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Å-Indentation for non-destructive 
elastic moduli measurements of 
supported ultra-hard ultra-thin 
films and nanostructures
Filippo Cellini1,2, Yang Gao2,4 & Elisa Riedo1,2,3,4

During conventional nanoindentation measurements, the indentation depths are usually larger than 
1–10 nm, which hinders the ability to study ultra-thin films (<10 nm) and supported atomically thin 
two-dimensional (2D) materials. Here, we discuss the development of modulated Å-indentation 
to achieve sub-Å indentations depths during force-indentation measurements while also imaging 
materials with nanoscale resolution. Modulated nanoindentation (MoNI) was originally invented to 
measure the radial elasticity of multi-walled nanotubes. Now, by using extremely small amplitude 
oscillations (<<1 Å) at high frequency, and stiff cantilevers, we show how modulated nano/Å-
indentation (MoNI/ÅI) enables non-destructive measurements of the contact stiffness and indentation 
modulus of ultra-thin ultra-stiff films, including CVD diamond films (~1000 GPa stiffness), as well as 
the transverse modulus of 2D materials. Our analysis demonstrates that in presence of a standard 
laboratory noise floor, the signal to noise ratio of MoNI/ÅI implemented with a commercial atomic 
force microscope (AFM) is such that a dynamic range of 80 dB –– achievable with commercial Lock-in 
amplifiers –– is sufficient to observe superior indentation curves, having indentation depths as small as 
0.3 Å, resolution in indentation <0.05 Å, and in normal load <0.5 nN. Being implemented on a standard 
AFM, this method has the potential for a broad applicability.

Nanoindentation has been continuously applied in the last two decades to investigate the mechanical properties 
of materials at the nanoscale. The main advantages of this technique are the extremely small imposed deforma-
tion, of the order of few hundred nanometers, the small loading force, ranging from few mN to μN, and the small 
sample size required for testing, with sample surfaces of less than a few microns squared1,2. Nanoindentation has 
enabled for the first time the direct measurement of the stiffness and hardness of thin films and coatings, with a 
better resolution compared to previous testing methodologies. Nanonindentation has been primarily adopted in 
the scientific and industrial practice in the study of metal alloy thin films3 and inorganic crystalline thin films4, 
but several studies have also explored its application to biomaterials, such as bones5 and DNA6, polymeric films7, 
and colloidal crystals8.

The nanoindentation technique most widely adopted by the scientific community is the one described in 
refs1,2,9. This technique has also been usually referred to as continuous stiffness measurement (CSM)1. In its fun-
damental incarnation, this methodology employs a nanoindenter of known geometry, usually a tetragonal tip or 
Berkovich indenter, and size, which is pressed against the sample using an actuation system controlled by a mag-
netic coil1,2,9. Characteristic indentation depths usually range from a few hundred nanometers to several microns. 
A small residual deformation is usually observed after indentation, whereby a micrometer size indent is left on 
the surface of the specimen after the test. During the CSM experiment, the mechanical stiffness of the material is 
continuously measured by superimposing to the main indentation force, a small periodic oscillation at a known 
frequency below 100 Hz. The periodic force and indenter displacements are acquired using a Lock-in amplifier, 
and employed to compute the contact stiffness1,2,9.
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Several studies have been recently devoted to develop the classical nanoindentation technique in order to 
improve its resolution at small scales, reduce the uncertainty associated to the measurement chain, and remove 
the necessity to visually inspect the residual indent after testing. For example, a high precision nanoindentation 
instrument based on an instrumented indentation testing (IIT) layout has been developed in ref.10. This instru-
ment is able to conduct nanoindentation measurements with noise floor of 2 μN, displacement resolution of 
0.4 nm, and uncertainty in the indentation depth of less than 10 nm. An ultra nanoindentation tester has been 
presented in ref.11, whereby indentation measurements of few nanometers depth are performed using a Berkovich 
indenter with a remarkable resolution of 1 nN in force and 0.3 pm in displacement. An important contribution to 
the field is the recent development of second harmonic detection methods, which are discussed in refs12,13. In this 
class of methods, the normal displacement is not used to identify the mechanical properties, thereby reducing the 
need of accurate detection of the contact between the indenter and the sample.

While nanoindetation techniques have been successfully employed to characterize a wide range of materials, 
there are some fundamental limits that hinder their application when the size of the structures under investiga-
tion goes below a certain scale (a comprehensive description of the measurement process is found in14). More 
specifically, indentation depths usually employed during conventional nanoindentation are of the order of at 
least 20–100 nanometers, which is the same order of magnitude or larger than the thickness of ultra-thin films 
(<10 nm) increasingly studied for semiconductor and energy applications15,16, or the thickness of nanowires17 
and atomically thin two-dimensional (2D) materials (~1–5 nm)18–20. Indentation depths that are comparable, if 
not larger, than the thickness of the film may compromise the accuracy of the measurement, substantially increas-
ing the contribution of the substrate to the mechanical response and eventually disrupting and damaging the film. 
In addition, classical nanonindentation usually produces a permanent deformation of the material (the residual 
indent), which might result in an irreversible modification of properties of the thin film beyond its mechanical 
stiffness, such as its electrical or thermal conductivity at the nanoscale21,22.

Nanomechanical measurements based on the Atomic Force Microscopy (AFM) have been explored as an 
alternative to classical nanoindentation23–25. While some scholars still question the ability of AFM-based meas-
urements to replace classical nanoindentation in the mechanical characterization of surfaces, several studies have 
demonstrated the robustness of these methodologies for measuring the mechanical properties of materials24,26. 
By leveraging the high speed scanning/imaging capabilities of the AFM, research efforts have been traditionally 
devoted to develop imaging techniques for qualitative estimation of mechanical properties27,28, while quantita-
tive estimation has been achieved employing an external calibration refs29–31. For example, a bimodal AM-FM 
imaging method is employed in ref.31 to measure the stiffness of materials ranging from polymers (few hundred 
MPa) to titanium and silicon (~100 GPa). In addition, new methodologies are continuously under study32,33. For 
instance, a multifrequency force spectroscopy method has been recently presented in refs33, whereby mechanical 
modulus and viscoelastic properties of soft materials are successfully identified with great accuracy.

Herein, we discuss the experimental details and application of a novel sub-Å resolution indentation method 
based on AFM and Modulated Nano-indentation (MoNI), which allows for elasticity measurements of ultra-thin 
and ultra-hard materials (100–1000 GPa) with very shallow indentation depths — as small as 0.3 Å—, and 
has a force and displacement/indentation resolution <0.5 nN and <0.05 Å, respectively. We call this method 
“Å-indentation” (ÅI) to better reflect its extremely high resolution (sub-Å) and outstanding ability to probe sam-
ple surface phenomena at Å-scale depth. The technique is based on an approach similar to well-established CSM 
methodologies, whereby a high frequency oscillating force is superimposed to the main force applied during 
the indentation cycle using a commercial AFM system. Differently from traditional CSM, MoNI/ÅI employs 
extremely small amplitude oscillations (<<1 Å), higher frequency, and force detection systems based on laser 
detection AFM methods. This technique, however simple, is shown to provide accurate estimations. More spe-
cifically, our analysis demonstrates that in presence of a standard laboratory noise floor, the signal to noise ratio 
of MoNI/ÅI implemented with a commercial atomic force microscope (AFM) is such that a dynamic range of 
80 dB —achievable with commercial Lock-in amplifiers— is sufficient to observe superior indentation curves, 
with indentation depths as small as 0.3 Å, resolution in indentation <0.05 Å and in normal load <0.5 nN. The 
traditional definition of dynamic reserve is the ratio of the largest tolerable noise signal to the full scale signal, 
expressed in dB. In our analysis the full scale indentation signal for ultra-stiff films (~1000 GPa stiffness) is as 
low as 2 pm, then a dynamic reserve of 80 dB means cantilever vibration noise as large as 20 nm (80 dB greater 
than full scale) can be tolerated at the input without overload. In what follows, we show how the detection of the 
indentation signal can be performed above the noise level using a commercial Lock-in amplifier, whose dynamic 
range is 100 dB34.

