [59]. Interestingly, these results are different from those previously
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reported by Guerrero et al. [30]. They tested pure diterpenes isolated from the aerial parts of two
species, S. clevelandi and S. pachyphylla, which were less effective than our extracts. According to the
results obtained, from all tested diterpenes, the most active were carnosol (1), 20-deoxocarnosol (5),
and 16-hydroxycarnosol (6) (Figure 3) for five different cell lines. We thought that the main difference
resides in the nature of the sample, as our results were generated using total extracts, suggesting a
possible synergistic effect. Despite other extracts being less active, their results remain promising for
pursuing novel molecules with cytotoxic effect.

4. Materials and Methods

4.1. Plant Material

The aerial parts (leaf, flower, and stem) of S. pachyphylla were collected in lands of the Sierra
Juarez-Constitution National Park, Ensenada, B.C., México, at an elevation of 1630 m and coordinates
of N: 32◦01′41”; W: 115◦56′11” (Figure 4). Identification and authentication were carried out by Dr. José
Delgadillo, and the voucher specimen (BCMEX9783) was deposited in the herbarium of the Autonomous
University of Baja California, at Ensenada. Aerial parts (1.3 kg) were air-dried for a week, under shade
(to reduce moisture content). The dried material was ground to fine powder and stored at 4 ◦C until use.
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4.2. Preparation Extracts

Crude extracts were obtained through the classical Soxhlet method. Five different thimbles
were uniformly packed, each one with 75 g of fine powder. The extraction was carried out using
different solvents, one for each one of the thimbles (250 mL): n-hexane (HX), dichloromethane (DC),
ethyl acetate (EA), methanol (MT), and distilled water (AQ). The extraction process was stopped until
the solvent in siphon tube became colorless. Each extract was filtered and dried at 40 ◦C, using a rotary
evaporator (Buchi Rotavapor® R-215), until a solid or semi-solid residue was yielded. Each residue
was separately further lyophilized to get a dry solid matter: HX = 60.3 g, DC = 7.9 g, EA = 24.2 g,
MT = 9.9 g, and AQ = 14.5 g. All solids were kept in air tight bottles and stored at 4 ◦C until use.

4.3. β-Carotene-Linoleic Acid Assay

The antioxidant activity was assayed by the coupled oxidation of β-carotene and linoleic acid
as described by Burda and Oleszek [60] with minor modifications. 1 mL of a β-carotene solution
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(0.2 mg/mL in chloroform) was added to an emulsion containing 0.018 mL of linoleic acid and
0.2 mL of Tween-20. Chloroform was removed (under a nitrogen environment), 50 mL of aerated
deionized water (DO of 9.7 mg/L) was slowly added, and the mixture was vigorously agitated to form
a stable emulsion. 5 mL of this emulsion was transferred to test tubes containing the corresponding
sample (2 mg) of each extract. Immediately, the absorbance was measured at 470 nm (A470, zero time).
All tubes were then incubated at 50 ◦C and A470 values were registered every 15 min for 2 h. A control
without the antioxidant was prepared aside and α-tocopherol was used as a reference compound.
The antioxidant activity (AA) was expressed as the percentage of inhibition of β-carotene bleaching,
as compared to the control, and calculated using the following formula:

AA (%) = [1 − (AS
0 − AS

120/AC
0 − AC

120)] × 100

where AS and AC represent the A470 value of the sample and control, respectively, and the superscript
numbers denote the time of the initial and final measurement (0 and 120 min). All determinations
were performed in duplicate and replicated at least three times.

