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The Human T-cell leukemia virus type-I (HTLV-1) is the causal agent of HTLV-associated
myelopathy/Tropical Spastic Paraparesis (HAM/TSP). HAM/TSP is the result of
demyelination and cell death in the spinal cord and disruption of the blood-brain barrier
(BBB), mediated by a virus-induced inflammatory response. In this study, we applied
Positron Emission Tomography with 18F-fluordeoxyglucose (18F-FDG PET) to evaluate
brain metabolism in a group of 47 patients infected with HTLV-1, and 18 healthy
controls. Patients were divided into three groups according to their neurological
symptoms. A machine learning (ML) based Gaussian Processes classification algorithm
(GPC) was applied to classify between patient groups and controls and also to organize
the three patient groups, based on gray and white matter brain metabolism. We found
that GPC was able to differentiate the HAM/TSP group from controls with 85% accuracy
(p = 0.003) and the asymptomatic seropositive patients from controls with 85.7%
accuracy (p = 0.001). The weight map suggests diffuse cortical hypometabolism in
both patient groups when compared to controls. We also found that the GPC could
separate the asymptomatic HTLV-1 patients from the HAM/TSP patients, but with
a lower accuracy (72.7%, p = 0.026). The weight map suggests a diffuse pattern
of lower metabolism in the asymptomatic group when compared to the HAM/TSP
group. These results are compatible with distinctive patterns of glucose uptake into
the brain of HTLV-1 patients, including those without neurological symptoms, which
differentiate them from controls. Furthermore, our results might unveil surprising aspects
of the pathophysiology of HAM/TSP and related diseases, as well as new therapeutic
strategies.

Keywords: Gaussian processes, positron emission tomography, 18f-fluorodeoxyglucose, tropical spastic
paraparesis, HTLV-1, HTLV-associated myelopathy

INTRODUCTION

The Human T-cell leukemia virus type-I (HTLV-1) has been identified as the causal agent of
Adult T-cell leukemia (ATL; Yoshida et al., 1982) and HTLV-associated myelopathy/Tropical
Spastic Paraparesis (HAM/TSP; Osame et al., 1986). It has also been associated with arthritis,
uveitis, dermatitis and polymyositis (Murphy et al., 1989; Yamaguchi and Takatsuki, 1993;
Proietti et al., 2005), but its exact role in these disorders is still not clear. HTLV-1 can be
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transmitted sexually or by blood, blood products, and breast
milk, inducing a lifelong chronic infection. HAM/TSP, the most
severe neurological expression of the HTLV-1 infection, is a
chronic demyelinating disease that affects 2%–3% of seropositive
patients, more often women than men and usually beginning in
adulthood (Osame et al., 1987; Gessain and Gout, 1992). The
disease is characterized by progressive weakness and spasticity
of the extremities, hyperreflexia and mild peripheral sensory loss
(Osame et al., 1987; Gessain and Gout, 1992; Hollsberg and
Hafler, 1993).

Neuropathological findings in HAM/TSP include
degradation of white matter within the lateral funiculus of
the spinal cord, mainly concentrated in the thoracic and
lumbar segments (Levin and Jacobson, 1997). Long-standing
lesions in the spinal cord show myelin and axons being
replaced by glial scars (Zaninovic, 1999). A study by Morgan
et al. (2007) shows similar frequencies of brain white matter
lesions in patients with HAM/TSP and asymptomatic HTLV-1
carriers without a clear correlation with the inflammatory
status.

Many factors influence the development and progression
of HAM/TSP. HTLV-1-specific antibodies and infiltrating
T lymphocytes in the peripheral blood and cerebrospinal
fluid (CSF), accompanied by the release of pro-inflammatory
cytokines, such as tumor necrosis factor-α (TNF-α) and
interferon-γ (IFN-γ), are typically observed in symptomatic
patients (Kannagi et al., 1992; Umehara et al., 1993; Nagai et al.,
2001; Yamano et al., 2002). This inflammatory response seems
to be involved in the demyelination and cell death that occurs
in the spinal cord. Moreover, it also compromises the integrity
of the blood-brain barrier (BBB), making lymphocyte trafficking
into the CNS more likely. The integrity of the BBB can be
further disrupted by the direct infection of resident CNS cells
like astrocytes, as suggested by in situ hybridization studies that
have localized HTLV-1 Tax RNA in these cells (Lepoutre et al.,
2009). Most of the insights gained into the viral CNS cellular
infection have been the result of experiments using in vitro
infection of individual cell populations or in situ hybridization of
CNS tissue (Lepoutre et al., 2009). Although in vitro experiments
can contribute with insights, they are inherently physiologically
limited.

