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Abstract: For polarized remote sensors, the polarization images of ground objects acquired at
different spatial scales will be different due to the spatial heterogeneity of the ground object targets
and the limitation of imaging resolution. In this paper, the quantitative inversion problem of a typical
polarized remote sensor at different spatial scales was studied. Firstly, the surface roughness of
coatings was inversed based on the polarized bidirectional reflectance distribution function (pBRDF)
model according to their polarization images at different distances. A linear-mixed pixel model
was used to make a preliminary correction of the spatial scale effect. Secondly, the super-resolution
image reconstruction of the polarization imager was realized based on the projection onto convex sets
(POCS) method. Then, images with different resolutions at a fixed distance were obtained by utilizing
this super-resolution image reconstruction method and the optimal spatial scale under the scene can
be acquired by using information entropy as an evaluation indicator. Finally, the experimental results
showed that the roughness inversion of coatings has the highest accuracy in the optimal spatial scale.
It has been proved that our proposed method can provide a reliable way to reduce the spatial effect
of the polarized remote sensor and to improve the inversion accuracy.

Keywords: spatial scale effect; polarized remote sensor; spatial heterogeneity; super resolution
image reconstruction

1. Introduction

Polarization, as one of the characteristics of light, can carry additional information
about objects it acts on. This makes it widely used in many kinds of imaging and non-
imaging remote sensing research to detect the information that is difficult to be detected by
traditional methods [1]. With the expansion of the demand for remote sensing information,
polarized remote sensing information can solve problems that cannot be solved in the
traditional remote sensing field, and effectively improve the accuracy of feature recognition.
Thus, it has become a valuable tool in many applications, including cloud and atmospheric
aerosol detection, geological exploration, soil analyses, and medical diagnoses [2–5].

With the widespread use and maturity of polarized remote sensing, whether near-
ground or remote sensing platform polarization detection, polarization imaging quanti-
tative remote sensing has become one of the main trends in the development of remote
sensing. However, when using the polarized remote sensing data acquired by polarized
sensors, the characteristic parameters of ground objects must be inverted quantitatively.
The inversion accuracy will be affected by several factors, especially the spatial scale effect,
meaning the measurement results will be changed according to the selected measurement
scale. Generally, spatial scale refers to the spatial resolution of an image. At different spatial
scales, the inversion or classification accuracy varies significantly. This affects judgements
concerning the impact of the classification of terrain, spring phenology detections, the
estimation of the fire range, and the inversion of vegetation evaporation [4–9]. Additionally,
the phenomena and summary rules on a specific scale may be valid on another scale, but
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it is not entirely applicable. Therefore, addressing the impact of this effect is particularly
important for improving the inversion accuracy based the detection of polarized sensors.

Currently, there are two main methods available for reducing this effect: correcting
the scale effect and detecting in the optimal spatial resolution. The spatial heterogeneity on
sub-pixels is parameterized and the expression of normalized difference vegetation index
(NDVI) is corrected by covariance and variance, so that it does not change with scale [10].
Through the new semi-empirical parameters obtained by the least squares method, the leaf
area index (LAI) and the effective photosynthetic radiation absorbed by plants suitable for
small-scale remote sensing were extended to be globally applicable [11]. The parameters
of the structural features were calculated by the area ratio of various types of features
and utilized to correct the error caused by the scale effect in LAI [12,13]. In terms of scale
correction, the proposed method could be applied to specific parameters, but whether the
method was applicable to other parameters was not mentioned. To solve this problem,
some scholars proposed detection at suitable or optimal scales. In 2004, South Korean
scientists Saro Lee et al. [14] studied the influence of spatial resolutions on landslide threat
determination by re-sampling aerial remote sensing data, and found that an image with a
spatial resolution of at least 30 m was needed to determine the landslide. In 2011, Ming [15]
proposed an improved local variance method for the optimal scale selection of remote
sensing images and found that the statistical results are more obvious and can obtain a
more reasonable optimal scale range. In 2013, Angela Lausch et al. [16] studied the effects
of different spatial resolutions on the NDVI to obtain a suitable scale. In 2019, Guo et al. [17]
investigated the scale effects by analyzing the linear relationships between VI calculated
from red-green-blue (RGB) images from unmanned aerial vehicles (UAV) and ground leaf
chlorophyll contents of maize measured using SPAD-502.