4.4. DPPH Radical-Scavenging Capacity Assay

The radical-scavenging activity was performed as described by Burda and Oleszek [60] with slight
modifications. For the evaluation of each extract, a stock solution (4 mg/mL) was prepared and serially
two-fold diluted (down to 0.003 mg/mL) with methanol. An aliquot of each dilution (1 mL) was
mixed with 1 mL of a methanolic solution of 1,1-diphenyl-2-picrylhydrazyl (DPPH at 0.03 mg/mL).
At the same time, a control containing 1 mL of methanol and 1 mL of the DPPH solution was prepared.
The mixtures were incubated at room temperature in the dark for 5 min. Using methanol as a blank,
the absorbance was quantified at 517 nm (A517). The radical-scavenging activity was calculated as the
percentage of DPPH decoloration using the following formula:

DPPH (%) = [1 − (A/B) × 100]

where A and B represent the A517 value of the control and sample, respectively. All determinations
were performed in duplicate and replicated at least three times. For each extract, the percentage of
DPPH decoloration was plotted against the concentration of each dilution. The concentration required
to decrease the absorbance of DPPH by 50% was obtained by interpolation, from a linear regression
analysis, and expresses the EC50 value. Quercetin was used as a reference compound.

4.5. Antimicrobial Assay

Antibacterial activity was tested using a microdilution assay following the National
Committee for Clinical Laboratory Standards (NCCLS), due its precision and reproducibility [61,62],
and MIC was defined as the lowest concentration that prevents visible growth of bacteria.
Six strains of microorganisms were used for antimicrobial testing including Gram-positive
bacteria (Enterococcus faecalis, Staphylococcus aureus, and Oxacillin-resistant Staphylococcus aureus)
and Gram-negative bacteria (Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae);
all strains were provided by the Regional Center for Infection Diseases, School of Medicine,
Autonomous University of Nuevo Leon (Monterrey, Mexico). All strains were plated on a
Müeller–Hinton agar (Becton Dickinson) and incubated at 37 ◦C for 24 h. Four or five colony forming
units were suspended in saline solution and the optical density was adjusted to the turbidity of the
0.5 McFarland Standard. Working suspensions were prepared by a 1:50 dilution in Müeller–Hinton
broth. For the evaluation of each extract, a stock solution (6 mg/mL in 5% DMSO) was prepared and
serially two-fold diluted with Müeller–Hinton broth in a 96-well microtiter plate (down to 0.5 µg/mL,
final highest DMSO concentration 0.83%). One volume (0.1 mL) of working suspension was added to
each well. The antibiotics cephalothin, oxacillin, and vancomycin were used as reference compounds.
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Controls without bacterial cells (medium control) and without extract or antibiotic (growth control)
were prepared aside. Plates were incubated at 37 ◦C for 48 h and growth was visually examined.

4.6. Xanthine Oxidase Inhibition Assay

There are several assays employed for the Xanthine oxidase activity quantification, the more
widely used is by the spectrophotometric determination of uric acid [63], the final reaction product.
In this study, the inhibition of the XO activity was evaluated using the easy and sensitive protocol
described by Havlik et al. [64]. A reaction solution containing 0.4 mL of 120 mM phosphate buffer
(pH 7.8) and 0.33 mL of 150 mM of xanthine was supplemented with 0.25 mL of inhibitor solution
(extract or reference) and mixed thoroughly. The reaction was started by adding 0.02 mL of XO enzyme
solution (0.5 U/mL). After 3 min of incubation at 24 ◦C, the uric acid formation was determined by
measuring the absorbance at 295 nm (A295). A reaction without inhibitor was used as control and
allopurinol served as a reference compound. The inhibition percentage of XO activity was calculated
using the following formula:

XO inhibition (%) = [1 − (As/Ac)] ×100

where AS and AC represent the initial velocity of reactions with sample and control, respectively.
All determinations were performed in duplicate and replicated at least three times. The concentration
required to decrease the activity of XO by 50% was obtained by interpolation, from a linear regression
analysis, and expresses the IC50 value.