MoNI/ÅI has recently found applications in the characterization of the mechanical properties of the transverse 
mechanical stiffness of supported 2D materials, and in particular supported epitaxial graphene19,35. The enhanced 
resolution of MoNI/ÅI has enabled for the first time the direct measurement of the inter-layer stiffness of few 
layer thick graphene and graphene oxide supported films19 and has led to the discovery of the room-temperature 
diamondization of epitaxial bi-layer graphene on silicon carbide35,36. These measurements have been possible 
only due to the extremely high spatial resolution of MoNI/ÅI. Further, the possibility of informing the MoNI/
ÅI measurements with topographic AFM imaging allows resolution and testing of small features on the sample. 
For example, MoNI/ÅI has been employed to detect and probe nanofilaments of Q-carbon of 30 nm depth and 
200 nm width37. This level of lateral resolution is of course extremely hard to achieve with traditional nanoinden-
tation techniques.

In this paper, we discuss in details the instrumentation, calibration, and procedure employed for MoNI/ÅI, as 
well as the analysis performed to measure the contact stiffness and reconstruct the indentation curves. More spe-
cifically, in the Materials and Methods, we present the experimental apparatus and the procedure for MoNI/ÅI.  
We also present the calculations employed to compute the stiffness of the contact, the indentation curves, and 
the elastic modulus of the material. Further, we describe the calibration procedure, the estimation and prediction 
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of the noise levels, we provide an example of the input and output data in a typical MoNI/ÅI experiment, and 
we estimate the uncertainty associate to the identification of the indentation modulus. In the Results, we report 
results obtained in MoNI/ÅI experiments conducted on reference materials, namely CVD diamond, sapphire, 
zinc oxide, and silicon oxide as well as the results obtained in atomically thin graphene and graphene oxide 
films on silicon carbide. We also discuss the unique features of MoNI/ÅI that have allowed these unprecedented 
measurement of the inter-layer/transverse elasticity of 2D films and the phase transformation of bilayer epitaxial 
graphene on silicon carbide into diamene. The article concludes with a summary of the main results.

Materials and Methods
Experimental Apparatus and Procedure.  The setup for MoNI/ÅI experiments is described in the sche-
matic displayed in Fig. 1. The experimental apparatus is composed of an Agilent PicoPlus AFM, which is inter-
faced with a Stanford Research Systems SR830 DSP Lock-in amplifier, and a voltage divider assembled in-house. 
In the schematic, the oscillating voltage output of the Lock-in amplifier is fed through the divider to the piezotube 
controlling the displacement along the z-axis of the AFM cantilever. The raw deflection measured by the AFM 
photodetector is transmitted back through the AFM controller to the phase-sensitive detector of the Lock-in 
amplifier. Raw data from the Lock-in recorded either by using the AFM Software or a National Instruments Data 
Acquisition board are employed to compute the mechanical properties of the material. A detailed description of 
the methodology employed to compute the mechanical properties of the sample surface from raw data is reported 
in the following sections.

The AFM cantilevers typically employed in MoNI/ÅI experiments have nominal spring constant in the range 
between 40 and 230 N/m, with the first resonant frequency between 270 and 600 kHz. Two different types of 
AFM probes have been employed in MoNI/ÅI experiments with comparable results, traditional Silicon tips and 
diamond-coated silicon tips, with diamond-coated tips being the preferred choice in order to minimize the effect 
of tip wear over repeated measurements. Accurate calibration of the tip and cantilever is required before perform-
ing MoNI/ÅI. A detailed description of the calibration procedure is reported in a dedicated section in the paper.

During the MoNI/ÅI experiments, as mentioned above, a Lock-in amplifier is used to generate a sinusoidal 
voltage signal at a fixed frequency, π ϕΔ = |Δ | +− −V t V f t( ) sin(2 )Lock in Lock in , where the voltage Δ −VLock in is 
usually in the range 4–8 mV, the oscillation frequency f  ≈ 991 Hz, and ϕ is a phase shift. The voltage generated by 
the Lock-in amplifier is then reduced using a divider, with a diving factor D ranging between 1 and 1000. The 
voltage Δ −V t D( )/Lock in  is applied to the piezotube of the AFM cantilever holder to control the cantilever/tip dis-
placement along the z-axis. A tension of a few tenths of mV applied by the Lock-in amplifier results in an oscilla-
tion of the piezotube and the rigidly connected AFM cantilever holder of few Ångstroms. For example, by 
considering a tension of Δ =−V 4mV RMSLock in , a dividing factor D = 10, and a piezo coefficient calibration of 
C = 1.8 Å/mV RMS, we get an oscillatory amplitude of the piezotube of Δ = .z 0 7 Åpiezo . This extremely small 
displacement can be measured by means of the four-quadrant AFM photodetector, whose output deflection sig-
nal is then read using the phase-sensitive detector of the Lock-in amplifier. This procedure allows reconstruction 
of signals with intensities way below the noise floor of the AFM, as discussed below in a dedicated section on 
noise estimation.

In a typical MoNI/ÅI experiment, the tip is initially positioned in contact with a surface, and a certain initial 
load voltage is applied to the piezotube to further generate a contact between the AFM tip and the surface with a 
constant force, Fz

0 , between the tip and the sample. When the MoNI/ÅI experiment starts, the total displacement 
of the piezotube is composed of two components: a constant displacement due to the load voltage applied to the 
piezotube and imposed by the AFM controller (V0

AFM in Fig. 1), and a superimposed sinusoidal oscillating deflec-
tion of very small amplitude due to the sinusoidal voltage signal (Δ −V t D( )/Lock in  in Fig. 1) generated by the 

Figure 1.  MoNI/ÅI experiment schematic. A schematic representation of the setup for MoNI/ÅI. The arrows 
indicate the input/output directions of the signals from the different devices.
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Lock-in amplifier at fixed frequency and also applied to the piezotube (corresponding to a vertical oscillating 
displacement of the piezotube Δzpiezo).

After the tip is brought into contact with the surface, the load voltage is slowly decreased to progressively 
reduce the contact force between the tip and the sample. This change is quasi-static and driven at a rate 
(<0.002 V/s) much slower than the oscillation frequency of the sinusoidal signal (991 Hz, approx. 0.5 V/s) gener-
ated by the Lock-in amplifier. The overall range of vertical displacement z0

AFM is 4–6 nm, which is completed in 
a 35–40 s time interval in our experiments. During the unloading phase, the feedback loop of the AFM controls 
the load force Fz

0  while the small oscillations, too small to be read by the AFM controller, are applied to the pie-
zotube. This ensures that the load Fz

0  is maintained and corrected by possible thermal drifts. Therefore, for each 
fixed Fz

0 , the Lock-in records the cantilever deflection signal π ϕ= + Δ +F F F F f t( )sin(2 )z z
tot 0 0  to compute 

ΔF F( )z
0  and thus obtain the local elasticity of the material at a given indentation depth as detailed in the next 

section. Details on the signals measured by the AFM and the Lock-in amplifier are reported in the last section of 
the Methods.