To obtain multiscale images, upscaling is necessary. In this context, we apply super-
resolution image reconstruction in upscaling, to achieve a low to high resolution extension.
The theoretical basis of the single-frame super-resolution reconstruction technique is to
establish the corresponding low and high-resolution image set; to calculate the correspon-
dence between them to obtain prior knowledge; and to restore the lacking high frequency
information using the sparse representation method [18–20]. However, it is difficult to
acquire the low- and high-resolution image set, simultaneously. Thus, multi-frame super-
resolution image reconstruction technology was utilized in the study. This process relies
on multiple low spatial resolution sequence images, which are utilized to acquire a higher
resolution image beyond that of the original optical imaging system, through image inter-
polation, image registration, and image reconstruction. The idea was first proposed by Tsai
and Huang [21] and was successfully applied in remote sensing images using the frequency
domain method. Spatial heterogeneity, the difference of the internal composition, or the
brightness distribution of the pixel, are also ubiquitous.

Therefore, we put forward our proposal for reducing the spatial scale effect, by
considering the combination of spatial heterogeneity of ground object targets and the
limitation of imaging resolution. In this paper, the quantitative inversion problem of
a typical polarized remote sensor at different spatial scales was studied by taking into
account the surface roughness of the coating. The remote sensor is based on Liquid Crystal
Variable Retarder (LCVR), which can achieve a high polarization measurement accuracy.
The design and calibration of this typical polarized remote sensor have been studied
before [22]. Here, the spatial scale effect of the sensor on the roughness inversion of the
coating was analyzed from the perspective of spatial heterogeneity and our spatial scale
effect correction method for linear mixed pixels was proposed. Moreover, the optimal
spatial scale was found based on super-resolution image reconstruction using entropy as
an evaluation criterion. Research on super-resolution polarization image reconstruction
technology is of great significance to the application of polarization imaging quantification
inversion based on the detection of typical polarized sensors.

This paper is organized into 4 sections. Following the introduction in Section 1,
Section 2 describes the methods to invert the target characteristic, reduce the spatial scale



Sensors 2021, 21, 4418 3 of 16

effect for linear mixed pixels, and reconstruct super-resolution images for the optimal
spatial scale. The corresponding experimental preparation and results are presented in
Section 3. Finally, Section 4 concludes the paper.

2. Methods
2.1. Inversion Model Based on pBRDF Model

To complete the inversion of the coating roughness, we must implement two steps:
the establishment of the pBRDF coating model and the acquisition of the target polarization
state, through the polarization images.

2.1.1. Modeling of pBRDF

In order to study the physical properties of an object, for a given incident state,
the pBRDF models of the target are necessary to predict the polarization state of the
reflected light, which is a prerequisite for the quantitative analysis of polarimetric images
in remote sensing.

In this paper, the pBRDF model, based on Priest and Gerner’s [23] microfacet theory,
is utilized, but the complicated description of diffuse reflection has been simplified. This
theory assumes that a rough surface, with roughness larger than or equal to the detection
wavelength, is composed of a collection of randomly oriented microfacets [24]. Each
microfacet acts as a specular reflector obeying Fresnel’s equations, and has a certain rule of
normal distribution, which is generally considered to be Gaussian distribution [25]:

p(θ) =
1

2πσ2cos3(θ)
exp(
−tan2(θ)

2σ2 ) (1)

where σ is the root mean square slope [26], and θ is the orientation angle of microfacets,
relative to the object surface normal. θ can be defined as:

cos(θ) =
cos(θi) + cos(θr)

2cos(β)
(2)

cos(2β) = cos(θi)cos(θr) + sin(θi) · sin(θr)cos(ϕi − ϕr) (3)

where the incident zenith and azimuth angles are given by θi and ϕi, respectively, and the
reflected zenith and azimuth angles are given by θr and ϕr, respectively. The angle relation-
ship between the microelement surface and the object surface is shown in Figure 1 [27].
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Figure 1. Angle definitions in a microfacet coordinate system; where OB is the surface normal, OC is
the target microfacet normal, AO is the incident direction, and OD is the detection direction [27].