4.7. Acetylcholinesterase (AChE) Inhibition Assay

The acetylcholinesterase inhibition activity was determined with the technique described by
Adewusi et al. [65], which is a modification of the widely known and employed Ellman method [66].
For each determination, wells of a microtiter plate were filled with 25 µL of 15 mM acetylthiocholine
iodide (in water), 125 µL of 3 mM DTNB in buffer C (50 mM Tris-HCl, pH 8.0, containing 0.1 M NaCl
and 0.02 M MgCl2·6 H2O), 72.5 µL of buffer B (50 mM Tris-HCl, pH 8.0, containing 0.1% BSA),
and 2.5 µL of inhibitor solution (extract or reference, in DMSO) and were mixed thoroughly.
Absorbance was measured at 412 nm (A412) every 45 s, three times consecutively. Thereafter, 25 µL
of AChE enzyme solution (0.2 U/mL) was added to each well and A412 was measured five times
consecutively every 45 s. A reaction without inhibitor was used as control and galantamine served
as the reference compound. Any increase in absorbance due to the spontaneous hydrolysis of the
substrate was corrected by subtracting the A412 before adding the enzyme. The inhibition percentage
of AChE activity was calculated using the following formula:

AChE inhibition (%) = [1 − (As/Ac)] ×100

where AS and AC represent the initial velocity of reactions with sample and control, respectively.
All determinations were performed in duplicate and replicated at least three times. The concentration
required to decrease the activity of AChE by 50% was obtained by interpolation, from a sigmoidal
regression analysis, and expresses the IC50 value.

4.8. Cell lines and Culture Conditions

Five human cancer cell lines were used in this study: A2780 (ovarian carcinoma),
HBL-100 (breast carcinoma), HeLa (cervix adenocarcinoma), SW1573 (lung carcinoma), T-47D (breast
ductal carcinoma), and WiDr (colorectal adenocarcinoma). All line cells were maintained in RPMI
(Roswell Park Memorial Institute) 1640 media supplemented with 5% heat-inactivated FCS (Fetal Calf
Serum) and 2 mM L-glutamine at 37 ◦C, 5% CO2, and 95% humidity. Exponentially growing cells were
trypsinized and resuspended in medium containing 2% FCS and antibiotics (100 U/mL of penicillin
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G and 0.1 mg/mL of streptomycin). Single cell suspensions showing >97% viability, by trypan blue
dye exclusion assay, were subsequently counted. After counting, dilutions were made to give the
appropriate cell densities required for antiproliferative testing.

4.9. Antiproliferative Assay

Antiproliferative testing was performed using the Sulforhodamine B assay (SRB), the preferred
high-throughput assay from National Cancer Institute (NCI, NIH, USA), as reported by
Miranda et al. [59], with slight modifications. The SRB assay is based on the dye union to the basic
amino acids of the cellular proteins, and the colorimetric evaluation provides an estimation of the
total protein mass, which is related to the number of cells. This assay presents an excellent linearity,
sensibility, and low costs compared to others [67]. Each extract was initially dissolved in DMSO at
400 times the desired maximum concentration to test. Six thousand cells were inoculated to each well
of a microtiter plate (100 µL of a suspension of 6 × 104 cells per mL). One day after plating, all testing
samples and reference compounds were added to corresponding wells (triplicated). Samples were
tested in six decimal serial dilutions starting at 250 µg/mL. Control cultures were tested against
equivalent concentrations of DMSO (0.25% as a negative control). After 48 h of incubation at permissive
conditions, cell cultures were treated with 25 µL ice-cold 50% TCA and fixed at 4 ◦C for 60 min.
Thereafter, the SRB assay was performed. The absorbance of each well was measured at 492 nm (A492).
All absorbance values were corrected for background A492 (control wells containing just culture
media). As recommended by the NCI, the concentration that causes 50% growth inhibition, GI50 value,
was corrected by count at time zero; thus, GI50 is the concentration where [(T − T0)/(C − T0)] = 0.5.
The absorbance of the test well after 48 h is T, the absorbance at time zero is T0, and the absorbance of
the control is C. For all these calculations, Excel spreadsheets were used. GI50 values were computed
from the dose-response curves.

5. Conclusions

In conclusion, aerial parts of S. pachyphylla have prospective potential as a source of natural products
that could act as antioxidants, antimicrobial and antiproliferative compounds, or enzyme inhibitors.

Although our findings could be the outcome of a synergistic effect, they support the notion of aiming
our next approach towards the isolation and identification of novel molecules with therapeutic potential.
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