Theory Background and MoNI/ÅI Indentation Curves.  During the indentation, for each constant nor-
mal force Fz

0  the lock-in drives the fixed piezotube oscillation amplitude Δzpiezo, which is equal to the sum of the 
cantilever bending Δzlever and the displacement of the tip-sample contact normal to the plane Δzindent as shown in 
Fig. 2(a), so that:

Δ = Δ + Δz z z (1)piezo lever indent

The stiffness of the AFM cantilever and the tip-sample contact can be considered as the connection in series 
of two springs: the cantilever with stiffness klev and the tip-sample contact with stiffness kcont (see schematic in 
Fig. 2a). The force required to stretch these two springs in series with a total displacement Δzpiezo is equal to the 
normal force variation ΔF F( )z

0 , which depends on the normal force Fz
0  and is measured using the Lock-in ampli-

fier during MoNI/ÅI experiments. This experimental configuration allows us to measure the total stiffness ktot at 
each normal load Fz

0 , fixed by the feedback loop of the AFM:
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Figure 2.  Simulations of MoNI/ÅI indentation. (a) Schematic of the contact problem: the red shaded area 
represents the region of the sample contributing to the effective contact stiffness. (b) Simulated piezotube 
oscillation Δzpiezo computed as a function of the applied force Fz

0 . Notably, the oscillation of the piezotube Δzpiezo in 
the experiments is imposed by the Lock-in amplifier and it is independent from the displacement z0

AFM, which is 
controlled through the AFM together with Fz

0 . (c) Simulated resulting force ∆F F( )z
0  computed as a function of the 

applied force Fz
0 . (d) Simulated total stiffness ktot (black line) and contact stiffness kcont (red line) computed as a 

function of Fz
0 . (e) Indentation curve computed using Equation (4) from the contact stiffness in (d).
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Therefore, from the measurements through the Lock-in amplifier of ΔF F( )z
0  for each Fz

0  and the knowledge of 
Δzpiezo (output signal from the Lock-in amplifier into the piezotube), we can obtain the full k F( )z

tot 0  curves as 
shown in Fig. 2(d). Furthermore, since klev is known, the measurement of ΔF F( )z

0 /Δzpiezo at different normal loads 
Fz

0  allows us to acquire the stiffness k F( )z
cont 0  as a function of Fz

0 . If the sample-substrate deforms during indenta-
tion, an additional term, 1/ksample-substrate, needs to be added into Equation (2).

The contact stiffness k F( )z
cont 0  is by definition equal to:

=k F dF
dz

( )
(3)

z
z

cont 0
0

indent

where zindent is the indentation depth, which is the maximum normal displacement of the tip-sample contact. By 
substituting Equations (2) in (3) and computing the integral in Fz

0 , the MoNI/ÅI indentation curve is obtained as
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where FP0 is the pull-out force measured by the AFM when the tip loses contact with the sample’s surface at zP0. 
Equations (2, 4) allow the identification of the effective contact stiffness and computation of the indentation curve 
for the MoNI/ÅI experiments:
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The elastic modulus of the material can be quantified by determining the functional dependence of the contact 
stiffness k F( )z

cont 0  on Fz
0 . A viable model to study the contact between the tip and the sample is the classical Hertz 

model for the contact between a sphere and an elastic half space38,39. This model assumes that the contact is fric-
tionless, non-adhesive, and that the area of contact is much smaller than the characteristic radius of the sphere. In 
addition, the deformation of both the tip and the surface are in the linear elastic regime, and thus fully reversible. 
Notably, this hypothesis better applies to MoNI/ÅI than to traditional nanoindentation methodologies where 
plastic deformation of the surface is commonly observed. Under these assumptions, the force Fz

0  can be obtained 
as function of the indentation depth as

=
⁎

F E R z4
3 (6)

z
0 indent
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and the stiffness of the contact can be determined using Equations (3, 6), so that
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where R is the radius of the tip and
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is the contact modulus, where Etip and νtip are the elastic modulus and Poisson’s ratio of the AFM tip, and E and 
ν are the indentation modulus and Poisson’s ratio of the sample, respectively.

Notably, while the Hertz model is valid in the case of non-adhesive contact, the Johnson-Kendall-Roberts (JKR) 
and the Derjaguin-Muller-Toporov (DMT) are popular models for predicting the contact behavior in the presence 
of adhesive forces19,40–42. In particular, the JKR model is often adopted in the case of contact with compliant solids, 
whereby the radius R is large and the adhesion forces are also large. More accurate for the case of MoNI/ÅI experi-
ments on stiff solids is the DMT model19, which instead assumes small R and small long-distance adhesion forces. 
In the presence of adhesion forces, the modified form of the contact stiffness for the DMT model is

γπ= +




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
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∗
k F F R E R( ) 3
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z z
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where γ is the adhesion energy. For the DMT model in Equation (9), γπ= −F R2P0  in Equation (4). FP0 is 
defined as the pull-out force when the tip loses contact with the sample at zP0 and is therefore equivalent to the 
resulting adhesion force. The effect of adhesive forces is not neglected in the MoNI/ÅI method, whereby indenta-
tion curves are obtained through the corrected “absolute” normal load = −F F Fz z

P0 0 0 and “absolute” indentation 
depth = −z z zindent indent P0 in Equation (4).

To clarify the meaning of the physical quantities discussed in this section, we simulate in Wolfram 
Mathematica a MoNI/ÅI experiment performed on a graphite sample (indentation modulus E⊥ = 30 GPa and 
ν = 0.2) with a diamond coated tip (Etip = 1050 GPa and νtip = 0.2) of radius R = 100 nm. In this example, the pie-
zotube oscillation Δzpiezo is computed for amplitude 0.7 Å and frequency of 4 Hz. The oscillation Δzpiezo as a 
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function of the force Fz
0  is displayed in Fig. 2(b). When Fz

0  goes to zero as the contact between the sample and the 
tip is lost, Δzpiezo continues to oscillate in the simulation with the cantilever in air, whereby no elastic forces are 
applied on the sample and the cantilever. The amplitude and frequency of Δzpiezo are in fact controlled in the 
experiment by the Lock-in amplifier, which is independent from the AFM feedback loop that controls z0

AFM and 
Fz

0 . In Fig. 2(c), we display the force ΔF F( )z
0  as a function of the force Fz

0  for the Hertz model. As expected for the 
simple Hertzian case, the oscillatory force ΔF F( )z

0  decreases with Fz
0  and eventually goes to zero when Fz

0  = 0. The 
value of the effective stiffness computed using Equation (7) as a function of Fz

0  is displayed in Fig. 2(d). The total 
stiffness computed for klev = 50 N/m using Equation (2) is also displayed in Fig. 2(d). The indentation curve 
obtained by computing the integral in Equation (4) are displayed in Fig. 2(e). Determination of an accurate inden-
tation curve is the goal of MoNI/ÅI experiments. In what follows, we will detail the different steps necessary to 
achieve high accuracy in the measurement.

Calibration of Piezotube, Cantilever, and Photodetector.  Calibrations of the cantilever spring con-
stant and tip radius, photodetection/deflection of the cantilever, and piezotube oscillation are required before 
performing the MoNI/ÅI experiments to know: i) the force applied; and ii) the amplitude of the oscillations of the 
piezotube. These procedures are reported in what follows.