According to the physical meaning of bidirectional reflectance distribution function
(BRDF), it is the ratio of the radiance L, reflected on the object surface, and the irradiance
E, incident on the object surface, in a particular direction. The geometry of the BRDF
definition is illustrated in Figure 2.
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Extended to the field of polarization, polarized BRDF, also known as pBRDF, means
that in the physical sense of BRDF, both radiance and irradiance are represented by a
4 × 1 Stokes vector, and F is a 4 × 4 Mueller matrix. Since a Mueller matrix relates the
incident and reflected Stokes vectors, the polarimetric relationship between the incident
and reflected light can be given by:

dLr(θr, ϕr) = F(θi, ϕi, θr, ϕr, λ)dE(θi, ϕi) (4)

where Lr and E are the reflected and incident Stokes vector, respectively.
For the coating, the reflection consists mainly of mirror and diffuse reflection. It

is generally believed that specular reflection carries polarization information, due to the
single scattering event on the coated surface. Meanwhile the diffuse reflection part becomes
Lambertian reflection after multiple scattering event, on or inside the coated surface, which
has no polarization characteristics and is independent of reflection angle. Therefore, the
pBRDF Mueller matrix can be expressed as [28]:

F(θi, θr, ϕi − ϕr, σ, ε, kd) =
1

2π

1
4σ2

1
cos4(θ)

exp(− tan2(θ)
2σ2 )

cos(θr)cos(θi)
M(θi, θr, ϕi − ϕr, ε)G(θi, θr) +

kd
cos(θi)

ϕ (5)

where G is the shadowing/masking factor [29,30], M is the Mueller matrix for the Fresnel
reflection from each facet with the same size as F, ε is the complex refractive index of the
target, and kd is the diffuse reflection coefficient.

In this model, three target parameters are involved, including the real and imaginary
parts of the index of refraction n and κ, respectively, and the surface roughness σ. The
pBRDF Mueller matrix also has properties of anisotropy related to the observed geometry.

2.1.2. Acquisition of the Target pBRDF

Through the pBRDF model, the theoretical polarization state of reflected light (natural
light reflected from the coating) can be obtained. Here, we explain how to acquire the
polarization state of the reflected light at the entrance pupil, through the polarization image
captured by the owned polarization imaging detector [31]. The detector consists of a filter,
two LCVRs, and a polarizer.

In this experiment, the light source is unpolarized, so its Stokes vector is assumed to
be (1 0 0 0) T. Also, the coating acts as a polarizer, which makes the reflected light carry the
target information. Sin is the Stokes vector of light reflected by the coating, while Sout is
the Stokes vector of the emitted light passing through the filter, LCVR and polarizer. The
relationship between the two can be described as:

Sout = Mp2 ×MLCVR2 ×MLCVR1 ×Mp1 × Sin (6)
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where Mp1 and Mp2 represent the Mueller matrix of the filter and the polarizer, respectively,
and MLCVR1 and MLCVR2 is the Mueller matrix of two LCVRs. Combining into the Mueller
matrices of the instrument Mins, it can be expressed as:

Sout = Mins · Sin (7)

Therefore, the Stokes vector of the light reflected from the coating can be expressed as:

Sin = Mins
−1 · Sout (8)

Mins is calibrated by the method based on both a multi-band light source and a laser
source for liquid crystal variable retarders in advance [32]. Meanwhile, the Stokes vector of
the light reflected from the coating can be also expressed as:

Sin =
→
fr ·
(

1 0 0 0
)T (9)

where
→
fr is a 4 × 4 Mueller matrix of the coating, that is, the pBRDF matrix. However, since

the Stokes vector of unpolarized light source is (1 0 0 0) T, only the first column of
→
fr needs

to be considered, namely,
(

f00 f10 f20 f30
)T .

Using the diffuse reflectance standard (DFS) as a calibration target, the pBRDF of
any painted surface can be calculated with the comparison method. The DFS has a highly
Lambertian reference surface, and an approximately angular-invariant BRDF of ρ/π with
a nearly randomly polarized reflectance of ρ. Thus, the pBRDF of the coating can be
expressed as: 

f00
f10
f20
f30

 =
ρ

π

[
B′

A′

]
(10)

where A′ and B′ are the Stokes vector of the DFS and target calculated by
Equation (8), respectively.

