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Abstract

Introduction: It is important to study apathy in Alzheimer’s disease (AD) to better

understand its underlyingneurobiology anddevelopeffective interventions. In the cur-

rent study, we sought to examine the relationships between longitudinal apathy and

regional tau burden in cognitively impaired older adults from the Alzheimer’s Disease

Neuroimaging Initiative (ADNI) database.

Methods: Three hundred and nineteen ADNI participants with mild cognitive impair-

ment (MCI) or AD dementia underwent flortaucipir (FTP) tau positron emission

tomography (PET) imaging and clinical assessment with the Neuropsychiatric Inven-

tory (NPI) annually. Longitudinal NPI Apathy (NPI-A) scores were examined in relation

to baseline tau PET signal in three a priori selected regions implicated in AD and

AD-related apathy (supramarginal gyrus, entorhinal cortex [EC] and rostral ante-
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rior cingulate cortex [rACC]). Secondary models were adjusted for global cognition

(Mini-Mental State Examination score) and cortical amyloid (florbetapir PET).

Results: Higher baseline supramarginal gyrus and EC tau burden were each signifi-

cantly associated with greater NPI-A over time, while rACC tau was associated with

higher NPI-A but did not predict its trajectory over time. These results were retained

for supramarginal and EC tau after adjusting models for global cognition and cortical

amyloid.

Discussion:Our findings suggest that baseline in vivo tau burden in parietal and tem-

poral brain regions affected in AD, and less so in a medial frontal region involved in

motivational control, is associatedwith increasing apathyover time in older adultswith

MCI and AD dementia. Future work studying emergent apathy in relation to not only

coreADpathology but also circuit level dysfunctionmayprovide additional insight into

the neurobiology of apathy in AD and opportunities for intervention.

KEYWORDS

Alzheimer’s disease, mild cognitive impairment, neuropsychiatric symptoms, apathy, neuroimag-
ing, tau, positron emission tomography

Highlights

∙ Tau (Flortaucipir PET) in regions implicated in AD was associated with increasing

apathy over time

∙ Cortical amyloid was also found to be a robust predictor of the trajectory of apathy

∙ Evidence of synergy between regional tau and amyloid in overall higher levels of

apathy

1 INTRODUCTION

Neuropsychiatric symptoms (NPS) are distressing symptoms that com-

monly occur across the Alzheimer’s disease (AD) spectrum. Apathy

is among the most common NPS in individuals diagnosed with mild

cognitive impairment (MCI) and ADdementia. This symptom is charac-

terized by diminished interest in the activities and plans of others, and

decreased motivation in usual activities. NPS, including apathy, may

begin even before the manifestation of overt cognitive symptoms and

increase in occurrence as cognition declines.1,2 Apathy is a commonly

reported concern for individuals with AD and their care partners and

has a negative impact on quality of life, resulting in decreased cognitive

and functional ability and increased care partner burden.3 Population-

based studies have shown that the occurrence of NPS is higher in

individualswithMCI andADdementia compared to cognitively normal

(CN) older adults, and is associated with disease progression.4 While

there has been progress in developing drug treatments for apathy in

AD including methylphenidate,5 future progress will be enhanced by

better understanding of the neurobiological mechanisms involved in

the context of AD progression.

Previous investigations in this area have found significant cross-

sectional associations between apathy and several biomarkers of

AD pathology.6,7 Neuroimaging studies in AD across a spectrum of

structural, functional, and molecular imaging modalities highlighted

associations between apathy and medial frontal regions involved in

the neurobiology of motivation or reward, particularly the anterior

cingulate cortex (ACC).8–13 For example, individuals with AD and apa-

thy compared to those without apathy were found to have reduced

cortical thickness, or reduced cerebral blood flow or metabolism in

the orbitofrontal cortex and ACC,10,14–16 in addition to gray matter

reduction in the ACC.14 In contrast, other studies have reported asso-

ciations between apathy and temporal and parietal regions implicated

in ADprogression.15,17,18 Among these, separate studies conducted on

Alzheimer’s Disease Neuroimaging Initiative (ADNI) samples showed

associationsbetweenapathyandvariables of interest (reduced cortical

thickness and regional hypometabolism) in the temporal and pari-

etal lobes.13,17,19 In particular, [18F]fluorodeoxyglucose (FDG) positron

emission tomography (PET) hypometabolism in a representative pari-

etal region, the supramarginal gyrus, was significantly associated with

apathy trajectory over time.19 To our knowledge, only one exploratory

study from the ADNI has examined apathy in relation to in vivo molec-

ular neuroimaging, looking at tau and apathy cross-sectionally in CN

participants, alongwith participantswithMCI andADdementia.20 This

cross-sectional study found that apathy was associated with elevated
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tau (flortaucipir [FTP] PET) in the precuneus and entorhinal cortex

