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Abstract
Systematicity is a property of cognitive architecture whereby having certain cognitive capac-

ities implies having certain other “structurally related” cognitive capacities. The predominant

classical explanation for systematicity appeals to a notion of common syntactic/symbolic

structure among the systematically related capacities. Although learning is a (second-

order) cognitive capacity of central interest to cognitive science, a systematic ability to learn

certain cognitive capacities, i.e., second-order systematicity, has been given almost no

attention in the literature. In this paper, we introduce learned associations as an instance of

second-order systematicity that poses a paradox for classical theory, because this form of

systematicity involves the kinds of associative constructions that were explicitly rejected by

the classical explanation. Our category theoretic explanation of systematicity resolves this

problem, because both first and second-order forms of systematicity are derived from the

same categorical construction: universal morphisms, which generalize the notion of compo-

sitionality of constituent representations to (categorical) compositionality of constituent pro-

cesses. We derive a model of systematic associative learning based on (co)recursion,

which is an instance of a universal construction. These results provide further support for a

category theory foundation for cognitive architecture.

Introduction
In the Spring of 2011, at the seaside town of San Jose, Spain, cognitive scientists gathered for a
workshop to reassess the systematicity problem that Fodor and Pylyshyn [1] posed to connec-
tionists more than two decades earlier. That meeting was the catalyst for a collection of articles
[2] providing a diverse range of views on systematicity and its import for a theory of cognitive
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architecture. Though significant progress has been made on clarifying the problem [3, 4]—i.e.,
why systematicity necessarily follows from theoretical principles without relying on arbitrary
additional assumptions to bridge explanatory gaps—consensus on an explanation appears to
be as elusive as ever [5].

The problem of systematicity for cognitive science is to explain why certain cognitive capac-
ities typically co-exist [1]; why, for example, does having the ability to identify square as the
top object in a scene consisting of a square above a triangle implies having the ability to identify
triangle as the top object in a scene consisting of a triangle above a square. More formally and
generally, an instance of systematicity occurs when one has cognitive capacity c1 if and only if
one has “structurally related” cognitive capacity c2 [6], i.e., systematicity is the partitioning of
cognitive capacities into structurally equivalent classes of cognitive capacities. Though cogni-
tive scientists may agree that underlying an instance of systematicity is a capacity to process
common structure, such as the common relation above in the aforementioned example, they
disagree over the proposed nature of such processes, e.g., symbolic versus subsymbolic [7, 8],
and whether such proposals constitute an explanation for systematicity [3, 6].

Given that cognition is systematic to some significant extent, then assessing proposals
against explanatory criteria is pivotal. A sufficiently general theory of cognition may afford cog-
nitive models that support systematicity. Yet, if that same theory affords models that do not
support systematicity, then the challenge is to explain why we only observe the corresponding
systematic cases in the domain of interest. In short, we require an explanation of systematicity
that does not rely on adjoining arbitrary (ad hoc) assumptions to meet explanatory gaps, i.e.,
auxiliary assumptions that are motivated only to fit the data, cannot be verified independently
of verifying the theory, and are unconnected to the theory’s core principles [3].

Two proposals have explicitly claimed explanations for systematicity without recourse to ad
hoc assumptions. The first proposal is a computational symbol systems approach [1], which
we will refer to as classical compositionality. Classical compositionality is characterized by the
notion of tokening: representations of constituent entities are tokened whenever the represen-
tation of its complex host entity is tokened. Each “position” within the complex representation
is a domain for an inference process. Hence, if there exists a process for accessing, say, the first
component of a pair, then that process extends to all constituent representations that can fill
the first position. The other proposal is a mathematical category theory [9] approach [10],
which we will refer to as categorical compositionality. Central to categorical compositionality is
the (formal) notion of universal construction, where each and every instance in a collection of
systematically-related cognitive capacities is obtained by amorphism that factors through (i.e.,
includes) a common, or shared component, called a universal morphism. Hence, having the
universal morphism that constitutes one capacity implies having all capacities that share this
morphism, assuming the morphisms that correspond to the other constituent capacities such
as those that correspond to square and triangle.

Second-order systematicity
Learning is a (second-order) cognitive capacity; a cognitive capacity that engenders other cog-
nitive capacities. Hence, using the characterization of systematicity as equivalence classes of
structurally related cognitive capacities [6], we have another form of systematicity, i.e. having
learning capacity l1 to acquire cognitive ability c1 if and only if one has structurally related
learning capacity l2 to acquire cognitive ability c2, which is referred to as second-order systema-
ticity [3]. This characterization of second-order systematicity parallels the characterization of
first-order systematicity. (For comparison, first-order systematicity is having cognitive capacity
c1 if and only if one has structurally related cognitive capacity c2.) Aizawa [3], citing Chomsky
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[11], provides an example from language: a person has the capacity to learn one natural lan-
guage (say, Chinese) if they have the capacity to learn another (say, German). A mundane
instance of second-order systematicity can be found in experimental psychology, where sub-
jects are paid to participate in multiple experiments involving different cognitive tasks, simply
as a matter of logistics: typically, a subject can learn (by instruction) to complete one cognitive
task if they can learn to complete another cognitive task. Such situations usually involve tasks
designed with different materials and procedures to avoid biasing results (e.g., a word stem
completion task and a mental rotation task).

The second example alludes to an important aspect of second-order systematicity that, we
will show, impacts upon theories of cognitive architecture: the capacities that are learned (c1
and c2) need not be systematically related to each other; the structural relation need only occur
at the second-order level, i.e. between the corresponding learning capacities (l1 and l2). An
example that is pertinent to the classical explanation for systematicity is the learning (or mem-
orization) of associations. For instance, if one has the capacity to learn that the first day of the
Japanese financial year is April 1st, then one also has the capacity to learn that the atomic num-
ber of carbon is 6, at the syntactic or semantic level (see [12] for syntactic versus semantic sys-
tematicity), assuming that one already can represent the entities to be associated, i.e., Japanese
financial year, April 1st, atomic weight (carbon) and the number 6. The intuition behind this
example is that there need not be any internal structural relations between the entities of differ-
ent associations, e.g., Japanese financial year and atomic weight (carbon). The internal struc-
tures of the respective concepts play no role in this instance of systematicity, in contrast with
the square-triangle example where the internal structure is the same relation. Yet, there is an
external structural relation in the sense that each fact can be considered as a mapping from a
concept to a feature value. As we will elaborate upon shortly, this example is a legitimate
instance of systematicity (at the second-order level) given that systematicity has been charac-
terized as a structural equivalence relation over cognitive capacities [6].