To calibrate the spring constant of the cantilever, we use the Sader method reported in refs43,44. Following44, 
the spring constant is given as

ρ ω=k M bhL (10)elev vac
2

where ρ is the density of the cantilever, h, b, and L are the thickness, width and length of the cantilever, respec-
tively, and ωvac is the first flexural resonant frequency in vacuum. In addition, following43, an effective mass 
Me = 0.2427 is employed for L/b > 5. For cantilevers employed in MoNI/ÅI experiments, we can assume 
ρ = 2.239 g cm−3, which is the nominal density of highly doped silicon. The resonance frequency can be measured 
in air with the tuning method in non-contact mode (the relation between the resonant frequency in air and in 
vacuum is discussed in ref.43). The dimension of the cantilever can be measured by Scanning Electron Microscope 
(SEM). For example, for a cantilever having thickness h = 4 µm, width b = 25 µm, length L = 123 µm and 
ωvac = 2.764 × 106 s−1 (440 kHz) the spring constant is klev = 53 N/m.

In addition to the measurement of the cantilever spring constant, analysis of the MoNI/ÅI data requires cali-
bration of the AFM tip radius R in Equation (7), which can be performed using two different methods. The first 
method is by SEM imaging, whereby the radius of the tip is directly measured from the images. The second 
method is the so-called “reference material method”, see also ref.31. The MoNI/ÅI measurement is conducted on 
a well-known isotropic material of which the Young’s moduli is known (for example a sapphire crystal) and non-
linear fitting procedure is then employed to fit the ktot versus Fz

0  curves while keeping E* fixed and using R as free 
fitting parameter (see Equation (7)). Results from the two methods can be compared to ensure the accuracy of the 
measurement.

Calibration of the AFM force-displacement detection system is performed in two steps. In the first step, the 
voltage associated to the deflection of the cantilever is measured using the photodetector as a function of the 
displacement of the piezotube =z zpiezo 0

AFM to determine the sensitivity Wphotodetector−piezo (this curve is usually 
referred as Force-Distance curve in the literature). The second calibration step is required to estimate the sensitiv-
ity Svoltage–photodector, which relates the voltage associated to the cantilever deflection measured by the photodetector 
to the voltage applied to the piezotube by the Lock-in amplifier Δ −V t D( )/Lock in . The values of Svoltage−photodetector 
and Wphotodetector−piezo are used to estimate the amplitude of oscillation of the piezotube due to a given voltage 
applied by the Lock-in amplifier

Δ = Δ− −
−z t W S V t D( ) ( )2 2 ( )/ (11)piezo photodetector piezo voltage photodetector

Lock in

Figure 3(a) displays the cantilever deflection measured by the AFM as a function of the displacement of the 
piezotube =z zpiezo 0

AFM (Force-Distance curve). The Force-Distance curve is measured using the proprietary 
software of the AFM microscope (PicoView 1.2). The slope of the Force-Distance curve is used to estimate the 
sensitivity −Wphotodetector piezo = 54 nm/V through a linear fitting procedure in Python. The force applied by the 
cantilever on the surface is computed by multiplying the deflection signal by the cantilever stiffness klev, which is 
estimated using the Sader method discussed above.

To perform the calibration of −Svoltage photodetector a National Instruments GPIB-USB-HS Adapter IEEE 488 
Controller is used to interface the Lock-in amplifier with Labview and simultaneously control the frequency and 
amplitude of the output voltage from the Lock-in into the piezotube (Δ −V t D( )/Lock in  in Fig. 1) and acquire the 
input/output signals from the AFM photodetector (raw and filtered deflections). As a preliminary step in the 
calibration procedure, the dynamical response of the cantilever in the frequency interval encompassing the 
Lock-in oscillation frequency, which in this work is 991 Hz, is investigated. In Fig. 3(b), the signal generated by 
the photodetector (proportional to the cantilever deflection) measured by the Lock-in is displayed as a function 
of the frequency used to actuate the piezotube for a fixed value of the applied voltage for free tip vibrations (black 
curve) and for tip in contact with silicon carbide (red curve). The frequency response in air shows a peak at 
approximately 550 Hz, which can be attributed to an internal resonant frequency of the AFM/piezotube, rather 
than a resonant frequency of the cantilever (first resonant frequency is generally above 200 kHz for cantilevers 
used in MoNI/ÅI).

The frequency response of the deflection signal in the region encompassing 991 Hz does not show any specific 
features. This condition is desired for MoNI/ÅI experiments, whereby a small oscillation amplitude is required 
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to improve the resolution of the measurement. The frequency sweep with the tip in hard contact with a silicon 
carbide surface is also displayed in Fig. 3(b) (silicon carbide is selected in this experiment for its atomically flat 
surface). Notably, while the resonant frequency can still be identified at 550 Hz, different from the experiment 
in air only the in-phase component of the frequency response is detected by the Lock-in amplifier. This result is 
expected, since the quadrature response of the oscillation is almost completely damped when the tip is in contact.

Figure 3(c) displays the cantilever deflection measured by the Lock-in at 991 Hz as a function of the amplitude 
of the voltage imposed by the Lock-in amplifier on the piezotube when the tip is in very hard contact 
( =F 400 nNz

0 ) with a hard surface (silicon carbide). As expected, a linear relationship is observed between the 
applied voltage (piezotube displacement) and the photodetector signal (cantilever bending), with a slope corre-
sponding to a sensitivity −Svoltage photodetector of 1.2 V/V. For completeness, in the inset of Fig. 3(c), we report the 
value of the efficiency of the divider as a function of the dividing factor (defined as e = Svoltage−photodetector 
(D = 10)/Svoltage−photodetector(D)). Notably, a dividing factor above 20 corresponds to a higher Svoltage−photodetector, 
which means that the divider is less efficient for higher dividing factors.

MoNI/ÅI Noise Analysis.  The level of AFM noise during MoNI/ÅI measurements can be estimated exper-
imentally by measuring the raw cantilever deflection signal while the tip is kept in contact ( =F 400 nNz

0 ) with a 
stiff and flat surface (e.g. silicon carbide). A periodic voltage signal of 0.14 mV RMS, corresponding to an actual 
piezotube oscillation of approximately 0.25 Å, is applied to the piezotube at 991 Hz. This signal level is comparable 
to the one applied during a MoNI/ÅI experiments. The raw deflection signal measured by the AFM controller is 
acquired using a National Instrument USB-6259 data acquisition board with an acquisition frequency of 40 kHz.

The raw deflection signal recorded during one of the experiments is displayed in Fig. 4(a). Notably, the level 
of random noise in the raw deflection signal is such that the oscillation at 991 Hz cannot be clearly identified in 
the response (red oscillatory curve in Fig. 4(a)). To analyze the frequency components in the AFM raw deflection, 
the fast Fourier transform of the raw signal is computed in Fig. 4(b). Through the analysis of the raw deflection 
signal measured by the AFM, we can identify three different components: i) the signal of the cantilever deflection 
at 991 Hz due to the applied voltage on the piezoelectric element; ii) a signal that is attributed to the power line in 
two different components at 60 and 120 Hz; iii) the background broadband noise, mainly related to the shooting 
noise on the photodetector45.

To isolate the cantilever oscillation from the background signals, the cantilever deflection at 991 Hz is numer-
ically isolated applying a Butterworth bandpass filter in Python (cut-off frequencies: 978 Hz, 1003 Hz). The 
resulting signal is superimposed to the raw deflection in Fig. 4(a) (red dashed curve). As expected, the resulting 
amplitude of the component at 991 Hz is much smaller than the amplitude of the broadband noise recorded by the 
AFM. As discussed in ref.34, similar to our numerical procedure, the Lock-in amplifier performs a digital filtering 
of the incoming raw deflection signal. The filter band employed by the Lock-in amplifier is as narrow as 0.01 Hz, 
a bandwidth that we are not able to implement with the numerical Butterworth filter (bandwidth 25 Hz) without 
cutting a substantial part of our signal. The deflection signal computed through the numerical filtering is com-
pared to the deflection signal obtained through digital filtering by the Lock-in amplifier in Fig. 4(c). As expected, 
we observe that the amplitudes of the two signal are comparable.