(EC)—two regions associated with aging and AD—but not with regions

traditionally associatedwith affective symptoms andmotivation (ACC,

orbitofrontal cortex).

These prior findings underscore the importance of understanding

the neurobiology of apathy in the context of AD progression. A key

step in advancing this understanding is investigating the relationship

between the regional distribution of tau (a biomarker closely linked

to cognitive symptoms of AD) and the evolution of apathy over time.

Thus far, to our knowledge, no studies have explored changes in apathy

over time in relation to regional tau measured through PET imaging in

cognitively impaired older adults.

To fill this critical gap, the objective of the current study was to

examine relationships between apathy over time and regional tau

burden in individuals with MCI and AD dementia. Given previous find-

ings highlighting temporal and parietal regions versus medial frontal

regions in AD-associated apathy, we hypothesized that greater tau

burden in regions associated with AD (the supramarginal gyrus and

EC), and one involved in motivation and reward (the rostral [r]ACC),

would predict increasing apathy over time in older adults with MCI

or AD. To test this hypothesis, we focused on three representative

brain regions in the temporal, parietal, and medial frontal cortices

(supramarginal gyrus, EC, and ACC), previously implicated in AD and

AD-related apathy.

2 METHODS

2.1 Participants

The study sample consisted of cognitively impaired older adults with

MCI or AD dementia, enrolled in the ADNI-3 study (73.15% MCI,

26.85% AD dementia, age 55 to 95 years, 57.37% male; details of

consent, study procedures and inclusion/exclusion criteria of partic-

ipants can be found on adni.loni.usc.edu). CN participants were not

included because they had a lowburden ofNPS. Participantswere non-

depressed at study entry (15-item Geriatric Depression Scale [GDS]

score of<6), andwere excluded if they had a diagnosis ofmajor depres-

sion or bipolar disorder in the past year, had a history of schizophrenia,

had agitation or behavioral issues in the past 3 months that may

affect their participation, or had current use of certain psychotropic

medications (antipsychotics and mood stabilizers). Participants who

underwent FTP PET neuroimaging within a year of completing the

Neuropsychiatric Inventory (NPI)were included in analyses.Diagnoses

were determined by the principal investigator or co-investigators at

each site utilizing cognitive and functional assessments. The study was

approved by the local Institutional Review Board of each participating

ADNI site; informed consent was obtained from participants and their

study partners before any study procedures were completed.

2.2 Clinical assessments

TheNPI21,22 is a study partner-basedmeasure developed to assess the

frequency and severity of 12NPSdomains: depression, apathy, anxiety,

RESEARCH INCONTEXT

1. Systematic review: The authors reviewed the litera-

ture using traditional sources (eg, PubMed). An exam-

ination of the relationships between apathy and AD

pathology is needed to better understand neurobiolog-

ical mechanisms for therapeutic intervention that could

delay disease progression. Research has shown that tau

may correlate more closely with cognitive and behav-

ioral manifestations in AD than amyloid. These relevant

citations are appropriately cited.

2. Interpretation: Our findings suggest that tau burden in

brain regions associated with AD, and less so with mood

regulation, is associated with increasing apathy over time

in individuals withMCI and AD dementia.