Positron Emission Tomography with 18F-fluordeoxyglucose
(18F-FDG PET) measures glucose metabolism, which is an
indirect indication of neuronal and synaptic activity (Sokoloff,
1981; Attwell and Iadecola, 2002) and has the potential to provide
new information regarding the in vivo effect of the HTLV-1 in
the human brain. Little is known about brain metabolic changes
in HAM/TSP patients. Taniguchi et al. (2015) have reported
hypometabolism in bilateral watershed areas of the middle and
posterior cerebral arteries, but their study was based on regions
of interest (ROI) and focused only on these areas.

Considering the pathogenesis of the HTLV-1 infection
and its effects on the CNS, we hypothesized that patients
infected with HTLV-1 would have a distinctive pattern of brain
metabolism when compared to healthy controls. Furthermore,
we hypothesized that the metabolic activity of the brain could
be related to the severity of symptoms and therefore be different

between asymptomatic and HAM/TSP patients. Thus, in this
study we aimed to characterize brain metabolism in HTLV-1
patients.

MATERIALS AND METHODS

Subjects and Controls
In this study, 47 individuals infected with HTLV-1 (17 males and
30 females, themean age of 50.8, SD = 11.1 years) were evaluated.
Subjects were recruited from the GIPH cohort (1997–2015).
This is an open cohort formed mainly by patients infected
with either HTLV-1 or HTLV-2 during screening for blood
donation at the Hemominas Foundation, in Belo Horizonte,
Brazil. Currently, around 400 subjects are being followed by
the cohort. Our sample of 47 HTLV-1 infected subjects selected
as a convenience sample, representative of the whole cohort,
with a mean follow up of 9.74 years (SD = 5.08). All enrolled
subjects gave written informed consent to participate in this
study and be subjected to clinical examination and a 18F-FDG
Positron Emission Tomography scan, and all procedures were
approved by the local ethics committees (Conselho de Etica em
Pesquisa da UFMG (COEP-UFMG) and Conselho de Etica em
Pesquisa da Hemominas (CEP-Hemominas)). Exclusion criteria:
concomitant infection with other neurotropic viruses (e.g., HIV),
syphilis, hepatitis B and C, Chagas disease, neurologic disease
due to other identified causes (stroke, neurocysticercosis, brain
trauma, neurodevelopmental delay, etc.,) or less than 4 years of
formal education. Also, 18 controls, selected to match the sex
and age of the HTLV-1 patients, were chosen from our database
of healthy volunteers that were submitted to 18F-FDG PET/CT.
Control subjects included only if they had no history or current
evidence of psychosis, autism, brain disorders or any genetic or
medical disorder associated with cognitive impairment. None of
the controls reported the previous or current use of psychotropic
drugs. All controls gave written informed consent and allowed
their brain image to be used in scientific research.

Clinical Characterization
Patients were classified according to the Expanded Disability
Status Scale (EDSS; Kurtzke, 1983; Weinshenker et al., 1989).
EDSS is a method of quantifying neurological disability and
monitoring changes in the level of disability over time. The EDSS
scale ranges from 0 to 10 in 0.5 unit increments that represent
higher levels of disability. Due to high variation in clinical
symptoms, HTLV-1 patients were segmented into three different
groups: (1) EDSS = 0; (2) EDSS = 1–2; and (3) EDSS = 2.5–10.

Image Acquisition
Resting-state 18F-FDG PET/CT brain images for patients and
controls were acquired in a GE Discovery 690 (GE Healthcare,
Millwalke, WI, USA) PET/CT scanner as part of a whole-body
scan. Subjects had at least 6 h of fasting before the exam. After
an intravenous bolus injection of 5.18 MBq/kg of 18F-FDG,
subjects rested for 50 min in a quiet and dark room with
minimum stimuli. PET brain images were acquired subsequently,
with an acquisition time of 10 min, and reconstructed in a
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192 × 192 × 47 matrix using the OSEM (Ordered Subsets
Expectation Maximization) algorithm, with two iterations and
20 subsets. Attenuation correction was performed using the CT
image.