We elaborate upon the notion of second-order systematicity of associative learning by first
recalling characteristic features of associative learning. “Associative learning . . . is basically the
learning that results from experiencing contingencies, or predictive relationships, between
events” [13] (p. 18). A feature of associative learning common to humans and animals is that
the contingencies are predictive, hence the principle that associative learning processes are
engaged when an outcome is not predicted [14]. So, for example, on repeatedly seeing that the
colour red is consistently followed by a food item at location A, and that the colour blue is con-
sistently followed by a food item at location B, a participant learns on subsequent colour events
to predict the location of the food item. Essentially, then, associative learning is learning a par-
ticular function from a set of cues (e.g., colours) to a set of targets (e.g., locations). An advan-
tage of a functional characterization of associative learning, like the one just given, is that it
does not presuppose a particular (e.g., associative strength [15] or propositional [16]) theory of
associative learning processes [17].

Despite this seemingly straightforward definition, many factors influence the efficacy of
associative learning, such as learning predispositions (i.e. learning biases), temporal contingen-
cies, and cue/target relations, hence the vast literature on this topic [13]. Indeed, whether or
not associative learning is mediated by change in associative strength or propositional infer-
ence is still actively debated (see [15, 16]). A crucial feature that appears to promote inference
driven learning is whether the items being associated can be interpreted in terms of cause-effect
relationships [18]. Reasoning takes time, so time pressure promotes alternative associative
strength-based learning [19], which aligns with the general Type 1/Type 2 cognitive process dis-
tinction in which timing is a crucial feature [20, 21]. Hence, for the purpose of identifying a
paradox for classical theory, we focus on the learning of paired associates whose relationships
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are meaningless, beyond being predictive (see, e.g., [19, 22, 23]). In this sense, associative learn-
ing is characterized as a (second-order) function that takes a list of cue-target pairs and returns
a (first-order) function that is a map from a set of cues to a set of targets.

As this set-based, functional characterization suggests, only element (cue) identity is rele-
vant to an (elemental) associative process. Cues typically have additional (internal) structure,
e.g., words are composed of letters, pictures are composed of pixels, but this structure is not uti-
lized for the computation. This distinction is important, otherwise any input-output map can
be regarded as association, a position that we do not support [24]. Clearly, then, such associa-
tive processes (first-order functions) cannot support first-order systematicity where the com-
mon structural relations are the relations between cue constituents, because these associative
processes (by definition) do not make use of internal cue structure. Similar considerations
apply to external cue structure, e.g., topological (neighbourhood) and similarity (metric) rela-
tions between other cues. Such relations are, of course, important to other kinds of associative
and non-associative processes. Our point here is that even in the absence of first-order struc-
ture-sensitive processes, there still exists a form of second-order systematicity, which we char-
acterize next.

Our characterization of second-order systematicity of associative learning parallels the
usual notion of first-order systematicity. Given that associative learning capacities are second-
order functions, as characterized earlier, second-order systematicity of associative learning per-
tains to the structural relations between such (second-order) functions. In functional terms,
second-order systematicity of associative learning is having associative learning capacity (i.e.
second-order function) F1 if and only if having structurally related associative learning capacity
F2, where Fi returns first-order associative capacity fi. Typical examples follow from rote-learn-
ing procedures: participants learn a set of cue-target pairs (e.g., a map from a set of four alpha-
betic characters to a set of four shapes) to some criterion, say, correct target response for a test
block of four cues. This procedure is repeated for a different set of cue-target pairs, involving
the same classes of cues and targets, or other classes (e.g., a map from a set of four colours to a
set of four words). One exhibits a second-order systematicity of associative learning property
when one can learn the first map if and only if one can learn the second map. There is no first-
order systematicity property here, because the maps share no structural relations among the
respective cues.

Clearly, humans exhibit this second-order systematicity property as evidenced by the
numerous studies on learning transfer effects, also called learning to learn (see, e.g., [22, 25],
and the cited studies therein). The aim of these studies is to investigate what factors influence
the number of learning trials to criterion for each list. Learning the first list typically takes the
greatest number of trials. The number of trials required to learn subsequent lists varies depend-
ing on, for example, whether they involved the same class of cues/targets as the first list [22], or
a repairing of the same set of cues and targets [25]. For our purpose, the relevant data from
these studies is that (in general) you do not find participants who can learn one list of paired
associates, but not another list. Thus, paired associate learning is a legitimate instance of a sec-
ond-order systematicity property of human cognition.

An important caveat to this property concerns the learning of configural associations, i.e.,
where outcomes are only predicted by conjunctions of cues, not single cues (elemental associa-
tion). In terms of list learning, the [AB, CD] condition (i.e., no cue/target is repeated within or
between lists) can be considered as elemental association, because every (first list A, or second
list C) cue is predictive of every (first list B, or second list D) target independent of (first, sec-
ond) list context. By contrast, the [AB, ABr] condition (i.e., the second list contains a re-pairing
of the cues and targets in the first list) can be considered as configural association, because only
the conjunction of list context and cue predicts each outcome. List learning capacity in the
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[AB, ABr] condition undergoes protracted development from the age of seven [23]. This result
is consistent with earlier findings showing that older, but not younger children (around the age
of 4.5 years) succeed at configural discrimination (respond to A in context 1, but B is context 2)
and transverse patterning (respond to A in the presence B, B in the presence of C, and C in the
presence of A), whose outcomes are only predictive by cue/context conjunction [26] (see also
[27]). Elemental and configural associations are distinguished by their representational rank
[24]. The importance of this difference is that associative learning is not simply one (degener-
ate) equivalence class of capacities. Just as we can have various schemas for first-order systema-
ticity, we can have various schemas for second-order systematicity of associative learning.

The relationship between first and second-order levels of cognitive capacities accords with
the usual treatment of higher-order functions in mathematics and computer science. To wit, a
second-order function, e.g., insert, can take a first-order function, e.g., addition (+), and return
a first-order function, in this case, sum: for instance, insert(+)[1, 2, 3] = 1 + 2 + 3 = 6. Applying
insert to the first-order function lesser (⊲), i.e., the lesser number (e.g., 4 ⊲ 2 = 2), yields the
first-order function least: for instance, insert(⊲)[4, 2, 6] = 4 ⊲ 2 ⊲ 6 = 2. First-order functions
sum and least are related via the common second-order function, insert. Moreover, this rela-
tionship between second and first-order functions is analogous to the usual understanding of
the relationship between composite representations and their constituents for (first-order) cog-
nitive capacities, as in the (first-order) relation John loves Mary and its (zeroth-order) constitu-
ents John andMary.