3. Future directions: Further study of emergent apathy in

relation to core AD pathology and other neurobiolog-

ical mechanisms—such as cerebrovascular disease and

network connectivity—will provide additional insight into

neurobiology and opportunities for interventions that

could slow clinical progression and alleviate patient and

caregiver burden.

appetite, sleep, hallucinations, delusions, agitation, irritability, eupho-

ria, disinhibition, and aberrant motor behavior. Each item is measured

on a scale of 1 to 4 for the frequency of symptom occurrence, and 0

to 3 for severity of the symptom exhibited. The total score for each

symptom domain is calculated from the product of the frequency and

severity scores, ranging from 0 to 12, with a higher score correspond-

ing to greater symptom severity. The NPI apathy item (NPI-A) asks the

study partner: “Do they seem less interested in his or her usual activi-

ties and in the plans of others?” The NPI was completed annually. The

total score for theNPI-A in the scale (severity× frequency, 0 to 12)was

used for analyses.

Global cognition was included as a covariate in secondary analyses,

measuredby theMini-Mental StateExamination (MMSE),23 with lower

scores indicative of greater impairment.

2.3 Tau and amyloid PET neuroimaging

Acquisition and processing of FTP and florbetapir (FBP) PET imaging

was previously described in detail.24,25 FBP scans were co-registered

to corresponding MRI scans, and segmented and parcellated with

FreeSurfer (version 5.3.0) to define the amyloid cortical gray mat-

ter, with the whole cerebellum as the reference region yielding an

SUVR (UC Berkeley—AV45 Analysis Methods, ADNI). FTP scans were

segmented and parcellated with FreeSurfer (version 5.3.0) and co-

registered to corresponding MRI scans, in order to calculate the mean

FTP uptake within each FreeSurfer-defined region with the cerebellar

cortex as the reference region yielding an SUVR (UC Berkeley—

AV1451 Analysis Methods, ADNI). Three bilateral subcortical and
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cortical regions of interest (ROIs) were chosen, based on prior stud-

ies, as regions implicated in AD: the EC, supramarginal gyrus, and

one region implicated in the neurobiology of reward and motiva-

tion, the rACC. We also considered investigating a fourth ROI, the

precuneus, given the recent cross-sectional findings showing an asso-

ciation between FTP uptake in this region and apathy.20 However,

FTP uptake in this region and in the supramarginal gyrus were highly

correlated (r = 0.9, p = 0.001). Thus, we elected to focus on the supra-

marginal gyrus as our representative parietal region in analyses based

on previous work showing an association between FDG metabolism

in this region and longitudinal apathy.19 Weighted volumes were cal-

culated for each region (described as follows) and used in analyses,

according to the following formula and as previously described (UC

Berkeley—AV45 Analysis Methods, ADNI): Weighted volume = [(LH

SUVR*LHVOLUME)+ (RHSUVR*RHVOLUME)]/(LHVOLUME+RH

VOLUME). This can be described narratively as follows: (1) each SUVR

wasmultiplied by the corresponding volume; (2) these two valueswere

added together; and (3) the result was divided by the total volume.

2.4 Statistical analysis

Analyses for this study were carried out using R (R Core Team, 2021),

MATLAB,26 and SAS (version 9.4). Linear mixed effects models with

backward elimination (p < 0.05 for significance) were utilized in pri-

mary analyses to examine the association between longitudinal NPI-A

scores (dependent variable) and baseline tau in a given brain region as

well as its interaction with time (regional tau PET × time). Time was

measured as months since baseline where baseline was considered

to be the visit in which the NPI was first administered. Each tau ROI

(EC, rACC, or supramarginal gyrus) was tested in its own independent

model with covariates of age at baseline, sex, and years of education,

their interactions with time, as well as a covariate accounting for time

at tau acquisition (FTP PET scan), relative to each apathy assessment.

All predictor terms were subject-level, time-constant variables, except

for the time indicator itself and its interactions. In secondary analy-

ses, the models mentioned above were repeated for NPI-A with the

addition of global cognition (MMSE; collected at baseline) × time or

cortical amyloid (FBP PET) × time as covariates. Finally, for the tau

region with the most significant association with apathy over time, a

separate model was carried out with an interaction of regional tau ×

cortical amyloid× time. Unstandardized partial regression coefficients

(β) with 95% confidence intervals (CIs), t-values, and significance test

results (p-values) were calculated.