Image Processing
Before analysis, each PET image was spatially processed using
the Statistical Parametric Mapping toolbox (SPM8, Wellcome
Trust Centre for Neuroimaging, 2008) implemented in Matlab
7.12.0 (MathWorks, Natick, MA, USA). This involved gross
manual reorientation and approximate definition of the image
center point, spatial normalization onto a custom 18F-FDG
PET template in MNI space. Smoothing by a 12 mm FWHM
Gaussian kernel and scaling of each voxel value by the global
mean were done to account for differences in global signal
between subjects (Friston et al., 1990). The resulting image was
a 91 × 109 × 91 matrix, with 2 mm voxels. A mask was created
using SPM’s segmentation algorithm to select only gray and
white matter voxels. For this, the a priori gray and white matter
density image were generated for each subject using SPM’s
template, the images from all subjects were combined, and only
voxels with a probability greater than 50% of representing gray
and white matter were selected. Thus resulted in the sampling
of 203590 voxels. The information extracted from each 18F-FDG
PET scan is a single 203590 × 1 data vector that ‘‘summarizes’’
each patient gray and white matter metabolism.

Data Analysis
For the image analysis, we chose a machine learning (ML) based
approach. In general terms, ML works by creating a model based
on a group of matched input-output pairs (i.e., ‘‘learning’’ from
data) and then using this model to predict the output for new
‘‘unseen’’ inputs. It is especially useful when dealing with a high
number of predictor variables, like the tens of thousands of voxels
in a PET image, associated with amuch lower number of samples.
The primary outcome measure of ML is how well the model
generalizes to new data. This is evaluated trough cross-validation,
where the model is iteratively trained on a subset of the data
and then tested on the remaining data. That reduces overfitting,
which occurs when the algorithm starts to ‘‘memorize’’ training
data rather than ‘‘learn’’ to generalize from a trend (Dietterich,
1995). ML is a multivariate approach at the single subject level,
which means that it takes into account the distributed pattern
of effects across the whole brain. That makes sense as the brain is
intrinsically multivariate and the spatial distribution of metabolic
measures for gray and white matters are correlated and present
many complex interactions between them (Doyle et al., 2015).
The method differs from the Statistical Parametric Mapping

approach, which is a mass-univariate approach and therefore
looks at each voxel separately (Friston, 2007).

Many ML algorithms are available for brain image analysis
(Lemm et al., 2011). We opted to use the Gaussian Processes
Classification (GPC; Rasmussen and Williams, 2006), because
is an elegant and flexible approach for the prediction of binary
variables and offers the option to automatic tuning of the
kernel parameters from the training data via type-II maximum
likelihood. Furthermore, it provides a fully probabilistic
prediction, which differentiates it from other ML methods like
SVM or LDA, and is of interest in the setting of clinical
classification and a small number of samples. GP models have
been successfully applied to neuroimaging, providing prediction
of symptom severity, pain states, cognitive and disease states
(Marquand et al., 2010; Hahn et al., 2011; Mourão-Miranda et al.,
2012; Pyka et al., 2013; Young et al., 2013). The method also
enables the generation of weight maps showing the most relevant
features for classification. The importance of discriminative
features to each classification was calculated using the analytical
method proposed by Gaonkar and Davatzikos (2013), with a
threshold of 0.05.

The GPC implementation available within the kernlab
R library (Williams and Barber, 1998; Karatzoglou et al., 2004;
R Development Core Team., 2013) was used in this study. The
kernel function was set to polynomial, and the initial noise
variance and tolerance of termination criteria were both set to
0.001.

RESULTS

Subject Groups
The 47 HTLV-1 seropositive patients were divided into three
groups according to their EDSS. Group 1 (n = 22) consisted of
asymptomatic carriers, that is, subjects presenting no clinical sign
of neurological deficits as measured by the EDSS scale. Group 2
(n = 11) was more heterogeneous than the other two groups, with
some subjects showing initial and unspecific symptoms. Group 3
(n = 14) consisted of patients with confirmed HAM/TSP. The
control group consisted of 18 subjects. Group characteristics are
summarized in Table 1.

GPC Can Accurately Classify Patients and
Controls
We first compared 18F-FDG PET brain images of gray and
white matter of each patient group with the corresponding
images from controls. For each comparison, we performed leave-
one-out cross-validation (LOOCV). This involved removing
one subject from each cluster and training the GPC algorithm

TABLE 1 | Characterization of Human T-cell leukemia virus type-I (HTLV-1) patient groups and controls.