For the signal displayed in Fig. 4(a), we compute an RMS noise voltage from the raw AFM deflection data of 
5 mV (the RMS noise is computed as the square root of the noise signal). An estimation of the deflection in nano-
meters corresponding to this noise level is obtained by multiplying the voltage signal by the sensitivity 

−Wphotodetector piezo = 54 nm/V, which results in an equivalent displacement of 0.7 nm. This level of noise is way 
above the resolution required for the MoNI/ÅI experiment (below 1 Å): this result clearly demonstrates that 
MoNI/ÅI experiments would not be possible without leveraging the phase sensitive detection of the Lock-in 

Figure 3.  Experimental calibration curves. (a) Experimental force distance curve for the cantilever used in the 
experiments in Fig. 8. The sensitivity Wphotodetector−piezo is obtained from the slope of the loading curve. (b) 
Frequency response of the cantilever deflection in the range 200–2000 Hz. Black line is the amplitude of 
oscillation in air, Red line is the amplitude of oscillation in contact on SiC ( =F 400 nNz

0 ). (c) Amplitude of 
oscillation at 991 Hz with the cantilever in contact on SiC ( =F 400 nNz

0 ) as a function of the lock-in voltage 
input to the piezo. Svoltage−photodetector is the non-dimensional sensitivity.
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amplifier. The deflection measured by using either the frequency Butterworth filter or directly obtained from the 
Lock-in amplifier (Fig. 4(c)) is ~0.25 mV RMS, which would be only the 0.5% of the deflection signal associated 
to the noise measured when the tip is in contact with a Silicon Carbide surface with a contact force of approxi-
mately 400 nN.

To further clarify the role of the noise in MoNI/ÅI experiments, we simulate the effect of noise on the meas-
urement of the contact stiffness k F( )z

cont 0  in Equation (7) by adding to the deterministic signals generated by the 
Lock-in and AFM detection system an additional stochastic noise component46. The analysis is performed by 
superimposing a uniform random white noise of 5 mV RMS, corresponding to a deflection noise of 0.7 nm as 
measured in our experiments, to the deterministic value of the signal measured by the AFM. In addition, a white 
random noise level of 1.1 mV RMS is added to the signal of the Lock-in amplifier ∆zpiezo, corresponding to a 
displacement of the piezotube of 0.02 nm. The contact stiffness in the presence of the noise on the input/output 
signals is defined as:

=
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where the tilde superscript indicates noise variables with uniform white noise distribution; the superscript t 
emphasize the dependence of the uniform random noise on time. The signal to noise ratio (SNR) is computed 
from Equation (12) as the ratio of the value of the contact stiffness k F( )z

cont 0  and the standard deviation of the 
noisy signal k F( )

t z
cont 0  from k F( )z

cont 0 . Thus, the signal to noise ratio is computed as:
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where N is the number of sampling points used to reconstruct the noisy signal. The computation of k F( )
t z

cont 0  
and SNR is performed in Wolfram Mathematica. For simplicity, a linear dependence of the force Fz

0  on time is 
adopted in order to compute Equations (12, 13). To ensure repeatability of the simulation a random seed equal to 
20 is adopted in the RandomSeed function in Mathematica. The values of k F( )z

cont 0  and k F( )
t z

cont 0  computed as a 
function of Fz

0  are reported in Fig. 5(a–c) for values of the sinusoidal oscillation of the piezotube Δzpiezo of 1, 10, 
and 100 nm at a frequency of 991 Hz on a substrate of graphite (indentation modulus E⊥ = 30 GPa and ν = 0.2). 
Notably, the noise level increase with respect to the underlying MoNI/ÅI signal with decreasing oscillation ampli-
tude, whereby it is hard to visually separate the k F( )z

cont 0  signal from the noise when the oscillation amplitude is 
Δzpiezo = 1 nm (Δzpiezo for MoNI/ÅI is <0.1 nm) in Fig. 5(c). Indentation curves obtained from values of k F( )

t z
cont 0  

by computing the integral in Equation (5) are displayed in Fig. 5(d). While indentation curves obtained for 
Δzpiezo equal to 10 nm and 100 nm give reasonably accurate results for graphite (black solid line is the theoretical 
expectation from Equation (6)), the indentation curve for Δzpiezo = 1 nm does not accurately represent the con-
tact due to the high noise level in the k F( )

t z
cont 0  signal.

To establish the dependence of the quality of the k F( )
t z

cont 0  signal on the oscillation amplitude, Δzpiezo is used as a 
parameter in calculating the Signal-to-Noise ratio (SNR) in Equation (13). The analysis is conducted for four sub-
strates with stiffness ranging from 30 GPa to 1000 GPa, namely graphite, zinc oxide, sapphire, and diamond. For 
clarity of presentation, we chose to display the value of the inverse of the SNR in Fig. 6(a–d), whereby an increase of 

Figure 4.  Experimental noise measurement. (a) Experimental raw deflection signal recorded by the AFM 
controller over 30 ms (black line) and the signal component at 991 Hz isolated using the bandpass filter depicted 
in (b). (b) Fast Fourier transform computed using Python of the raw deflection signal in (a) (black line) and 
Butterworth filter adopted to isolate the component at the fixed Lock-in frequency 991 Hz (red dashed line). (c) 
Displacement signal at 991 Hz detected using the numerical filter (red line) and the digital filter of the Lock-in 
amplifier (dark gray line).
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the inverse of SNR represents an increase of the noise level with respect to the signal. Results in Fig. 6(a–d) clearly 
show that the decrease in oscillation amplitude results in a substantial increase in the noise level with respect to the 
MoNI/ÅI signal. In addition, we observe that for stiffer substrates the noise level increases faster with decreasing 
Δzpiezo amplitude. Notably, a SNR−1 of approximately 5 (~14 dB) is calculated for diamond at Δzpiezo = 15 nm in 
Fig. 6(d), while a SNR−1 < 1 (<0 dB) is calculated for graphite at the same oscillation amplitude in Fig. 6(a). This 
result demonstrates how a stiffer substrate poses a greater challenge for indentation measurements, and how the high 
sensitivity of the MoNI/ÅI measurement is beneficial for the characterization of high modulus thin films. In addi-
tion, we observe how the SNR−1 value sharply increase for Δzpiezo approaching 1–10 nm depending on the substrate. 
From our simulation, the expected SNR−1 at Δzpiezo = 0.1 Å in a MoNI/ÅI on diamond is approximately 76 dB, 
which is estimated through fitting the simulated data with a hyperbolic function (SNR−1 = 65.8/Δzpiezo for dia-
mond). Therefore, digital filtering of the signal through the Lock-in amplifier (dynamic range 100 dB34) is absolutely 
necessary in MoNI/ÅI experiments to effectively isolate the signal from the noise.