3 RESULTS

Participant demographics at baseline are shown in Table 1. The sam-

ple was comprised of 319 participants from the ADNI, with a diagnosis

of either MCI (73.15% of the sample) or AD dementia (26.85%). The

samplewas on average just above 75 years of age, highly educated, and

predominantly White. Participants had an average duration of obser-

vation of 4.79 visits, and were followed for an average of 48.3 months.

TABLE 1 Demographics at baseline of sample participants (73.0%
withMCI, 27.0%with dementia).

Average± SD Min–max

Age (years) 75.4 ± 8.26 55.74–94.03

Years of education 16.08 ± 2.66 8–20

Apathy (NPI-A) 0.61 ± 1.62 0.00–8.00

MMSE 27.34 ± 2.62 17.0–30.0

Entorhinal tau 1.28 ± 0.29 0.78–2.59

rACC tau 1.09 ± 0.19 0.70–2.93

Supramarginal gyrus tau 1.16 ± 0.3 0.81–2.89

Sex (%male) 57.37

Race (%White) 93.59

Abbreviations: MCI, mild cognitive impairment; MMSE, Mini-Mental State

Examination; NPI-A, Neuropsychiatric Inventory apathy item; rACC, rostral

anterior cingulate cortex.

Detailed descriptions of the follow-up duration are provided in Tables

S1 and S2.

3.1 Primary analyses: Associations between
regional tau (FTP PET) and longitudinal apathy

Results from primary analyses are shown in Tables 2–4 and Figures 1

and 2. In the model with supramarginal tau, FTP retention was signifi-

cantly associatedwith greater apathyover time (supramarginal gyrus×

time: β=0.0309, 95%CI=0.016, 0.044, t=4.03, p<0.0001), as shown

in Table 2 and Figure 1. Education was negatively associated with apa-

thy over the course of the study, such that those with higher education

had lower apathy over the course of the study (β = −0.069, 95% CI =

−0.127,−0.012, t=−2.40, p= 0.0167)).

In primary linearmodels examining the relationship between EC tau

(FTP retention) and longitudinal apathy, EC tau was associated with

greater apathy over time (EC × time: β = 0.03, 95% CI = 0.014, 0.039,

t = 4.24, p < 0.0001) as shown in Table 3 and Figure 2. Again, we

observed amain effect of education, where higher educationwas asso-

ciatedwith lower apathy over the course of the study (β=−0.067, 95%
CI=−0.122,−0.01, t=−2.35, p= 0.0192).

Finally, we examined the relationship between longitudinal apa-

thy and tau (FTP retention) in the rACC. We observed a marginal

main effect between rACC tau (FTP retention) and greater NPI apa-

thy (rACC: β = 0.7644, 95% CI = 0.05785, 1.47, t = 2.12, p = 0.034),

as shown in Table 4 (ie, rACC was related to the overall level of NPI

apathy across the time span of the study as a whole). However, rACC

tau did not predict the trajectory of apathy change over time (ie, the

interaction rACC× timewas nonsignificant).

3.2 Secondary models adjusting for amyloid FBP
PET and global cognition

To determine whether tau (FTP retention) in the three ROIs was asso-

ciated with longitudinal apathy when accounting for cortical amyloid,
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TABLE 2 Apathy scores over time as predicted by supramarginal gyrus tau. Model: NPI-A ∼ Supramarginal tau+ Supramarginal tau× time+
time of tau PET relative to apathy assessment+ (age+ sex+ education)× time.

Predictor Partial β 95%CI t-value p

Time at PET −0.0007 −0.012,−0.003 −3.32 0.0009

Education −0.069 −0.127,−0.012 −2.40 0.0167

Supramarginal tau 0.202 −0.373, 0.776 0.69 0.491

Time −0.069 −0.115,−0.022 −2.92 0.0038

Supramarginal tau×

time

0.0309 0.016, 0.044 4.03 <0.0001

Note: Results from primary linear mixed effects model with backward elimination. Predictors surviving backward elimination (p < 0.05 for significance)

are shown. (By convention, nonsignificant terms that are also included within higher order terms that are significant, are not backward eliminated, eg, the

nonsignificant main effect for Supramarginal in the table above).

Abbreviations: NPI-A, Neuropsychiatric Inventory apathy item; PET, positron emission tomography.