Note that second-order systematicity, as the higher-order extension of (first-order) systema-
ticity just described, is not the same notion as weak/strong systematicity [12] that was defined
as a (learning) criterion to assess whether a connectionist model possessed the “systematicity”
property. Weak/strong systematicity is a generalization (prediction) criterion, i.e., given certain
kinds of training (learning) examples, where the model is trained to respond with target out-
puts given corresponding inputs, correctly predict the target responses for certain kinds of test-
ing (unseen) inputs. As such, weak/strong systematicity pertains to the learning of a first-order
systematicity property, i.e., acquisition of capacity c1, by learning on a subset of training exam-
ples, implies capacity c2, as evaluated by a subset of testing examples. Also, recall that (first-
order) systematicity [1, 6] is not specifically a generalizability property. Rather, it is an equiva-
lence property: if a cognizer has cognitive capacity c1, whether or not having this capacity is
afforded by some learning/developmental, instructional, or genetically endowed process, then
the cognizer also has cognitive capacity c2. Analogously, for second-order systematicity, if a
cognizer has the ability to learn cognitive capacity c1, whether or not having this capacity is
afforded by some learning to learn, teaching to learn, or genetically endowed learning process,
then the cognizer has the ability to learning cognitive capacity c2. In short, weak/strong sys-
tematicity concerns the learning of a (first-order) systematicity property, whereas second-
order systematicity concerns the systematicity of particular learning capacities (see also
Discussion).

Note, further, that second-order systematicity involves two subtypes: (1) second-order sys-
tematicity without an accompanying first-order systematicity property, e.g., systematic learn-
ing of associations, which is the focus of this paper; and (2) second-order systematicity with an
accompanying first-order systematicity property, e.g., systematic learning of natural languages,
which we do not explicitly address here. We focus on the first subtype, because it is the simplest
example that highlights the need to address a second level of systematicity. Naturally, we
acknowledge that the second subtype is also important. This second subtype is discussed else-
where [28].
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Outline
Perhaps unsurprisingly then, our explanation for second-order systematicity can be character-
ized as a second-order version of our earlier explanation for (first-order) systematicity (see
[10]). In the next section, we argue that the systematic learning of associations presents a para-
dox for classical theory, because the learned representations share no structural relations
between their constituents; more to the point, because there need not be any constituent repre-
sentations in such cases. In the two sections that follow, we propose a resolution and corre-
sponding model, which follow from our category theory explanation for systematicity based on
universal constructions [10]. The current work generalizes the (first-order) notion of shared
structural relations between constituent representations to the (second-order) notion of shared
structural relations between constituent processes, or second-order relations. The implications
of this result are discussed in the last section. The supporting theoretical details are given in the
supplementary texts, S1, S2 and S3 Texts.

Classical compositionality and canonicity
Classical compositionality is the notion that representations and processes pertaining to com-
plex entities, i.e., entities that are constituted of other entities, are composed of representations
and processes corresponding to the constituent entities in a structurally consistent way. For the
above example, there is a representation of triangle, a representation of square, and the struc-
tural relationship between those two representations corresponds to the spatial relationship of
the triangle and square. By virtue of the consistency of this correspondence across instances of
object pairs, a capacity to pick out the “top” representation for triangle above square implies
the capacity to pick out the top representation for square above triangle, because they are one
and the same process.

We can illustrate the way a classical system supports a systematic capacity for representing
pairs of items by the following set of production rules (or, grammar), with the relation symbol
omitted for simplicity.

G1 : P ! S T

S ! 4j□
T ! 4j□

where | indicates alternative possible expansions of a symbol. Given the start symbol P, the sys-
tem continues to expand non-terminal symbols, in this example, P, S and T, with matching
production rules until only terminal symbols remain, which in this example are the symbols4
and□. This set of rules generates all four possible combinations of triangles and squares.

Not all structurally consistent correspondences between representations and the entities
being represented support systematicity. To illustrate with the above example, suppose we rep-
resent object pairs consisting of triangles or squares with symbols4 for triangle,□ for square,
and S for symbols4 or□, and pairs of objects as the (concatenated) symbols4 S, or S4. We
have the following set of production rules.

G2 : P ! 4SjS 4
S ! 4j□:

This alternative system has the capacity to represent triangle above triangle, triangle above
square, and square above triangle, but not square above square. Thus, this schema fails to sup-
port systematicity in this case.
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To rule out grammars such as G2, classical compositionality asserts only the “canonical”
grammars, i.e., grammars that support systematicity [6]. Yet, this assertion appears to be ad
hoc [3] without some independent principle for determining such constructions. We argue
(next) that canonicity leads to a paradox of sorts for the classical approach.

The paradox of systematic learned associations
A systematic capacity for learning associations appears to be problematic for classical composi-
tionality, since it involves simple associative processes, which were rejected as the basis for a
theory of cognitive architecture [1]. Note that this example of systematic learned associations
does not vindicate associativism as a viable framework for theories of (first-order) systemati-
city. Of course, we do find people who know one fact, say, the first day of the Japanese financial
year is April 1st, without knowing the other fact, the atomic number of carbon is 6. Rather, asso-
ciative theories do not provide a satisfactory explanation for first-order systematicity, because
they are equivocal on indivisible (first-order) capacities [1]. The difficulty for the classical
explanation is that on the one hand the (canonical) classical constructions are supposed to be
just the ones that support systematicity [6], which in this example are associations. Yet, on the
other hand, (non-classical) association-based systems fail to pick out the clusters of cognitive
capacities that are organized around a common structure [1]. How can the requisite canonical
constructions be simultaneously symbolic and non-symbolic (association-based)?

The solution to this apparent paradox appears straightforward: extend the classical explana-
tion to explicitly include a notion of second-order (classical) compositionality. In the context
of a set of production rules, or grammar, second-order compositionality is a (second-order)
production (or, grammar) that produces a (first-order) production (grammar). For example,
with regard to learned associations, we define rlearn (recursively learn) to be a second-order
production that is given a list of pairs of items to be associated, pairlist, and a first-order pro-
duction, associate, which produces the items associated with the given cue, and returns a new
first-order production. Informally, rlearn is defined as:

rlearn :

( ðemptylist; associateÞ 7!associate;

ðpairlist; associateÞ 7!rlearnðpairlist 0; updateðfirstpair ; associateÞÞ

where emptylist is the empty list of pairs of associated items, firstpair is the first pair in the list,

pairlist0 is the list that remains after removing firstpair from pairlist, and update adds a new
pair to the associate production, which may involve adding a new association, or modifying the
strength of an existing one. For brevity, firstpair is implicitly obtained from pairlist by a process
that returns the head of a list. An expression of the form f : x 7! y indicates that the application
of function f to argument x yields the result y.