Relevant scientific research shows the f30 in pBRDF is generally not considered because
its value is generally small and negligible. Moreover, f10 and f20 are easily affected by
uneven coating spray. Thus, f00 is used as an inversion reference in the subsequent
roughness inversion of the coating.

2.1.3. Levenberg–Marquardt Algorithm for Inversion

In the microfacet pBRDF model, under the same incident and observation conditions,
there are and only three unknown parameters, the real n and imaginary k parts of the
complex refractive index, and the surface root mean square slope σ. In order to realize
parameter inversion, the objective function is inverted through a Levenberg–Marquardt
(LM) algorithm as follows:

min f (n, k, σ) =
∑θi ∑θr ∑ϕ [ f m

s (θi, θr, ϕ)− fs(θi, θr, ϕ, n, k, σ)]2

∑θi ∑θr ∑ϕ [ f m
s (θi, θr, ϕ)]2

(11)

where fs(θi, θr, ϕ, n, k, σ) is the simulation value with Equation (5), and f m
s (θi, θr, ϕ) is

calculated by Equation (8).

2.2. Spatial Scale Effect Correction for Linear Mixed Pixels

In a pixel of the same paint coating, multiple sub-pixels with different roughness ap-
pear. However, the surface characteristics can be described by the pBRDF model proposed
above, due to the definition of linear mixed pixels.
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The quantitative relationship between pBRDF values and roughness σ can be ex-
pressed as:

fr = f (σ) (12)

Inverting the function of Equation (12), we get:

σr = g( fr) (13)

Given that the six input parameters (θi, θr, ϕi, ϕr, ε, kd) are known, Equation (13)
indicates that we can calculate the corresponding pixel roughness value from the measured
pBRDF value in a certain pixel. The roughness value only represents the average roughness
in a certain area.

When there is only one type of sub-pixel target in the pixel, that is, the main sub-pixel
target, the average roughness can indicate the roughness of the main target. However, it
is possible a pixel contains one kind of major sub-pixel target with multiple interfering
sub-pixel targets, as shown in Figure 3.
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Thus, the value fr measured by the pixel can be expressed as a weighted sum of the
values of the respective interfering sub-pixels and the main part of the pixel by the weight
of the area, such that:

fr =
n
∑

i=1
ai f (σi) =

n
∑

i=1
ai fi, i = 1, 2, . . . , n

n
∑

i=1
ai = 1, i = 1, 2, . . . , n (14)

where fi is the pBRDF value, σi is the roughness and ai is the proportion of the area
occupied by each of the corresponding sub-pixel targets i.

Therefore, the actual measured roughness value σa can be expressed as:

σa =
n

∑
i=1

aig( fi), i = 1, 2, . . . , n (15)

Generally, σr in Equation (13) and σa in Equation (15) are not equal, due to the scale
effect. When studying the error of σr and σa, we can only take the quadratic approximation
of the Taylor expansion of the Equation (15), such that:

σa = σr + σ′r
n

∑
i=1

ai( fi − fr) +
1
2

σ
′′
r

n

∑
i=1

ai( fi − fr)
2, i = 1, 2, . . . , n (16)

Note that this is the second-order approximation. The second item in Equation (16)
can be expanded:

n

∑
i=1

ai( fi − fr) =
n

∑
i=1

ai fi −
n

∑
i=1

ai fr = fr − fr = 0 (17)
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The second term in Equation (16) is zero. The third term in Equation (16) represents
the local variance, which is different from variance in the traditional sense, and can be
specifically defined as:

D( f ) =
n

∑
i=1

ai( fi − fr)
2 (18)

where D( f ) is the local variance of the roughness distribution of mixed pixels, which can
be described as the square error between the central pixel value and the mean value of
surrounding pixels. The physical meaning is the difference between the detection values of
the central and surrounding pixels, that is, the difference in the sub-pixel composition.