TABLE 3 Apathy scores over time as predicted by EC tau.Model: NPI-A∼ EC tau+ EC tau× time+ time of tau PET relative to apathy
assessment+ (age+ sex+ education)× time.

Predictor Partial β 95%CI t-value p

Time at PET −0.00741 −0.012,−0.00 −3.54 0.0004

Education −0.06674 −0.122,−0.01 −2.35 0.0192

Entorhinal tau 0.3215 −0.25,0.89 1.09 0.2741

Time −0.026 −0.043,−0.010 −3.19 0.0016

Entorhinal tau× time 0.03 0.014, 0.039 4.24 <0.0001

Note: Results from primary linear mixed effects model with backward elimination. Predictors surviving backward elimination (p < 0.05 for significance)

are shown. (By convention, nonsignificant terms that are also included within higher order terms that are significant, are not backward eliminated, eg, the

nonsignificant main effect for Entorhinal tau in the table above).

Abbreviations: EC, entorhinal cortex; NPI-A, Neuropsychiatric Inventory apathy item; PET, positron emission tomography.

TABLE 4 Apathy scores over time as predicted by rACC tau.Model: NPI-A∼ rostral ACC tau+ rostral ACC tau× time+time of tau PET
relative to apathy assessment+ (age+ sex+ education)× time.

Predictor Partial β 95%CI t-value p

rostral ACC tau 0.7644 0.058, 1.47 2.12 0.034

Time at PET −0.007 −0.012,−0.003 −3.47 0.0006

Education −0.080 −0.138,−0.023 −2.75 0.0062

Time 0.007 0.0032, 0.012 3.45 0.0007

Note: Results from primary linear mixed effects model with backward elimination. Predictors surviving backward elimination (p < 0.05 for significance) are

shown.

Abbreviations: ACC, anterior cingulate cortex; NPI-A, Neuropsychiatric Inventory apathy item;PET, positron emission tomography.

we carried out a series of secondary models adjusting for amyloid FBP

PET (cortical aggregate).

In a secondary model with supramarginal gyrus tau (FTP PET) and

cortical amyloid (FBP PET), both supramarginal gyrus tau and corti-

cal amyloid were significantly associated with increased longitudinal

apathy over time (supramarginal tau × time: β = 0.0196, 95% CI =

0.004,0.0358, t= 2.40, p= 0.017; amyloid × time of apathy: β= 0.026,

95%CI= 0.0098, 0.042, t= 3.15, p= 0.0017; Table S3). In amodel with

EC tau and cortical amyloid, both predictors of interest were signifi-

cantly associated with increased longitudinal apathy over time (EC tau

× time: β = 0.015, 95% CI = 0.0004, 0.029, t = 2.02, p = 0.0434; amy-

loid × time of apathy: β = 0.0267, 95% CI= 0.00994, 0.044, t= 3.12, p

= 0.0019, Table S4). In contrast, in a model with rACC tau and cortical

amyloid, only cortical amyloid was associated with longitudinal apathy

(ie, rACCtau× timewasnonsignificant, and for themaineffect of rACC:

β=0.6314, 95%CI=−0.135, 1.397, t=1.62, p=0.106; amyloid× time

of apathy: β=0.03412, 95%CI=0.01884, 0.0494, t=4.38, p<0.0001;

Table S5).

To explore potential synergy between regional tau and cortical

amyloid in predicting longitudinal apathy, we carried out an analysis

introducing a cortical amyloid × tau PET × time interaction term as a

predictor of interest in a model with dependent variable longitudinal

apathy. We focused on tau in the supramarginal gyrus—the tau PET

ROI with the most robust observed association with longitudinal apa-

thy. We found a significant effect for the two-way interaction amyloid

× tau (β= 3.3615, 95%CI= 1.421, 5.30, t= 3.40, p= 0.0007; Table S6),
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F IGURE 1 Estimated NPI-A scores over
time as predicted by supramarginal gyrus tau
(FTP PET), showing values of NPI-A predicted
by fixed effects (covariates set at grandmeans).
Values of supramarginal tau (FTP PET) are
shown at approximate samplemean (blue
squares), and at one standard deviation above
(green triangles) and below (red circles) the
samplemean. NPI-A, Neuropsychiatric
Inventory apathy item; FTP, flortaucipir; PET,
positron emission tomography.