An alternative, non-recursive, form of associative learning is defined iteratively. We define
ilearn (iteratively learn), which also takes a list of pairs and an associate production and returns
a new associate production, as follows:

ilearn :

while :isemptylistðpairlistÞ do
updateðfirstpair ; associateÞ ! associate;

tailðpairlistÞ ! pairlist

end

Second-Order Systematicity of Associative Learning
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where isemptylist returns true if pairlist is empty, else false, and tail returns the list with the first
item removed.

Despite the shared variables and subprocess (e.g., update), the two versions do not share
common relations among their respective constituents. So, in the case that one cognitive capac-
ity is learned (recursively) by rlearn and the other cognitive capacity is learned (iteratively) by
ilearn, there is no (classical) basis for second-order systematicity. Thus, second-order classical
compositionality does not necessitate the kind of shared relations between constituent repre-
sentations that are supposed to explain (second-order) systematicity.

Note, further, that restriction to recursion does not necessarily help, because there may still
be (arbitrary) choices to be made, none of which may be satisfactory. For instance, there is a
well known tradeoff for list-based recursion that depends on whether lists are processed from
the left (head-first), or from the right (tail-first): head-first recursion avoids having to maintain
the entire list in memory, but is only applicable when the functions that assemble the interme-
diate results, e.g., update, are associative; tail-first recursion applies to all (associative and non-
associative) functions, but requires decomposing the entire list before reassembling results
[29]. The production rlearn is right recursive. In the current context, head-first recursion lacks
systematicity; tail-first recursion lacks credibility in that learning cannot proceed until all
examples have been seen. In other words, tail-first recursion does not admit incremental (“on-
line”) learning.

The general problem for a supposed (second-order) classical compositionality approach to
second-order systematicity is essentially the same problem that arises for the classical approach
to first-order systematicity, which is the ad hoc nature of the canonicity assumption. Certainly,
a second-order classical compositional system can be devised to address particular instances of
second-order systematicity. And, certainly, a second-order classical compositional system can
be devised that does not support second-order systematicity. An analogous appeal to canonical
second-order classical compositionality does not help, analogously, because there is no charac-
terization of what necessitates just the canonical classical compositions beyond whatever sec-
ond-order classical composition fits the data, which is characteristically ad hoc [3].

Our diagnosis of the problem afflicting the classical approach is that the focus of composi-
tionality is on the underlying representations and their structure, or lack thereof, rather than
the (structure of the) processes that build those representations. As will be apparent shortly,
this shift is what one observes from a categorical perspective, where the emphasis is on the
morphisms and their compositions [10].

Categorical compositionality and universality
Much of the systematicity debate has focused on the implementation aspect, i.e., whether or
not connectionist claims of (functional) compositionality in support of systematicity are, in
fact, just a particular implementation of classical symbolic representation [1, 7, 8, 30]. Category
theory [9, 31] is sometimes called a theory of structure, which is suggestive of an approach to
systematicity that can circumvent implementations issues, and return focus to the central prob-
lem of explaining systematicity without ad hoc assumptions. An essential difference between
category theory and other formal methods is a shift from the objects or elements of a domain
of interest as the primary focus of attention to the relations, or transformations between those
objects, which are calledmorphisms. This focus on morphisms affords a unified explanation,
based on universal constructions, for second-order systematicity of learned associations that
avoids the problem with the classical approach that we just mentioned.
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Categories, functors and universal constructions
Our category-theoretic explanation of systematicity says that underlying every collection of
systematically related cognitive capacities is a universal construction of some kind [10, 32–34].
To compare this claim with the classical one, we first need to introduce the concepts of cate-
gory, functor and universal construction (universal morphism) in the context of cognition. Fur-
ther details are given in S1 Text.

Suppose a cognitive system consists of sets of cognitive states, cognitive processes (func-
tions) for transforming cognitive states to new cognitive states, and some means of composing
cognitive processes to form other cognitive processes. Processes are composed by making the
output of the first process the input to the second process. This basic arrangement can be mod-
eled in terms of a category, which consists of a collection of objects, a collection of “relations”,
or processes between objects calledmorphisms,maps, or arrows, and an operation for compos-
ing morphisms, called composition and denoted �, that together satisfy certain requirements
[9]. For example, a cognitive system could be modeled in the category Set, which has sets for
objects, functions for morphisms, and composition is composition of functions, assuming that
the aspects of the cognitive system being modeled satisfy the criteria for being a category,
which are illustrated later.

From this point on, we introduce notation to facilitate descriptions of additional category
theory concepts used to address systematicity. A morphism f from an object A to an object B is
written f : A! B, where A is called the domain and B the codomain of f. A morphism f : A! B
composed with a morphism g : B! C is the composite morphism g � f : A! C. The identity
morphism associated with an object A is written 1A : A! A. Composing a morphism f : A! B
with the identity morphism 1A or 1B results in f, i.e., 1B � f = f = f � 1A, and composition is not
affected by order of evaluation, i.e., h � (g � f) = (h � g) � f. In the case where the objects are sets
and the morphisms are functions, f : A! B, the mapping of each element a in A to an element
b in B is sometimes written f : a 7! b, or f(a) = b.

The choice of category will depend on what aspect of cognition is under investigation.
When the details of internal states and processes are unknown or not relevant, we may choose
an abstract category where the nature of the objects and morphisms is unspecified or without
internal structure. In other situations, we may also want to model the internal structure of cog-
nitive states and processes. For instance, networks of associations can be modeled as directed
graphs, where each graph consists of a set of nodes (the associates) and a set of edges (the
strengths of association). Each graph is an object in the category of (directed) graphs, Grph,
whose morphisms are graph homomorphisms, which preserve graph structure, i.e., a graph
homomorphism consists of two maps, a map for nodes and a map for edges, such that the
source and target nodes of each edge map to the source and target nodes of the mapped edge.