Substituting Equations (17) and (18) into Equation (16), the scale effect correction
formula for the surface roughness of linear mixed pixels can be obtained by:

σa = σr +
1
2

σ
′′
r D( f ) (19)

In Equation (19), σ
′′
r D( f ) denotes the scale effect error produced by the linear mixed

pixel, including the σr parameter related to the nonlinearity of the model, and the D( f )
parameter related to spatial heterogeneity. The domain range of the target pixel can be
selected based on the size of the target, to calculate the value of D( f ). A square with a side
length of 3 or 5 pixels, centered on the target pixel, is advisable.

2.3. Super-Resolution Image Reconstruction Based on the POCS Method

Super-resolution image reconstruction meets the needs of multi-resolution, to find the
optimal scale, and further improves the comprehensive quality of images, compared to
traditional image resampling [33].

The general model for generating low-resolution images, from ideal or high-resolution
images, is shown in Figure 4. It describes the geometric transformation of continuous
high-resolution scenes, from world coordinates to camera coordinates; the loss of spatial
resolution, due to blurring caused by the camera’s point spread function; and spatio-
temporal sampling, while introducing some noise into the process. Its inverse process
is the super-resolution image reconstruction. In this paper, the super-resolution image
reconstruction technology used is mainly based on the POCS algorithm [34,35].
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In the super-resolution image reconstruction process, an image acquisition model
needs to be constructed, to connect the original high-resolution and observed low-resolution
image. A general model can be expressed as:

gl(m1, m2) = ∑
(n1,n2)

f (n1, n2)hl(m1, m2; n1, n2) + ηl(m1, m2) (20)

where gl(m1, m2) is the first frame of the observed low-resolution image, f (n1, n2) is the
initial high-resolution image, hl(m1, m2; n1, n2) is the spatial point spread function, and
ηl(m1, m2) is the additive noise.
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In the POCS method, the solution of POCS is limited to a closed convex set Ci, by each
constraint or prior knowledge. For each Ci, there is a corresponding projection operator Pi.
A non-zero solution space is defined as:

f ∈ C0 =
i=m
∩

i=1
CiPi, i = 1, 2, . . . , m (21)

where m is the number of closed convex sets, corresponding to m prior knowledge. The
process of iteratively solving the original image according to the convex set constraint is
as follows:

fk+1 = TmTm−1 . . . T1 fk, k = 1, 2, . . . (22)

Ti = (1− λi)I + λiPi, 0 < λi < 2 (23)

where Ti is the relaxation projection operator corresponding to the prior condition and λi
is constant. The convergence speed of the algorithm can be adjusted by changing the value
of λi.

Assuming the noise follows a Gaussian distribution, the variance σr and a reasonable
statistical confidence coefficient c is given, from which the a priori boundary, cσr(c ≥ 0), can
be obtained. Each element in the image M1·M2 needs to satisfy the following conditions:

Cm1,m2 =
{

f (n1, n2) : r(y)(m1, m2) ≤ cσr

}
0 ≤ m1 ≤ M1 − 1
0 ≤ m2 ≤ M2 − 1

(24)

where cσr is the a priori boundary, which statistically reflects that f (n1, n2) is an element in
Cm1,m2

r(y)(m1, m2) = gl(m1, m2)−∑M1−1
n1=0 ∑M2−1

n2=0 f (n1, n2)h(m1, m2, n1, n2) (25)

where r(y)(m1, m2) is the residual between f (n1, n2) and gl(m1, m2).
By comparing Equations (25) and (20), we can conclude that the residual should be

consistent with the noise. That is to say, the statistical process of noise can be utilized to
define the difference between the original and current image. In each iteration, the absolute
value of the residual is also within the bounds, like the noise.