F IGURE 2 Estimated NPI-A scores over
time as predicted by entorhinal tau (FTP PET),
showing values of NPI-A predicted by fixed
effects (covariates set at grandmeans). Values
of entorhinal tau (FTP PET) are shown at
approximate samplemean (blue squares), and
at one standard deviation above (green
triangles) and below (red circles) the sample
mean. NPI-A, Neuropsychiatric Inventory (NPI)
apathy item; FTP, flortaucipir; PET, positron
emission tomography.

but the three-way interaction with time (amyloid× tau× time) was not

significant. This result supports a possible positive additive synergy

between regional tau and cortical amyloid and their association with

greater apathy across the study as a whole.

Additional sensitivity models were run adjusting for global cogni-

tion (MMSE) at baseline. We found that supramarginal tau (FTP PET)

was positively associatedwith the trajectory of increase of longitudinal

apathy (supramarginal gyrus× time: β=0.015, 95%CI=0.0006, 0.029,

t= 2.04, p= 0.041), whereasMMSEwas a negative predictor of apathy

trajectory—those with lower MMSE scores had more accelerated apa-

thyover time (MMSE× time:β=−0.0009, 95%CI=−0.0017,−0.0002,

t=−2.60, p= 0.009), as shown in Table S7. We observed a similar pat-

tern of results for EC tau (EC tau × time: β= 0.0146, 95% CI= 0.0019,

0.0273, t= 2.26, p= 0.024;MMSE× time of apathy: β=−0.0009, 95%

CI = −0.0016, −0.0001 t = −2.25, p = 0.025; Table S8). In contrast, in

a secondary analysis with rACC tau (FTP PET), MMSE was a negative

predictor of rate of longitudinal change in apathy (β = −0.00115, 95%

CI = −0.00187, −0.0004 t = −3.11, p = 0.0019), whereas there was

no association between rACC tau (FTP PET) and apathy over time, or

across the study as awhole (β= 0.4054, 95%CI=−0.2778, 1.0887, t=

1.17, p= 0.244; Table S9).

4 DISCUSSION

Apathy is one of the most common and distressing NPS in AD. Despite

its prevalence and clinical significance, the neural correlates of apathy

in MCI and AD dementia remain poorly understood. In the current
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study, we focused on one of these potential neural correlates—regional

tau pathology—and its relationship to the trajectory of apathy over

time in older adults on the MCI-dementia continuum from the ADNI

study. We examined associations between longitudinal apathy and

tau pathology in three representative brain regions in the temporal,

parietal, and medial frontal cortices affected in AD (supramarginal

gyrus and EC), and implicated in the neurobiology of motivation and

reward across clinical syndromes—the rACC. We found that tau in

regions implicated in AD were significantly associated with increasing

apathy over time. These associations persisted when taking into

account global cognition (measured throughMMSE scores). Moreover,

in additional, secondary analyses, we found that cortical amyloid was

a robust predictor of apathy trajectory, and we found evidence of

synergy between regional tau and amyloid in overall higher levels of

apathy.

Our results support a role for tau in the temporal and parietal

regions in the pathophysiology of apathy over time across the AD con-

tinuum. Of note, in our analyses, we selected the supramarginal gyrus

and entorhinal cortex as representative proxies of the parietal and

temporal regions, respectively. We and others obtained similar results

when examining FDG metabolism in an earlier cohort of ADNI.19

Frontal regions (such as the rACC) that regulate motivation and

reward are commonly affected in individuals with apathy,27 as is noted

more consistently in later stages of AD.28 Our findings and related

studies suggest that involvement of these regions may occur through

mechanisms other than solely the deposition of regional tau pathology

or neurodegeneration in earlier stages; that is, tau deposition in the

rACC is not a significant predictor of increasing apathy over time in

early AD. For example, a study examining another possible neurobio-

logical correlate of apathy, namely cortical thickness, reported a lack

of association between lower anterior cingulate cortical thickness and

increased apathy in older adults at earlier stages of AD.18 The authors

suggest this may be due to a compensatory inflammatory response in

the ACC in earlier stages of disease progression,18 and that different

mechanisms may underlie apathy at early versus late stages of AD.