A cognitive system can also be considered as a collection of subsystems, in which case we
require a way of modeling the relations between subsystems. If we model subsystems as catego-
ries, then an appropriate way to model relationships between subsystems is with morphisms
between categories, called functors. Endofunctors are functors from a category to the same cate-
gory, which are used to model recursive processes. Categories are “generalized” graphs, in that
every category is a graph with a loop at each node and an edge for each connected path. This
view facilitates an understanding of functor as a generalized graph homomorphism, or cate-
gory homomorphism. A category consists of a collection of objects and a collection of morph-
isms. Hence, a functor consists of a map from objects and a map from morphisms in the
domain category to (respectively) objects and morphisms in the codomain category. Thus if
F : C!D is a functor and f : A! B is a morphism in C, then F(f) : F(A)!F(B) is a morphism
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inD. The morphism component of a functor F : C!Dmust preserve identities, i.e., F(1A) =
1F(A), and composition, i.e., F(g � f) = F(g) � F(f), cf. graph homomorphism.

The formal, categorical notion of universal construction (universal morphism) is central to
our explanation of systematicity. Subsystems provide information commonly required by
other subsystems. For example, short-term memory can be thought of as a subsystem for main-
taining information about a target item that is required by an executive function for compari-
son with items currently in the field of view in, say, a visual search task, or a delayed match-to-
sample task. Such information is only useful insofar as the structures required by the receiving
system are preserved when communicated by the sending system, and in a format that is acces-
sible to the receiver. As we have already seen, a functor models the structure-preserving pro-
cess. A universal morphism models the situation that this information is universally
(systematically) accessible to the receiver.

Category theory constructions, including universal morphisms, typically come to two forms
that are based on the directions of the arrows that constitute a particular construction. The
relationship between such constructions is called dual. For instance, initial object is an object
that has an arrow from it to every object in the ambient category. Terminal object, dual to initial
object, is an object that has an arrow to it from every object in the ambient category. Dual con-
structions are often labeled with the prefix “co”. So, the concepts of coalgebra and corecursion,
introduced in the next section and central to our categorical approach to second-order sys-
tematicity, are the dual constructions of the more familiar notions of algebra and recursion.

Coalgebras and corecursion
Category theory provides a systematic treatment of corecursion in the form of coalgebras and
anamorphisms, which form the basis for our categorical model of associative learning. For
comparison, the more familiar (dual) notion of recursion, and its category theory treatment, is
given in S2 Text. Here, we provide several simple examples of anamorphisms as a conceptual
guide to the theory (see S1 Text), and our subsequent model.

Repeating an item n number of times is realized as the anamorphism,
unfoldð0? ! I�; h1; deciÞ : N ! L, where 0? tests whether a number is zero, I� is the constant
function returning the unnamed element �, 1 is the constant function returning 1, dec decre-
ments a number by 1, and so h1, deci is the product function n 7! (1, n − 1)—in general,
hf, gi : x 7! (f(x), g(x)). See S1 Text (Diagram 9) for comparison. Using � to denote prepend (also
called cons), i.e., h � t prepends (head) element h to (tail) list t returning the list with h as the first
element and t as the rest of the list, and [] to denote the empty list, we have for instance:

unfoldð0? ! I�; h1; deciÞð3Þ
¼ 1 � unfoldð0? ! I�; h1; deciÞð2Þ
¼ 1 � 1 � unfoldð0? ! I�; h1; deciÞð1Þ
¼ 1 � 1 � 1 � unfoldð0? ! I�; h1; deciÞð0Þ
¼ 1 � 1 � 1 � ½ �
¼ ½1; 1; 1�:

That is a list of three 1’s. Notice that the anamorphism just given is a state-less (or, memory-less)
computation. To count items, we must retain the number of previously counted items. For exam-
ple, unfoldðe? ! I�; hincl; tailriÞ : N� LX ! L

N
takes the number of items counted so far, n 2

N and a list l 2 LX of elements from X, and returns the progressive count of list items c 2 L
N
. In

this example, the conditional e? tests for an empty list (at the second component of a given pair),
i.e., no more items to be counted, and terminates the count when the list of remaining items is
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empty, via I�, or increments the count and removes the counted item from the list, via product
function hincl, tailri. The function incl: (n, l) 7! n + 1 increments the counter (left component)
and ignores the list; the function tailr: (n, h � t) 7! (n + 1, t) maintains the new count and removes
the counted item from the list of items to be counted. Compare S1 Text (Diagram 9): object A is
now the set of natural numbersN, and X is the Cartesian productN� LX of the natural numbers
with the set of lists of elements from a set X. For instance,

unfoldðe? ! I�; hincl; tailriÞð0; ½a; b; c�Þ
¼ 1 � unfoldðe? ! I�; hincl; tailriÞð1; ½b; c�Þ
¼ 1 � 2 � unfoldðe? ! I�; hincl; tailriÞð2; ½c�Þ
¼ 1 � 2 � 3 � unfoldðe? ! I�; hincl; tailriÞð3; ½ �Þ
¼ 1 � 2 � 3 � ½ �
¼ ½1; 2; 3�:

Notice, further, that this count anamorphism returns a list of counts, not a single count. The
elements of such output (likewise, input) lists are commonly interpreted as being indexed by
steps in time for corecursive models of data streams, i.e., infinite lists [35]. We invoke a similar
temporal interpretation of lists for our learning model.

Corecursion model of associative learning
Suppose we regard learning as a kind of recursive process in the sense of taking the current cog-
nitive state and an input and returning the next cognitive state, which in category-theoretic
terms involves an endofunctor. Category theory provides a unified (systematic) treatment of
recursion [36, 37]. Associative learning can be regarded as a form of learning as recursion
where the state of the cognitive system includes the strengths of associative links between rep-
resentations, or more generally a network of associations, and the inputs are perceived co-
occurrences of entities. Notice that although the associated representations may have classical
structure, there need not be any systematic relationship between such structures involved in
the learning of different associations, as our memorization of facts example illustrated. We
have already provided a category theory treatment of recursive cognitive capacities, generally
[33]. The universal morphism in such situations captures the common recursive aspect of the
process. Technically, the universal morphism in these cases is either: an initial algebra in a cate-
gory of algebras on an endofunctor and each recursive process is modeled as the unique (cata)
morphism from the initial algebra; or, dually, a final coalgebra in a category of coalgebras on an
endofunctor and each (co)recursive process is modeled as the unique (ana)morphism to the
final coalgebra. We develop our model in two steps for expository purposes. The first step
treats the association network as an explicit input. This approach is simpler, but unrealistic
since memory is treated as external input. The second step treats memory as internal using
adjoint anamorphisms (adjoint unfolds), explained later. Again, for comparison, a (dual) recur-
sive formulation is given in S2 Text, which also provides motivation for our coalgebraic
approach.