Group EDSS Mean EDSS Mean sympt. durat. (years) Mean follow-up (years) Subj Sex Mean age (years)

Group 1 0 0 0 11 (SD = 4.6) 22 12M/10F 50.1 (SD = 10.4)
Group 2 1–2 1.59 3.2 (SD = 3.1) 9.2 (SD = 6.2) 11 2M/9F 47.8 (SD = 12.6)
Group 3 2.5–10 5.28 13.4 (SD = 9.8) 9.1 (SD = 4.5) 14 3M/11F 54.1 (SD = 10.8)
Controls – – – – 18 9M/9F 42.0 (SD = 12.5)

Legend: EDSS = Expanded Disability Status Scale, mean sympt. durat. = mean symptom duration, Subj = subjects, M = male, F = female, SD = Standard deviation.
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on the remaining data. The obtained model was then used
to predict the class of the two removed subjects (control or
patient). This validation was repeated n times, where n is the
number of subjects in each group. The results were put in a
contingency table, and the sensibility, specificity and accuracy
were calculated. The significance was calculated by repeating
the cross-validation a 1000 times after randomly permuting
the input labels. We expected that if the GPC algorithm was
able to accurately classify subjects according to their group,
that would suggest that there is a distinct pattern of metabolic
activity across white and gray matter that differentiates the
groups.

As data from both groups was used to train the algorithm,
each group had to have the same number of subjects arranged
into matching pairs. Otherwise, the algorithm would train more
on one group, resulting in a biased prediction. Pairs were
matched as closely as possible for sex and age (Chen et al., 2007;
Kim et al., 2009; Hsieh et al., 2012) so that not all controls were
selected for each comparison with the clinical groups. Table 2
contains the results for the GPC (prediction accuracy) together
with the number of subjects in each group and the sex and age
distributions.

Classification between controls and the asymptomatic group 1
showed the highest prediction accuracy (85.7%, p = 0.001).
All patients, except one, were correctly classified as patients,
and all, except three control subjects, were properly classified
as controls (Figure 1A). The figure depicts the output of
the GP function (class probability) and shows that most
of the correctly classified subjects had a high probability
of belonging to their class. Classification between group
2 and controls was less accurate (75%), but still significant
(p = 0.024; Figure 1B). Classification between group 3
(HAM/TSP) and controls was more accurate (85%, p = 0.003),
with one misclassified control and two misclassified patients
(Figure 1C).

Since both asymptomatic and HAM/TSP patients could be
differentiated from controls with high accuracy, we performed
a multiclass classification between controls and these two
patient groups. The mean accuracy for the classification was
69.7% (p = 0.001), with 81.8% correct classification of controls,
72.7% of group 1 (asymptomatic) and 54.5% of group 3
(HAM/TSP).

Weight Maps Suggest Diffuse
Hypometabolism in Patient Groups 1 and 3
To access the contribution of each voxel for the class prediction,
we produced weight maps and superposed them on a MRI

template in MNI space. The magnitude of the weight is related
to the importance of a particular voxel for the prediction
and the sign of the weight is related to relative differences
between classes: positive weights suggest a tendency for higher
values in class 1 and negative weights suggest a tendency for
higher values in class 2. The significance of these weights
was calculated and only those with a significance of less than
0.05 were used to produce themap. For the classification between
controls and group 1, the weight map exhibited a global and
diffuse distribution of positive weights, suggesting a diffuse
hypometabolism in the patient group 1 (HTLV+ asymptomatic;
Figure 2A). For the classification between controls and the
more heterogeneous patient group 2, the weight map showed
areas of positive and negative influences, suggesting both
increased and decreased metabolism in the patients of group
2 when compared to controls (Figure 2B). The pattern of
metabolism has a tendency towards a symmetrical distribution
when comparing both hemispheres. Finally, for the comparison
between controls and patient group 3, the weight map consisted
of predominantly positive weights, over again suggesting a
diffuse hypometabolism of the HAM/TSP group compared to
controls (Figure 2C).