To further understand the importance of the digital filters applied through the Lock-in for the sensitivity of 
the measurement, we can consider the case of a diamond substrate (elastic modulus E = 1050 GPa). For this mate-
rial, when a force =Fz

0  85 nN is applied ( −Wphotodetector piezo = 50 nm/V) the contact stiffness is equal to 1054 N/m, 
as computed using Equations (7, 8) for a cantilever with stiffness 170 N/m and tip radius R = 100 nm35. Thus, if we 
apply an input voltage of 0.1 mV RMS from the Lock-in amplifier during the MoNI/ÅI experiment, a piezo oscil-
lation of 17 pm (0.17 Å, peak to peak) is estimated using Equation (11) and an oscillation of the indentation force 
ΔF = 2.5 nN is computed using Equation (2). This oscillation of the force is used to compute the oscillation of the 
deflection of the cantilever Δzlever = 15 pm and the oscillation of the indentation depth Δzindent = 2 pm (see sche-
matic in Fig. 2(a)). In our photodetector, a signal of 17 pm corresponds to a voltage signal of approximately 320 
µV, while a signal of 2 pm generates a voltage signal of 44 µV. With a digital lock-in amplifier having a dynamic 
reserve >100 dB34, it is possible to isolate a signal from a noise over 105 times larger than 44 µV, which means a 
noise of 4.4 V. So when considering the Lab/AFM noise level of 0.7 nm (~5 mV) measured in our experiment, we 
are well within the range of acceptable noise level to perform our measurements. We underline that for lower 
loads the contact stiffness decreases and therefore the corresponding Δzindent increases, for example for =Fz

0  
10 nN, Δzindent = 4 pm and Δzlever = 13 pm.

Lock-In Amplifier Input/Output Signals and Stiffness Measurement.  Figure 7(a) displays the 
amplitude of the oscillation of the piezotube Δzpiezo as a function of the input voltage from the Lock-in amplifier 
Δ −V t D( )/Lock in , which is modulated in the range ~0.15–0.8 mV RMS using the Lock-in amplifier. The oscillation 
amplitude Δzpiezo is computed using Equation (11) for values of the parameters −Wphotodetector piezo = 54 nm/V and 
Svoltage−photodetector = 1.2. In the inset, we display the raw signal generated by the amplifier, that is, a sinusoidal volt-
age input at 991 Hz.

Figure 5.  Simulated kcont in presence of noise without frequency specific filtering. (a) Simulated contact stiffness 
kcont of a diamond tip (1050 GPa) on Graphite (30 GPa) computed as a function of the applied force Fz

0  for 
reference (solid black line from Equation (6)) and noisy signal in Equation (12) (solid green line) computed for 
piezotube oscillation Δzpiezo = 100 nm. (b) kcont as a function of Fz

0  for reference (solid black line) and noisy signal 
(solid red line) computed for Δzpiezo = 10 nm. (c) kcont as a function of Fz

0  for reference (solid black line) and 
noisy signal (solid red line) computed for Δzpiezo = 1 nm. (d) Indentation curves computed using Equation (5)  
for values of the contact stiffness displayed in (a–c) for the reference signal (black solid line), and noisy signal 
with Δzpiezo = 100 nm (green dashed line), oscillation Δzpiezo = 10 nm (blue dashed line), and Δzpiezo = 1 nm 
(red dashed line).
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The raw deflection generated by the AFM during a MoNI/ÅI experiment is displayed in Fig. 7(b) as a function 
of time. We can observe an initial jump in the raw deflection located at approximately 5 s, which is associated 
to the initial contact of the tip with the surface. The deflection signal slowly decrease over time while the force 
applied at the contact is reduced during the MoNI/ÅI experiment. The small bump in the raw deflection signal 
at 25 s is attributed to the initial loss of contact between the tip and surface. Notably, MoNI//ÅI experiments are 
commonly performed in retraction, meaning the load applied to the tip is progressively reduced until the contact 
with the surface is loss. This particular procedure is recommended to avoid the effect of the snap-in contact that 
is characteristic of this class of AFM force measurements.

The raw signal displayed in Fig. 7(b) is fed to the Lock-in amplifier to isolate the component at 991 Hz as dis-
cussed in the previous section. In Fig. 7(c), the component of the cantilever deflection at the fixed frequency 
991 Hz measured by the Lock-in amplifier is also displayed as a function of time. The cantilever deflection in 
Fig. 5(c) is used in the data processing to calculate ΔF F( )z

0  by multiplying this signal by the sensitivity 
−Wphotodetector piezo and the stiffness klev, see for example the experimental curves in Fig. 8(a–c). The limits of the 

integral in Equation (5), that is, FP0 and zP0, are also determined using this curve, by detecting from the deflection 
signal the position where the tip loses contact with the surface.

The total stiffness, the stiffness of the contact, and the indentation depth are computed from the raw curve 
in Fig. 7(c) using Equations (2–5). The mechanical stiffness of the surface is identified by fitting the indentation 
curve computed with Hertz’s Equation (6) through a nonlinear fitting procedure in Python, where the modulus 
E is used as the fitting parameter. Notably, under the assumption of a quasi-isotropic behavior, the modulus E 
determined by MoNI/ÅI can be compared with the elastic modulus (Young’s modulus), as assumed by the Hertz 
contact model in Equations (6–8). However, we remark that for indentation experiments performed with very 
shallow indentation depths (few angstroms) and contact areas of few tenths nanometers square - the tip loading 
is applied on few thousands atoms – the effect of short range anisotropies, as well as sample topography, can play 
an important role in determining the mechanical response of the material. Therefore, analysis of the topography 
of the surface of the sample becomes necessary before performing the experiments, in order to identify suitable 
regions for indentation experiments.

The uncertainty associated to the estimation of E can be evaluated by propagating the experimental error 
associated to the variables in Equation (6). Following47, Equation (6) can be rewritten in the form

ν ν= Δ Δ− .
.− − .( )E f V V D V W S k R E, / , , , , , , , , (14)0

AFM Lock in photod
photod piezo voltage photod lev tip tip

In order to assess the standard deviation associated to the parameters in Equation (14), we compute the Taylor 
series uncertainty propagation. To this aim, we fix the operating AFM voltages Δ −V V D, /0

AFM Lock in  and 
ΔV photodetector and we estimate the standard deviation associated to calibration parameters Wphotodetector−piezo, 
Svoltage−photodetector, cantilever/tip parameters klev, R, and material parameters ν νE, ,tip tip. More specifically, the 
standard deviation associated to one of the parameter (e.g. R) is determined by computing the partial derivative 

Figure 6.  Inverse of the Signal to noise ratio of kcont as a function of Δzpiezo for different substrates without 
frequency specific filtering. (a) Inverse of the Signal-to-Noise ratio computed using Equation (13) as a function 
of the oscillation amplitude Δzpiezo. Numerical indentation experiments are performed in Mathematica (white 
noise, uniform distribution, RandomSeed = 20) for Hertzian contact between a diamond tip (E = 1050 GPa) 
and Graphite. Solid line is the fitting with a hyperbolic function SNR−1 = 10.9/Δzpiezo. (b) Inverse of the Signal-
to-Noise ratio computed for zinc oxide (100 GPa) as a function of Δzpiezo. Solid line is the fitting 
SNR−1 = 16.4/Δzpiezo. (c) Inverse of the Signal-to-Noise ratio computed for sapphire (400 GPa) as a function of 
Δzpiezo. Solid line is the fitting SNR−1 = 33.8/Δzpiezo. (d) Inverse of the Signal-to-Noise ratio computed for 
diamond (1000 GPa) as a function of Δzpiezo. Solid line is the fitting SNR−1 = 65.8/Δzpiezo.
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of E with respect to the parameter (R) and then multiply by the associated uncertainty associated (uncertainty on 
R), see ref.47.