Network state as external input
The capacity for learning associations is modeled as a function from a list of pairs (associates)
to an association network. Recall, from the counting example, that a simple anamorphism does
not maintain a state, and so does not suffice as an associative learning model, since previous
associations are lost. A memory is maintained by passing the results of earlier items as an
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explicit input to the model. Accordingly, associative learning is modeled as a function from a
list of pairs and an association network to an updated association network. The anamorphism
(model) is indicated by the diagram

where:

• P is a set of lists of pairs of associated items;

• G is the set of (labeled) directed graphs (association networks), where each graph g 2 G is a
pair (E, V) consisting of a set of edges E and a set of vertices V, and each edge is a triple (s, σ,
t), where s and t are the source and target vertices and σ is the strength of association; hence

• L is the set of lists of association networks of type G;

• e? : P × G! {False, True} tests for an empty list of associates, and empty? : L! {False, True}
tests for an empty list of graphs;

• μ : P × G! G is a function that merges the current pair of associated elements with the cur-
rent association network, returning an association network; and

• ν : P × G! P × G is the next state function that returns the list of remaining pairs, and the
merged association network, i.e., ν = hτ, μi, where τ : P × G! P returns the tail of the pairs
list, which ignores the association network.

The merge function, μ, can be instantiated in many ways depending on the specific form of
learning being modeled. For instance, the strength of association σ for a given pair of associates
could be updated to 1þs

2
on each co-occurrence, in which case associative strength increases

monotonically with number of co-occurrences from σ0 (initial strength on first occurrence) to
1. Other considerations are straightforwardly included, such as decay and normalization terms
(see S3 Text, for examples).

A simple example suffices to illustrate the mechanism. The anamorphism given by the
above diagram is relabeledmext, the model with external memory. Suppose the initial list of
pairs: [(bread, butter), (knife, fork), (knife, butter)]. The initial state of the association network
is set to the empty graph e. We denote pair and network lists at time t as pt and gt, respectively.
Hence, the initial pair list p0 contains three pairs, and the initial network g0 = e. The first step in
time ismext(p0, g0) = g1 �mext(p1, g1), where g1 is the association network containing the single
edge σ1 : bread! butter (i.e., an association from bread to butter with strength of association
σ1), and p1 is the pairs list [(knife, fork), (knife, butter)]. This process continues corecursively
to obtain g1 � g2 � g3 �mext(p3, g3) at which point the model returns the empty list (of networks)
and terminates with the list [g1, g2, g3]. That is the evolution of association networks over time
steps, with g3 being the final network state indicated by the following diagram:

Second-Order Systematicity of Associative Learning

PLOS ONE | DOI:10.1371/journal.pone.0160619 August 9, 2016 12 / 26



In the case of semantic systematicity, which entails understanding the meaning of associated
constituents, G is a set of semantic association graphs; in the case of syntactic systematicity,
where constituents (e.g., bread) are understood as just a sequence of characters, G is a set of
symbol (string) association graphs.

An important feature of the anamorphism approach, in contrast to a catamorphism
approach, is that the computation at each (time) step proceeds independently of the remaining
steps. For example, the first item of the list g1 �mext(p1, g1), i.e., g1, is not affected by the compu-
tation of the rest of the list. This property of anamorphisms justifies the temporal interpreta-
tion of lists. Effectively, then, there is only one association graph produced by the model,
whose state is indexed by time step t, i.e., the network gt in the list g0 � � � gt �mext(pt, gt).

Network state as internal memory
The previous model depends on treating network state as a kind of external memory. The the-
ory of adjoint catamorphisms and anamorphisms—adjoint folds and unfolds [38]—allows us
to treat network state as internal to the model. We make use of the product-exponential adjoint
introduced in S1 Text. This construction effectively provides a universal means of transforming
the external state map into an internal state map, as indicated by the following diagram
(highlighting the bijection aspect of this adjunction):

The internal model, which we denotemint, is the exponential transpose of the external model
mext. That is,mint ¼ gmext . See S1 Text (Example 6) for further details.

A final coalgebra is a universal construction. Thus, we have shown that the (second-order)
systematicity of associative learning follows from the same category theoretical principles as
other (first-order) forms of systematicity. The formal connection between final morphism and
final coalgebra (dually, initial morphism and initial algebra) is given in the supplementary
texts, S1 and S2 Texts.

Second-order systematicity of paired associate learning
With the coalgebraic model in place, we return to the example of second-order systematicity of
paired associate learning, which we mentioned in the Introduction. For concreteness, suppose
we have a set of four word-shape associations that are specified by the following function:
ws1 :Word1 ! Shape1; bell 7!□, kite 7! 4, tent 7! ~, yacht 7! �. The set of pair lists, P1, con-
tains the list of pairs used to learn the associations, e.g., [(bell,□), (kite,4), . . .]. List type,
GWS, is the subset of all possible directed graphs, as defined earlier, see the first diagram (“Net-
work state as external input” section) and subsequent text, whose vertices are taken from the
set of representable words and shapes. The anamorphism for learning this association is the
functionWS1 : P1 ! LGWS , cf. the diagram in the section “Network state as internal memory”.
Suppose we have a new set of word-shape associations specified by the function, ws2 :Word2
! Shape2; goat 7!~, lion 7!&, mule 7! |, toad 7! ♠. The set of list pairs, P2, contains the
training list [(toad, ♠), (lion,&), . . .]. The second-order systematicity property is that one can
learn ws1 if and only if one can learn ws2. The universal mapping property guarantees the
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existence of associative learning functionWS2 : P2 ! LGWS . Thus, we have second-order sys-
tematicity of paired associate learning.

As mentioned in the Introduction, both first-order and second-order systematicity assume
that the constituents (e.g., words and shapes) are representable. In the same manner, the capac-
ity for configural association assumes that conjunctions of cues are representable. Suppose we
have a set of configural associations specified by the function ca : Colour × Shape! Response,
which has the following mappings: (black, square) 7! +, (black, triangle) 7! −, (white, square)
7! −, (white, triangle) 7! +. In this case, list type is the subset of all possible directed graphs,
GC, whose vertices include the set of representable conjunctions, e.g.,
ColourShape ¼ f■;▲;□;4g. By contrast, the list type for elemental associations is the sub-
set of directed graphs, GE, that does not include conjunctions. Thus, we have a different univer-
sal morphism (final coalgebra) for configural association. Just like first-order systematicity,
where the capacity for square above triangle does not imply a capacity for John loves Mary, a
second-order capacity to learn elemental associations does not imply a capacity to learn config-
ural associations: the above versus loves capacities involve different relational schemas, the ele-
mental versus configural capacities involve different associative schemas.