A majority of our sample consisted of older adults with a diagno-

sis of MCI (73.15%) compared to AD dementia (26.85%), and this

skewing towards early disease stages may have thus influenced our

findings.

It is also important to note that while the association between tau

deposition in the rACC and apathy trajectory was not significant in

our study, the role of the rACC in AD-associated apathy may also

occur through other mechanisms. For example, another study con-

ductedonMCIandADparticipants of theADNI found that participants

with apathy had significantly reduced functional connections in the

dorsal ACC.29 It will be critical in future work to continue to probe

mechanisms such as structural and functional connectivity and cere-

brovascular injury in relation to apathy during different stages of

AD.

Previously reported cross-sectional findings from theADNI demon-

strate a significant relationship between greater tau burden in the

entorhinal and precuneus regions and NPS (as measured by NPI total

scores); this associationwasdrivenbyaffective symptoms, in particular

apathy, in individuals with MCI and AD dementia.20 Examining longi-

tudinal relationships from this study, we now show that tau burden in

temporal and parietal brain regions affected in AD is associated with

greater apathy over time in participants with MCI and AD dementia.

Furthermore, we also report a significant association between cor-

tical amyloid and increased apathy over time in these regions. This

emphasizes the robust relationship between this particular NPS and

biomarkers associated with the development of MCI and AD and sup-

ports apathy as a core symptom in AD clinical progression. Overall,

our findings show an association between both amyloid and tau—in

regions of early AD pathology (the temporal and parietal cortices)—

andhighlight the significance of apathy as an earlymanifestation ofAD.

The significance of the longitudinal associations between apathy and

AD pathology in participants with MCI and dementia, as seen in this

large sample, underscores the importance of examining NPS in these

populations.

Strengths of the study lending to the salience of these findings

include the ADNI’s large sample size, well-characterized participants,

and rigorous quality control of data collection in a multisite study.

Notwithstanding, this study does have certain limitations. Despite

the large sample size, ADNI-3 participants are recruited based on

select criteria. Additionally, this sample consists of participants who

are highly educated and mostly White, and therefore not representa-

tive of or generalizable to larger more diverse populations. Given the

observed associations, future studies should explore these symptoms

in more diverse populations to increase generalizability of findings

across different communities. Future studies should also examine apa-

thy symptom development over longer follow-up durations, as just

under 50% of participants had 2 or fewer study visits (Table S2).

Furthermore, study participants had relatively low apathy scores at

baseline; this raises the question of how best to model fluctuations in

apathy over time. These lower scores could be due to several reasons;

for example, participants with lower NPS in general may bemore read-

ily able to participate in longitudinal, observationalmultimodal studies.

Alternatively, as apathy in particular is being investigated in this study,

it could be a question of motivation, such that participants with higher

levels of apathy at baseline were less likely to voluntarily enroll in such

an observational study. It is important to note, however, that several

studies have reported significant findings based on similar NPS ranges

at baseline. NPS scores have previously been found to be associated

with increased risk of incident dementia despite low symptom sever-

ity at baseline30 and also with more rapid decline in performance on

neuropsychological measures.31

In conclusion, the results of this study demonstrate the association

between tau burden in regions implicated in AD and apathy over time.

Moreover, secondary models show that these results persist when

taking into account global cognition and cortical amyloid as predictors

of higher apathy in this sample. These models demonstrate the impor-

tance of apathy as a target for symptom management in developing

interventions for patients affected by AD, and their care partners.

To build upon these findings, in future studies it will be important

to consider additional sensitive measures to detect NPS and capture

fluctuations.Moreover, studies should examine individualswith amore
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severe range of apathy symptoms or emergent apathy in order tomore

closely examine this association with AD pathology. Furthermore,

taking a more exploratory approach to see if this observed effect

applies across all regions associated with AD versus apathy could help

inform behavioral modification and treatment options. Finally, explor-

ing the trajectory of these relationships using longitudinal PET imaging

and in relation to other neurobiological mechanisms—including struc-

tural and functional integrity of neural networks and cerebrovascular

disease—captured through neuroimaging and plasma biomarkers, will

help researchers better understand the utility and approaches for

focusing on apathy as a potential treatment target in AD.
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