GPC Can Accurately Classify
Asymptomatic HTVL+ and HAM/TSP
Patients
Due to high variability in neurological symptoms, we
hypothesized that different patient groups would also present
a distinct pattern of metabolic activity in their gray and white
matter. To test whether de GPC algorithm could accurately
classify the groups according to PET images, we performed
three additional analyses comparing subsets of groups 1 and 2,
groups 1 and 3 and groups 2 and 3. The results are presented in
Table 3. Only group 1 and 3 could be accurately distinguished
by the algorithm (accuracy of 72.7%, p = 0.026; Figure 3). These
findings suggest a difference between the metabolic patterns of
these two groups. The weight map presents a diffuse distribution
of negative weights, suggesting a higher metabolism in group 3
when compared to group 1 (Figure 4).

DISCUSSION

In this study, we successfully applied GP classification to
investigate patterns of metabolic activity in patients infected with
HTLV-1 and healthy controls. Care was taken to ensure optimal
matching for sex and age among compared groups, as well as
including the same number of subjects in each group, in order

TABLE 2 | Results for Gaussian processes classification of HTLV-1 patient groups and controls.

Class 1 NS Sex Age (SD) Class 2 NS Sex Age (SD) Acc. p-value

Controls 14 9M/5F 46.4 (10.5) Group 1 14 9M/5F 46.7 (9.2) 85.7% 0.001
Controls 10 5M/5F 42.9 (12.3) Group 2 10 2M/8F 45 (12.1) 75% 0.024
Controls 10 6M/4F 49.4 (11.2) Group 3 10 3M/7F 50.1 (10.1) 85% 0.003

Legend: NS = number of subjects, M = male, F = female, SD = Standard deviation, Acc = accuracy for GPC. Group 1 = EDSS 0, Group 2 = EDSS 1–2 and Group

3 = EDSS 2.5–10.
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FIGURE 1 | Gaussian process classification between controls and patient groups. Histograms for the output of the Gaussian process function. Output
values of less than 0.5 represent probability of belonging to class 1 (blue line) and values higher than 0.5 represent probability of belonging to class 2 (red line).
(A) GPC between controls and group 1 (Expanded Disability Status Scale - EDSS 0). (B) GPC between controls and group 2 (EDSS 1–2). (C) GPC between controls
and group 3 (EDSS 2.5–10).

FIGURE 2 | Weight maps for classification. (A) GPC between controls and group 1 (EDSS 0) shows diffuse distribution of positive weights. (B) GPC between
controls and group 2 (EDSS 1–2) shows diffuse distribution of positive weights and negative weights. (C) GPC between controls and group 3 (EDSS 2.5–10) shows
diffuse distribution of positive weights and negative weights.

not to bias the training of the classifier. The significance of our
results was calculated using a 1000 fold random permutation of
the input labels, to confirm that the classification was not due to
a random association between classes and image features. This is
particularly relevant in the analysis of small samples with a high
number of features.

Our analysis shows that patients with HAM/TSP (group 3)
could be classified with 85% accuracy (p = 0.003) when

compared to controls. Furthermore, we found that asymptomatic
HTLV-1 patients (group 1) could also be accurately classified
when compared to the control group, with 85.7% accuracy
(p = 0.001). These findings suggest that there is a distinct pattern
of metabolic activity in HAM/TSP patients, differentiating
them from the control group. Moreover, asymptomatic carriers’
brain metabolism also seems to differ from the control group,
indicating changes in glucose uptake even in the absence of

TABLE 3 | Results for Gaussian processes classification between HTLV-1 patient groups.

Class 1 NS Sex Age (SD) Class 2 NS Sex Age (SD) Acc. p-value

Group 1 11 2M/9F 49.5 (10.7) Group 2 11 2M/9F 49.2 (10.6) 68.2% 0.072
Group 1 11 4M/7F 49.9 (10.6) Group 3 11 2M/9F 53.5 (11.8) 72.7% 0.026
Group 2 11 2M/9F 49.2 (10.6) Group 3 11 3M/8F 51 (10) 54.5% 0.392

Legend: NS = number of subjects, M = male, F = female, SD = Standard deviation, Acc = accuracy for GPC. Group 1 = EDSS 0, Group 2 = EDSS 1–2 and Group

3 = EDSS 2.5–10.
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FIGURE 3 | Gaussian process classification between patient group
1 and patient group 3. Histogram for the output of the Gaussian process
function. Output values of less than 0.5 represent probability of belonging to
group 1 (blue line) and values higher than 0.5 represent probability of
belonging to group 3 (red line).