Empirical tests for universal constructions
In principle, since every universal construction is either an initial or terminal object in the cor-
responding comma category [9], a succinct schema for empirically testing the universal con-
struction account of systematicity follows. The claim is that a pair of systematically related
cognitive capacities c1 and c2 is explained by a pair of arrows u1 : 0! A1 and u2 : 0! A2,
which are related by an initial object, 0; or, dually, a pair of arrows v1 : A1 ! 1 and v2 : A2 ! 1,
which are related by a terminal object, 1. Hence, a test for a universal construction as an initial
object has three parts:

1. a test for the underlying arrow u1 : 0! A1;

2. a test for the underlying object A2; and

3. a test for the underlying arrow u2 : 0! A2.

So, evidence for 1 and 2, but not 3 counts against the universal construction account of sys-
tematicity. The test for having u2 implies having u1 is essentially the same, but with the roles of
u1 and u2 interchanged. The test for universal construction as a terminal object case proceeds
analogously. In practice, since these objects will have their own internal structure, the corre-
sponding tests at each step will also involve multiple interceding steps.

In general cognitive terms, an anamorphism to a terminal (final) coalgebra builds up some
internal representation, e.g., parse tree; a catamorphism from an initial algebra collapses some
internal representation to some summary value, e.g., whether a sentence is grammatical or not.
Accordingly, the names for these kinds of morphisms derive from Greek prepositions, ανα
meaning “upwards”, and καταmeaning “downwards” [39]. Note that in this example, the (co)
inductive structure is a tree. See [33] for further examples related to cognition, and [40] for
examples related to computational (operational versus denotational) semantics.

Discussion
The classical explanation, as commonly construed, is a “first-order” explanation of systemati-
city, vis-a-vis the tokening principle, whereas systematicity of associative learning is a second-
order property. That is, classical theory explains systematicity in terms of common first-order
processes that token constituent representations. However, in general, the representations of
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learnable associations may have no common constituents at all. For second-order systematicity
the common constituents are the constituent learning processes that construct associative pro-
cesses, i.e., common second-order constituents. Put simply, an explanation for second-order
systematicity derives from second-order compositionality. Naturally, classical theory admits a
notion of second-order compositionality where the common constituent symbols range over
processes instead of representations. However, a notion of second-order classical composition-
ality reintroduces the canonicity assumption, as we have already explained. Moreover, associa-
tive strength is a numeric quantity not a symbolic one, so it is unclear how symbols are
supposed to explain associative learning.

Category theory resolves this problem via a generalized notion of compositionality: compo-
sition of morphisms, which subsumes (first-order) compositionality of representations and
(second-order) compositionality of processes, to provide an explanation for both correspond-
ing forms of systematicity. Furthermore, category theory offers a way forward in regard to the
classical canonicity assumption, because every universal construction is also the optimal con-
struction in its associated comma category [9]. This fact inspired a category theory treatment
[41] of systematicity in analogy [42] and its relation to the systematicity property for cognition
architecture [1]. Thus, our universal construction approach avoids one of the characteristics of
ad hoc assumptions, i.e., unconnectedness, in that the two apparently different kinds of compo-
sitionality are in fact two instances of the same construction, that is a universal construction.
Moreover, that every universal construction is an optimal construction, i.e. in the sense of hav-
ing a connection to every object in that category, suggests that they derive from some form of
optimization process.

An advantage of category theory is that it provides a principled approach to (co)recursive
cognitive capacities. Symbol systems admit arbitrary recursive constructions, but not every
recursive formulation is systematic in the sense of being well-defined over all possible
inputs. Well-definedness of recursive constructions in the categorical setting depends only
on the well-definedness of the given F-(co)algebra, since the (unique) existence of an ana-
morphism (or, catamorphism) is guaranteed by the universal property. Existence and
uniqueness were motivations for taking a category theory approach to recursion in the first
place (see, e.g., [37]).

The generality of anamorphism may leave some people wondering whether it is too gen-
eral. In particular, since many species have the capacity for simple associative learning, why
then do they not also have the capacity for more advanced forms of learning, such as learn-
ing via analogy? Recall that the systematicity problem is at the level of the complex entities,
not at the level of their components. For example, the capacity to understand that John loves
cricket implies the capacity to understand John loves baseball given that one understands
that John refers to a person, and that cricket and baseball refer to games. The capacity to
understand that John loves cricket does not imply the capacity to understand John loves
hanafuda when one does not understand the meaning of hanafuda—a Japanese card game
—in the case of semantic systematicity. Likewise, we don’t expect a capacity for learning
associations to imply a capacity for learning by analogy, because association and analogy
involve different kinds of underlying structures [24]; categorically, they involve the exis-
tence of different objects (F-coalgebras). Rather, we expect that if a subject has the capacity
for the underlying (coalgebraic) structures, then a capacity for learning with respect to one
kind of structure implies a capacity for learning with respect to the other kind of structure,
because they both involve the same form of (co)recursion. That is, they involve the same
final coalgebra, and the unique existence of the corresponding anamorphism is guaranteed
by the universal property.
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Categorical versus classical theory
Despite the foregoing analysis, some readers may still ponder the essential advance that the cat-
egorical explanation offers over the classical one, since symbol systems are routinely developed
to treat functions as data for other (higher-order) functions, in the functional programming
style. Perhaps ironically, given that category theory has some notoriety for “arbitrary abstrac-
tion”, the categorical explanation provides more precise (universality) conditions for the kinds
of compositions that yield systematicity as opposed to the kinds of compositions that do not,
and importantly these conditions are given in terms of categories and functors, not the classes
of systematically related cognitive capacities they are supposed to explain.

There is, of course, overlap between the two explanations, given that they both appeal to
some form of compositionality. Classical theory appeals to a notion of compositionality as
some form of relational homomorphism (see [1], footnote 9): informally, the relations between
the constituent (symbolic) representations are mirrored by the relations between the constitu-
ents of the entities being represented; more formally, a relational homomorphism is a map h
from a relation R to a relation S such that if a is related to b by R, i.e., aRb, then h(a) is related
to h(b) by S. Category theory also includes relational homomorphism, and (as we have already
seen) other kinds of homomorphisms, including homomorphisms as morphisms between
objects (e.g., graphs), functors between categories, natural transformations between images of
functors, and adjunctions relating functors, considered as homomorphisms between
homomorphisms.