The expression that projects f (n1, n2) to Cm1,m2 can be defined as:

y(n1, n2) = Pm1,m2 [ f (n1, n2)] = f (n1, n2)+


[r(y)(m1,m2)−δ0]

∑x1 ∑y1
h2

k(m1,m2;x1,y1)
hk(m1, m2; n1, n2) r(y)(m1, m2) > δ0

0
∣∣∣r(y)(m1, m2)

∣∣∣ ≤ δ0

[r(y)(m1,m2)+δ0]
∑x1 ∑y1

h2
k(m1,m2;x1,y1)

hk(m1, m2; n1, n2) r(y)(m1, m2) < −δ0

(26)

According to the above principle, the implementation idea of the POCS algorithm can
be divided into three steps. Firstly, a reference frame image is selected from low-resolution
image sequences and is converted into an initial estimate of the high-resolution image, by
some interpolation method. Image registration is then performed on other low-resolution
images, to obtain corresponding motion parameters. Finally, the point spread function
(PSF) is used for iteration to correct the initial estimate of the high-resolution image, until
an acceptable reconstruction result is obtained that satisfies the threshold. The whole
process is illustrated in Figure 5.
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3. Experimental Validation and Results
3.1. Experiment 1: Spatial Scale Effect Correction
3.1.1. Experimental Preparation and Scheme

To verify the validity of our proposed spatial scale effect correction method, we carried
out an indoor experiment. We chose two targets with different surface roughness. These
are shown in Figure 6. The target is a standard compact disc (CD). The bottom surface was
unchanged, while the top surface had matte white paint, of different thickness, sprayed
onto it. The different thickness created a coating surface with different roughness. The
corresponding sampling length was selected according to ISO 4288-1985. The average value
of multiple measurements was taken as the target roughness using the roughness tester.
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The polarimetric images of targets were captured using our LCVR-based polarized
remote sensor. Moreover, all images were taken in 514 nm. A standard source integrating
sphere (Labsphere US-120-SF) was used in conjunction with the light source. It produced
a source stability better than 0.001 and could be considered as a uniform non-polarized
incident light.

The experimental scheme is shown in Figure 7. The target position was stationary,
while the position of the image polarizer was adjusted to receive the reflected light along the
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45◦ reflection angle of the coating surface. Meanwhile, the heights of the image polarizer,
target and source were consistent with the ground. This was to ensure the relative azimuth
of all pixels was greater than 170◦. Multiple polarization images of coatings with uneven
roughness were captured at five distances. At each distance, only the incident angle of the
light source was changed, and 13 datasets were measured from 39◦ to 51◦, with 1◦ intervals,
for inverting the roughness of the coating surface. To ensure the accuracy of the change in
incident light angle, the rotation angle of the light source was adjusted by the laboratory
electric turntable, with a precision of 0.1◦. Finally, the surface roughness of the coatings
was inverted based on the pBRDF model and corrected by our proposed method.
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3.1.2. Results and Analysis

The premise of our proposed method in this paper is that the interfered pixels account
for a small section of all pixels. Therefore, the mean and variance of the degree of polariza-
tion (DOP) data, of the target coating, can be used to reflect the correction effect. An area
where the partial roughness is uneven results in the maldistribution of the DOP, which
increases the overall variance of the DOP. The method in this paper only corrects the DOP
value of the partially uneven area. Therefore, the overall DOP average of the image before
and after the correction should be approximately equal. The variance of the DOP indicates
the spatial heterogeneity. The main function of the scale effect correction, proposed in this
paper, is to reduce the influence of spatial heterogeneity. Thus, the variance of DOP after
correction should be significantly reduced.

Taking the data measured at an incident angle of 45◦ as an example, the mean and
variance of the DOP, before and after the correction at each distance, are calculated and
listed in Table 1. It can be seen that after the scale effect correction, the DOP mean value
does not change by more than 0.2%, while the DOP variance decreases by an average
of 13.5%. This shows that after the correction, the DOP gap between the pixels, at each
scale, has been significantly reduced, indicating that the impact of spatial heterogeneity
has decreased. Furthermore, the inversion results of the different distances between the
imager and the targets are shown in Table 2, to further verify the correction effect.

In each group, the corrected roughness value(σa) is no greater than the uncorrected
value (σr) directly inverted from the pBRDF model, and closer to the real roughness.
Combined with the change of DOP variance in Table 1, we conclude that our method can
reduce the influence of spatial heterogeneity on the scale effect and improve the accuracy
of the inversion. Moreover, our method takes the average roughness of all pixels within the
detection area as the main target. Therefore, it may be affected by extreme values, resulting
in some overcorrection phenomenon.
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Table 1. Comparison, before and after DOP correction, of target 1 at an incident angle of 45◦.