FIGURE 4 | Weight map for classification between patient group 1 and
patient group 3. Weight map for classification shows diffuse distribution of
negative weights.

neurological symptoms. We also performed a multiclass GP
classification between controls and patient groups 1 and 2,

which could be classified with a mean accuracy of 69.7%
(p = 0.001). The multiclass classification confirms that both
patient groups have a distinct pattern of brain metabolism
compared to controls (81.8% correct classification), but also from
each other, with 72.7% correct classification of group 1 and 54.5%
of group 3.

The generated weight maps show the joint contribution
of all brain voxels in the class prediction. In the classification
between asymptomatic HTLV+ (group 1) and controls,
and between HAM/TSP (group 3) and controls, diffuse
positive weights can be observed, which suggests a lower
metabolism in the patient group compared to the control
group. Classification of the group 2 (HTLV+ with few
symptoms) showed a lower accuracy of 75% (p = 0.024).
The generated map contained both negative and positive
weights, with a diffuse distribution. These results might be
related to the clinical heterogeneity of group 2, as it is composed
of HTLV-1 patients with unspecific symptoms. If no clear
and consistent pattern of metabolic change is present, the
algorithm is unable to make accurate predictions during the
LOOCV.

To further investigate the brain metabolism in our sample of
HTLV-1 infected patients, we performed comparisons between
the three patient groups. The only significant accuracy for
classification was observed between asymptomatic HTLV+
(group 1) and HAM/TSP (group 3), but it was relatively
small (72.7%, p = 0.026). The weight map suggests a
diffuse lower metabolism in group 1 when compared to
group 3.

Although inflammation plays a major role in the
neuropathology of HTLV-1 infection (Bangham, 2000; Boxus
and Willems, 2009; Olière et al., 2011; Lairmore et al., 2012)
and usually causes an increase in 18F-FDG uptake, most of
the glucose consumption in the brain is related to neuronal
activity (Sokoloff, 1981). Therefore, the indirect measure of
hypometabolism in HTLV-1 patients suggested by the weight
map could be related to some degree of neuronal dysfunction
caused by long-standing inflammation. Under this perspective,
the predominantly positive weight map in the classification
between patients and controls suggests some level of neuronal
dysfunction, even in the asymptomatic group. These subjects
did not present any neurological symptom as measured through
the EDSS scale, although we found that asymptomatic HTLV-1
carriers already had changes in their neuropsychological
performance (unpublished data).

Furthermore, there seems to be a distinction in the pattern
of hypometabolism between these asymptomatic patients and
the HAM/TSP group. Interestingly, the predominantly negative
weight map suggests a lower metabolism in the asymptomatic
group. One possible explanation for these results could be related
to the mechanism of infection used by the virus. The Glucose
Transporter Protein 1 (GLUT-1) is one of the identified proteins
utilized by the HTLV-1 virus to infect cells (Jin et al., 2006; Jones
et al., 2006; Kinet et al., 2007; Ghez et al., 2010). GLUT-1 is
the primary glucose transporter across the BBB and is expressed
in the luminal and abluminal membranes of endothelial cells
(Simpson et al., 2007; Devraj et al., 2011). Considering the
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infection of these cells by the HTLV-1 virus using the GLUT-1
proteins (Afonso et al., 2008), we speculate that hypometabolism
in the asymptomatic patients might be the result of direct
impairment of glucose transport in the BBB through viral
infection. In fact, it has been shown that the overexpression of
HTLV-1 receptor binding domain in cell cultures altered glucose
metabolism, which was consistent with the use of metabolite
transporters as entry receptors by retroviruses (Sommerfelt,
1999; Ghez et al., 2010). However, this explanation is built
over conjectures, and functional data is necessary to investigate
the direct relationship between infection of endothelial cells
and brain glucose metabolism, which might unveil interesting
new aspects of the pathophysiology of HAM/TSP and related
diseases.

Limitations of our study include the fact that, due to group
matching, most of the analyses were performed with groups
containing 10–11 subjects, which might limit the sensibility
of the method. Furthermore, two of the subjects in group
3 were in use of corticosteroids, which might have affected the
results. Nevertheless, we were able to show that asymptomatic
HTLV-1 carriers have significant brain metabolic changes when
compared to controls and that glucose uptake may be related
to the pathophysiology of HTLV-1 infection. Further studies
are necessary to confirm these results and shed more light
on the relationship between infection of endothelial cells and
brain glucose metabolism, which might lead to new therapeutic
strategies.
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