The uncertainty on the parameters in Equation (14) is either measured experimentally or estimated following 
directions given by the manufacturer of the instruments. The value of the sensitivity = ± .−W 54 1 35photodetector piezo  
is estimated by measuring the slope of the force-distance curve. The value of the parameter 

= . ± .−S 1 2 0 014voltage photodetector  is estimated from the calibration procedure, whereby the uncertainty is 
obtained from the tolerance (~1%) on the Z sensitivity of the AFM obtained after calibration with a reference 
grating (Bruker). The value of klev = 80 ± 3.2 is determined from the manufacturer (Nanosensors) with an uncer-
tainty of 4%, which is assumed from uncertainty level for AFM cantilever estimated in47. The value of the tip 
radius R = 190 ± 10 nm is identified with a margin of uncertainty using the reference material method (sapphire 
is adopted as the calibration material). This value of the tip radius is within the range declared by the supplier 
(100–200 nm) and is verified using SEM imaging. Finally, the values of ν ν= . = = .E0 2, 1050, 0 2tip tip  are 
adopted for the sample and the tip, with an estimated uncertainty of 5%.

The resulting uncertainty on the estimation of E is strongly dependent on the absolute value of the stiffness of 
the contact, whereby a decrease of the contact force results in a decrease of the overall uncertainty. For example, 
for a material with stiffness E = 400 GPa, we obtain a standard deviation of 75 GPa (~19%). The standard devia-
tion is reduced to 6.5 GPa (~7%) at 100 GPa (we remark that this analysis is conducted based on conservative 
assumptions on the underlying uncertainty of the parameters). At E = 100 GPa, the standard deviation associated 
to the uncertainty on the sensitivity −Svoltage photodetector is 3.9 GPa, which corresponds to the 36% of the overall 
variance of the measurement. The sensitivity −Svoltage photodetector is therefore the dominant calibration parameter 
in determining the accuracy of the force measurement, as already discussed in ref.47. The remaining variance of 
the measurement is mainly distributed between the uncertainty associated to the estimation of klev (31%) and R 
(24%), which proves that a careful estimation of the tip properties is necessary to obtain accurate measurements 
using MoNI/ÅI.

MoNI/ÅI applied to Ultra-thin and Ultra-hard films
Application to Stiff and Thin Films.  We use MoNI/ÅI to identify the mechanical properties, namely the 
indentation elastic modulus, of an epitaxial thin film of CVD diamond (2.2 µm on Silicon), a sapphire substrate 
(Al2O3, polycrystalline), and a zinc oxide crystal (ZnO). These materials are selected as references and testing 
systems for MoNI/ÅI experiments due to their well-known mechanical properties and chemical stability. Results 
of the MoNI/ÅI experiments performed on the three reference materials are reported in Fig. 8. The indentation is 
performed in 5–6 different positions on each sample to give an estimation of the uncertainty in the measurement. 
The total stiffness and contact stiffness obtained from MoNI/ÅI experiments are displayed in Fig. 8(a–f), wherein 
the shaded area represent one standard deviation from the mean. We underline that while k F( )z

tot 0  is directly 
measured as described before, k F( )z

cont 0  is obtained using Equation(2). For all the experiments, the same AFM 
probe has been employed with a cantilever stiffness klev of 80 N/m of a sensitivity Wn of 54 nm/V. The probe tip is 
coated with diamond (Etip = 1050 GPa, νtip = 0.2). During this experiments, we used Δ −VLock in = 4 mV RMS, 
D = 20 (e~1), so that the amplitude of oscillation is Δzpiezo = 0.34 Å.

Figure 8(a,d) displays the total and contact stiffness obtained for the CVD diamond film on Silicon. The total 
stiffness measured by MoNI/ÅI is close to 80 N/m, which indicates an extremely high stiffness of the surface. 
This result can be explained by looking at the schematic in Fig. 3(a). When the stiffness of the contact spring 
approaches infinity, the stiffness of the series connection become equivalent to klev. A contact stiffness rang-
ing between 2000 and 3000 N/m is measured when the tip is in hard contact with the sample. Contact stiffness 

Figure 7.  Experimental MoNI/ÅI signals. (a) Experimental amplitude of the oscillation as a function of the 
voltage fed to the piezoelectric element using the Lock-in amplifier. In the inset, the voltage generated by 
the Lock-in and the corresponding voltage signal after the divider in Fig. (1) (experimental values). (b) Raw 
deflection recorded by the AFM during a MoNI/ÅI experiment measured during retraction of the tip from 
the surface. (c) Deflection measured by the Lock-in through phase-sensitive detection at 991 Hz from the raw 
deflection signal in (b).
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substantially decreases with decreasing contact force below 20 nN, and goes to zero as the contact between the tip 
and the sample is lost. Notably, the error in the estimation of the contact stiffness sharply increases below 20 nN, 
which might likely be attributed to the uneven surface of the CVD sample, which can affect the effective contact 
area when the force applied by the tip is reduced, even if the indentation region is carefully selected from the 
topography in Fig. 9.

Figure 8(b,e) displays the total stiffness and contact stiffness of the sapphire substrate. The value of the total 
stiffness also in this case is close to the stiffness of the cantilever (80 N/m), which indicates the high stiffness of the 
surface. The values of the contact stiffness for the sapphire range between 1500 and 2000 N/m. Results obtained 
for the ZnO crystal are reported in Fig. 8(c,f). In this case, the total stiffness is of the order of 70 N/m due to the 
lower stiffness of the ZnO compared to the CVD diamond and the sapphire. The lower total stiffness is related to 
the substantially softer contact with kcont below 1000 N/m. The standard deviation associated to measurements 
performed on ZnO and sapphire samples is lower than the standard deviation obtained for CVD diamond. This 
can be attributed to a smoother surface, as observed in the topography in Fig. 9, as well as to the lower stiffness of 
the materials that is associated with a stronger MoNI/ÅI signal ΔF F( )z

0  with respect to the instrumentation noise. 
Notably, stiffer surfaces generate higher forces at the sample-tip interface.

The indentation curves in Fig. 8(h,i) are computed from the contact stiffness in Fig. 8(d,e) using Equation (5). 
Qualitative analysis of the indentation curves shows how the stiffness of the CVD diamond film is higher than the 
stiffness of sapphire and ZnO (steeper curves). We also observe that the standard deviation on the measurement 
of the indentation curve for diamond is higher than the standard deviation for the other two materials, a reflec-
tion of the noise in the measure of the total stiffness as shown in Fig. 6(a–c).

Figure 8.  Experimental MoNI/ÅI indentation measurements for different substrates. Experimental total 
stiffness and contact stiffness (solid lines) for (a,d) CVD diamond, (b,e) sapphire, and (c,f) ZnO. (d–f) The 
associated indentation curves computed using Equation (5) for (g) CVD diamond, (h) Polycrystalline sapphire, 
and (i) ZnO. Solid lines are mean curves computed over at least 5 different positions for each samples. Shaded 
area is one standard deviation from the mean.
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The quantitative analysis of the indentation data is performed by fitting the experimental curves with 
Equations (6–8). Results of the fitting procedure for indentation curves in Fig. 8 are reported in Fig. 10(a), 
together with the values of the indentation elastic moduli for the three materials. Equation (5) is used to iden-
tify the stiffness of the three materials. Results of this procedure give a prediction of the indentation moduli of 
117 ± 12, 416 ± 45, and 1139 ± 296 GPa for ZnO, sapphire, and CVD diamond, respectively. These values are in 
excellent agreement with values of the elastic moduli expected for these materials, which confirm that MoNI/
ÅI is able to give a quantitative estimation of the elastic moduli of very stiff materials in a non-destructive way 
with high spatial resolution. Normalized distributions of indentation moduli computed for aggregated data for 
15–30 experiments obtained for each material are displayed in Fig. 10(b). For completeness, the distribution of 
the indentation modulus for a SiO2 substrate (E~60 GPa) is also reported, in order to extend the range of stiffness 
of materials tested. Notably, narrower distributions are obtained for SiO2 and ZnO (plot in log scale) with respect 
to sapphire and CVD diamond. This result is well in line with results previously outlined in Fig. 6, whereby higher 
contact stiffness is associated with higher uncertainty on the estimation of the contact modulus. Distributions 
obtained for both CVD diamond and sapphire are sufficiently narrow to clearly identify the indentation modulus, 
further demonstrating the application of MoNI/ÅI to direct in-situ measurement of the mechanical properties of 
ultra-stiff materials.