Group Distance (cm) The mean of DOP
Original→Corrected→ Change

The variance of DOP
Original→Corrected→ Change

1 596 0.6401→0.6390→0.17% 4.3907 × 10−4→3.4256 × 10−4→21.98%
2 326 0.6325→0.6315→0.16% 1.7482 × 10−4→1.5033 × 10−4→14.01%
3 236 0.6444→0.6437→0.11% 3.0338 × 10−4→2.8040 × 10−4→7.57%
4 174 0.6352→0.6350→0.03% 1.7069 × 10−4→1.5823 × 10−4→7.30%
5 115 0.6286→0.6280→0.09% 2.9821 × 10−4→2.6745 × 10−4→10.31%

Table 2. Roughness inversion results of laboratory experiments.

Target 1

Group Distance
(cm) Real σ σr σa Relative error (%)

1 596

0.0543

0.0553 0.0551 1.763→1.530
2 326 0.0562 0.0558 3.438→2.796
3 236 0.0569 0.0568 4.864→4.621
4 174 0.0581 0.0581 7.064→6.926
5 115 0.0594 0.0570 9.380→4.976

Target 2

Group Distance(cm) Real σ σr σa Relative error (%)
1 596

0.0430

0.0454 0.0450 5.535→4.554
2 326 0.0449 0.0443 4.463→3.040
3 236 0.0445 0.0445 3.484→3.480
4 174 0.0451 0.0451 4.894→4.829
5 115 0.0463 0.0455 7.707→5.819

Since our camera is a prime, distance is proportional to the spatial resolution. From
the corrected data, the influence of spatial resolution on the inversion accuracy can also
be found in Table. The inversion accuracy is the highest only at the optimal resolution.
Therefore, we propose a new method to find the optimal resolution, or the optimal scale.

3.2. Experiment 2: Super-resolution Reconstruction at the Optimal Scale
3.2.1. Experimental Preparation and Scheme

We used the existing instrument (described in Section 3.1.1) to capture multi-frame
polarized images in 514 nm at the distances of 7.5 m, 10 m and 15 m. To minimize the
environmental impact, we chose to carry out the experiment at night, and with a larger
target 3, shown in Figure 8. The same paint was evenly sprayed at the center of the
target, consisting of the numbers 1–8. The target was 1 m × 1 m in size. The light source
was a tungsten halogen lamp, which has no polarization property and is approximately
considered to be natural light.

The experimental scheme is shown in Figure 9. A multi-frame image of the same
scene at different detection distances was taken, and then a DOP image of each frame was
calculated. Next, these polarization images were used as input frames for super-resolution
image reconstruction, to obtain high-resolution polarized images of different magnification
factors. The strict relationship between magnification and the actual spatial scale was not
requisite. It was sufficient knowing they are inversely proportional, and it is feasible to
obtain different spatial scales by reconstructing the images with different magnification
factors. During super-resolution image reconstruction, we used 24 frames of the low-
resolution image to obtain the corresponding high-resolution image. Meanwhile, multi-
scale images of the DFS were obtained in preparation for inversion by image interpolation.
Image entropy was used as the evaluation criterion, for preliminarily selecting the optimal
scale. Finally, the target coating roughness of the multiple areas enclosed by red boxes in
Figure 8, were inverted using Equation (11). After this, the optimal scale obtained, in the
previous step, was verified.
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3.2.2. Result and Analysis

Using super-resolution image reconstruction method based on POCS, DOP images of
different scales were generated. The resolution of the newly generated image was 1–5 times
that of the original image. As an example, the multiscale DOP images taken at the distance
of 10 m were reconstructed and are shown in Figure 10. It can be seen that the reconstructed
images have a higher contrast than the original image and are richer in detail.

To select the optimal scale, the statistical entropy calculated by the grayscale co-
occurrence matrix is regarded as an index to evaluate the amount of information of the
reconstructed DOP image texture [36]. The statistical entropy can be expressed as:

ENT = −
L−1

∑
i=0

L−1

∑
j=0

P(i, j)lgP(i, j) (27)

where P(i,j) represents the probability of occurrence of grayscale pairs in the image, and L
represents the total number of gray levels.
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The score for different magnification factors, at multiple distances, is shown in
Figure 11a. As the magnification factor increases, the entropy value reaches its peak,
indicating that the spatial correlation between the pixels is weakest at this spatial scale.
These may be the optimal scales at the selected distance.
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The interval where the best value is located can be acquired, but the exact optimal
scale could not be obtained due to the coarseness of our chosen magnification factors. At
the distances of 7.5 m, 10 m and 15 m, the optimal scale was located in the magnification
factor ranges of 3–5, 2–4 and 1–3, respectively. As the magnification factor increases to 5,
the value for the shorter distances remains at a higher level, while the farthest becomes
lower, than the original value without reconstruction. There are two possible reasons for
this. One is that the images could be reconstructed with a limited multiple by the selected
POCS algorithm. The other is that the optimal scale is inversely proportional to the distance.
Furthermore, the optimal scale is the only preliminary result that must be verified by the
inversion results.

In Figure 11b, the variation of the difference between the inversion and real values,
with amplification factor at the same distance, is almost in alignment with that of the
image entropy value shown in Figure 11a. The peak locations are also similar, in terms of
the magnification factor ranges. The inverted and measured values of σ are detailed in
Table 3. At the appropriate scale, the inversion accuracy of σ has improved significantly.
The optimal magnification factor for 7.5 m, 10 m and 15 m is 4, 3 and 3, respectively, and
the value of the inversion error is 6.45%, 0.95% and 3.95%, respectively. This is consistent
with the preliminary result. Furthermore, comparing to before reconstruction, the error
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reduced by 27.66%, 9.8% and 28.77% at the optimal scales, respectively. Thus, our method
is capable of finding the optimal scale at a fixed distance and can greatly improve the
inversion accuracy.

Table 3. Inverted σ of target 3.

Distance (m) Magnification Factor Measured σ Inverted σ Error

7.5

1

0.110

0.07248 34.11%
2 0.09241 15.99%
3 0.10071 8.45%
4 0.11709 6.45%
5 0.09562 13.07%

10

1 0.09817 10.75%
2 0.1012 8.00%
3 0.10895 0.95%
4 0.10712 2.62%
5 0.09199 16.37%

15

1 0.07401 32.72%
2 0.08875 19.32%
3 0.10565 3.95%
4 0.08497 22.75%
5 0.07856 28.58%

4. Discussion

Two methods to reduce the spatial scale effect of the typical polarized remote sensor
were proposed for two different types of target coatings. For the coatings lacking obvious
features, such as targets 1 and 2, the spatial scale effect caused by the difference in sub-pixel
distribution was analyzed. We implemented a scale correction formula based on the local
variance of the roughness, to modify the inverted value obtained by the modified pBRDF
model. Moreover, the inversion accuracy at each scale was improved before correction.
However, for the target 3, which has distinct features and was regarded as containing
nonlinear mixed pixels, this correction formula was not appropriate. Instead, we used a
new method to find the optimal scale through super-resolution reconstruction, based on
the POCS method. Multiscale high-resolution polarization images, obtained from a series
of low-resolution images, were prepared as the initial images of the inversion. Using the
image entropy value as the evaluation criterion, the preliminary results of the optimal scale
were obtained and verified. We provide some suggestions for choosing the right spatial
resolution for different application goals and requirements. A follow-up study will include
the acquisition of the exact optimal scale, and super-resolution image reconstruction on
images without obvious features.

5. Conclusions

In this paper, accessible methods to reduce the spatial scale effect of a typical polarized
remote sensor were proposed. For the coatings lacking obvious features, a scale correction
formula based on the local variance of the roughness was implemented, to modify the
inverted value obtained by the modified pBRDF model. For the targets with distinct
features, a super-resolution polarization image reconstruction algorithm based on POCS
was proposed to obtain higher resolution polarization images, and related research on
the selection of optimal scale for quantitative inversion of coating roughness was carried
out. Moreover, the image quality of DOP images in different scales was evaluated, which
verified the effectiveness of the reconstruction algorithm used in this paper for scaling
transformation. Further research will seek to improve the image reconstruction algorithm.
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