Application to 2D Materials for Transverse Elasticity and Carbon Nanofilaments.  Differently 
from traditional nanoindentation, MoNI/ÅI can be used to accurately characterize the mechanical properties of 
stiff surfaces on extremely small scales (sub-Å). MoNI/ÅI has been successfully applied to the mechanical char-
acterization of two-dimensional (2D) materials. The extremely small indentation depth utilized during MoNI/ÅI 
has enabled for the first time the study of the transverse elasticity of few layer thick graphene films19. In particular, 
indentation depths in the order of few tenths of an Ångstrom have been employed to probe the interlayer stiffness 
of epitaxial graphene and epitaxial graphene oxide, and, more recently, to demonstrate the ultra-high stiffness of 
2-layer epitaxial graphene35,36. These experiments showed that Van der Waals interactions between different layers 
play an important role in determining the stiffness of the material when a force is applied perpendicular to the 
principal planes of graphene.

As an example of the potential of MoNI/ÅI in 2D materials applications, Fig. 11(a) displays an indentation 
curve of 10-layer epitaxial graphene (EG) grown (supported) on the Carbon polar face (000-1) of Silicon Carbide 
(SiC). Several measurements provided for 10-layer epitaxial graphene an indentation modulus perpendicular to 
the planes equal to E⊥ = (36 ± 3) GPa, the same as that of graphite48. This is not surprising because graphene can 
be mechanically regarded as a “thinner version” of graphite, the inter-layer van der Waals property should not 
differ significantly. Notably, the indentation depth in MoNI/ÅI experiments (down to 0.3 Å) is smaller than the 
interlayer distance between graphene planes (approximately 3.4 Å). Since contribution of the in plane stiffness can 
be proved to be negligible at these small indentation depths, the experiments allowed to identify the transverse 
stiffness of the 2D material.

MoNI/ÅI has also been employed for the characterization of the interlayer mechanical properties of epitaxial 
graphene oxide and graphene oxide19, and in particular to investigate the effect of water intercalation between 
the layers. Figure 11(b) displays the MoNI/ÅI indentation curves obtained at 25% relative humidity for epitaxial 
graphene oxide and graphene oxide flakes deposited on a Silicon wafer. Notably, the effect of water intercalation in 
the porous structure of graphene oxide results in a much higher modulus (~35 GPa) than the modulus measured 
for epitaxial graphene oxide (~22 GPa), whereby water intercalation is minimal in epitaxial graphene oxide19.

Figure 9.  MoNI/ÅI samples topography. Topographies of the surface of the sapphire, ZnO, and CVD diamond 
samples employed in the experiments.
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MoNI/ÅI measurements have been conducted in parallel with topographic AFM imaging to investigate the 
mechanical stiffness of nanostructures, such as Q-carbon filaments17. This is a characteristic feature of MoNI/ÅI,  
whereby the AFM can be employed to image the surface (in tapping mode) and perform the elasticity measure-
ment (in contact). In Fig. 12(a), we display the topography of the cross-section of a Q-carbon filament recon-
structed from AFM data, as well as a larger scan (25 μm2) displaying few interconnecting Q-carbon filaments. We 
also report the positions where the MoNI/ÅI experiments are conducted. In Fig. 12(b), we display the indentation 
curves. Indentation data show a substantial increase in the stiffness of the Q-carbon filament (red lines) compared 
to the surrounding diamond-like-carbon material (black lines)17. Notably, the small lateral width (~200 nm) and 
depth (~30 nm) of the filament make the measurement of the mechanical properties of the nanostructure with 
classical nanoindentation techniques extremely difficult. The indentation area of classical nanoindenters will 
likely be larger than the filament and the resulting stiffness measurement an average of the mechanical stiffness 

Figure 10.  MoNI/ÅI indentation curves data fitting. (a) Experimental indentation curves computed using 
Equation (4) for ZnO (black solid line), sapphire (gray solid line), and CVD diamond (red solid line). The 
dashed lines are the result of the nonlinear fitting with Equation (5). The mean value of the modulus identified 
through the fitting procedure is reported in the figure for the three materials, together with the associated 
standard deviation. The shaded areas correspond to one standard deviation from the mean of the fitted curves. 
(b) Normalized distributions of indentation moduli for ZnO (115 ± 14 GPa), sapphire (387 ± 81 GPa), CVD 
diamond (1005 ± 188 GPa) and SiO2 (56 ± 11 GPa, the relatively high variance on the value of the indentation 
modulus of SiO2 is likely associated to the presence of adsorbates on the surface). Data are obtained by aggregate 
data for 15–30 experiments for each material.

Figure 11.  MoNI/ÅI indentation of graphene. (a) Experimental indentation curve for 10-L epitaxial graphene 
on Silicon Carbide (SiC). In the graphic, schematic of the indentation problem for the graphene sample. (b) 
Experimental indentation curve for graphene oxide on Silicon and epitaxial graphene oxide on Silicon Carbide. 
In the graphic, the schematic of layers distribution and the intercalation of water molecules in graphene oxide 
interlayers.
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of the filament and the surrounding diamond-like-carbon material. In this case, MoNI/ÅI is a viable solution for 
mechanical measurement of the nanostructure, whereby an increased spatial resolution is required.

Conclusion
In this report, we have presented a novel methodology, MoNI/ÅI, for non-destructive sub-Å-depth indenta-
tion measurements of ultra-stiff and ultra-thin films, as well as two-dimensional materials, for in-situ elasticity 
measurements with nanoscale topographical imaging. During conventional nanoindentation measurements, 
the indentation depths are usually larger than 10 nm, hindering the ability to study ultra-thin films (<10 nm) 
and supported atomically thin 2D materials. Differently from traditional nano-indentation methods, MoNI/ÅI 
employs extremely small amplitude oscillations (<<1 Å), higher frequency, and force detection systems based 
on laser detection AFM methods. We show that this methodology can be easily implemented with a commer-
cial AFM and we demonstrate that in presence of a standard laboratory noise floor, the signal to noise ratio of 
MoNI/ÅI is such that a dynamic range of 80 dB —achievable with commercial Lock-in amplifiers— is suffi-
cient to observe superior indentation curves, with indentation depths as small as 0.3 Å, resolution in indentation 
<0.05 Å and in normal load <0.5 nN. We also prove that MoNI/ÅI is a powerful tool to measure the indenta-
tion moduli of ultra-stiff ultra-thin films with much higher spatial resolution (both vertically and horizontally) 
and smaller indentation depths than other indentation methods. Because of its simplicity, and its implementa-
tion with commercial equipment, MoNI/ÅI has the potential for a broad applicability in studying the elasticity 
of ultra-thin films (<10 nm) for semiconductor and energy applications, nano-structures, and atomically thin 
two-dimensional materials (~0.5–5 nm).
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