From a classical perspective, categorical compositionality may be seen as a (generalized) ver-
sion of the classical tokening principle, in the sense that the instantiation of every composi-
tional arrow (e.g., g � f) entails the instantiation of each of its constituent arrows (i.e., f and g),
just as the instantiation of every complex symbolic expression (e.g., “John loves Mary”) entails
the instantiation of each of its constituent symbols (i.e., “John”, “loves”, and “Mary”). However,
from a category theory perspective, not every composition involves a universal construction,
just as not every instance of (generalized) tokening supports systematicity. For this reason, the
categorical notion of universal construction is a significant advance over classical and connec-
tionist explanations.

Where the categorical explanation goes significantly beyond the classical one is in the addi-
tional axioms that dictate what is a particular construction. The classical criterion of relational
homomorphism is too weak, which forces adjoining the canonicity assumption. As the categor-
ical approach makes transparent, not every (relational homo)morphism is a universal (homo)
morphism. The problem with the canonicity assumption is that it is unclear what makes a clas-
sical construction a canonical one, independent of convention or the criterion that it is what-
ever construction picks out just the systematically-related cognitive capacities. By contrast, the
categorical explanation for universality is specified independently of a particular category or
functor, as we have already seen. For this reason, category theory provides a natural explana-
tion that subsumes both first-order and second-order systematicity.

Tokened versus non-tokened constituents
Related to our distinction between categorical and classical compositionality is the (classical)
notion of tokening. Much has been made of distributed vector representations as a potential
non-classical (connectionist) version of compositionality that supports systematicity [30, 43].
The basic idea is that distributed representations avoid the tokening principle, because the
composition of two vectors need not literally contain the vectors being composed. Contrast, for
example, the concatenation of vectors v1 = (0.1, 0.3, 0.2) and v2 = (0.7, 0.4, 0.6) yielding the vec-
tor v = (0.1, 0.3, 0.2, 0.7, 0.4, 0.6)—the inscription of v literally entails the inscriptions of v1 and
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v2, against the outer product of v1 and v2 yielding the matrix, written as the vector w = (0.07,
0.04, 0.06, 0.21, 0.12, 0.18, 0.14, 0.08, 0.12)—the inscription of w nowhere entails the inscrip-
tions of either v1 or v2.

Categorical compositionality also admits this kind of distributed (non-tokening) composi-
tionality. To illustrate, pairs of elements can be represented in a product vector space, which is
another kind of universal construction, in the category of vector spaces and linear functions.
Localist vector representations can be converted into distributed vector representations via a
vector space rotation operation. This distributed representation is also a product, which is iso-
morphic to the localist one. With a distributed encoding, failure of a single neuron causes par-
tial degradation across many representations; with a local encoding, failure of a single neuron
causes complete loss of a single representation. As with the classical case, not just any distrib-
uted representations will do. We require those distributed representations with the universal
mapping property. Such alternative universal constructions are generally regarded as the
“same” in the sense of being unique up to a unique isomorphism [9]. Thus, another benefit of
category theory is that it clarifies the relationship between these two forms of compositionality:
tokened versus non-tokened.

Notice that in our example of paired associate learning the association graphs have both
tokened and non-tokened constituents. The tokening of each graph includes the tokening of its
vertices, representing the cues and the targets. In contrast, the numeric strength of association,
which determines the associate of a given cue, does not include the tokening of each cue-target
co-occurrence in the list of training pairs. Note, also, that one can construct a classical tokening
version of associative strength by representing cue-target association as a list that contains one
element for each experienced co-occurrence of the corresponding cue-target pair. In this case,
the associate of a cue can be determined by the edge with greatest list length. The general point
here is that tokening is sufficient, but not necessary. What is missing from the classical account
(and indeed the connectionist one) is the universal construction component, which provides
the sufficient and necessary condition (i.e. the final coalgebra) for second-order systematicity
of associative learning.

That there are both tokening and non-tokening ways of realizing associative strength illus-
trates a further point: even for the relatively simple process of associative learning, which can
be straightforwardly implemented in a conventional neural network model (see S3 Text), there
is nothing within connectionist theory that ties them together so that one associative learning
capacity occurs if and only if the other does. One can also straightforwardly configure a neural
network to learn one set of associations without being able to learn the other. This situation
echoes the original (first-order) systematicity problem that connectionism faced [1]. The final
coalgebra approach says that the systematically related learning capacities derive from a com-
mon component process that operates on the same type of network.

External versus internal structure
A notion of non-tokened constituent may seem mysterious in the light of Fodor and Pylyshyn’s
critique [1] of Smolensky’s non-classical approach [8] to systematicity: the essential problem
was that non-tokened (i.e. virtual) constituents don’t have causal efficacy. Another way to char-
acterize the difference between the categorical versus classical approach that demystifies this
notion is in terms of the difference in focus on external versus internal structure. In a category
of graphs, for example, each graph G has two kinds of structure: (1) the morphisms that relate
G to other graphs in the category—external structure, and (2) the edges that relate each vertex
G to other vertices in G—internal structure. Likewise, in a category of vector spaces, each vector
space V has external structure (linear maps to other vector spaces) and internal structure
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(inclusion relations between subspaces of V). As a universal construction, a product of vector
spaces consists of a product vector space (V ×W) and two projections (e.g., p1 : V1 × V2 ! V1).
That projection structure is external to the vector space, so either tokening or non-tokening of
object constituents (i.e. employing local or distributed vectors) suffice, since both afford
domains for the cognitive processes modeled; they are the same up to a unique isomorphism,
as mentioned. By this characterization, the problem of second-order systematicity for the clas-
sical (first-order) explanation is not so much that tokening poses a paradox, but that tokening
(versus non-tokening) of object constituents is irrelevant.

Fodor and Pylyshyn were concerned with the putative claim that one could represent com-
plex entities, in a systematic way, without having to implement classical compositionality, i.e.
without also having to “literally” represent the entities constituents. Opponents of the classical
position typically interpret “literal” literally, e.g., as in the already discussed difference between
local versus distributed representations. However, Fodor and Pylyshyn intended “literal” to
refer only to the symbolic level, not the implementation level where symbols may be realized
by distributed vector representations. Local and distributed vectors purportedly representing
complex entities can be decomposed in arbitrarily many ways, because a vector space can have
arbitrarily many bases (i.e., sets of basis vectors) only some of which afford systematic retrieval
of the component vectors that correspond to the constituent entities. Fodor and Pylyshyn’s
claim was that systematic retrieval is only possible when one stipulates access functions that
effectively implement classical compositionality. So, much of the systematicity debate focussed
on whether or not connectionism should be regarded as an implementation of classical theory.
However, from a category theory perspective, the classical focus on internal structure is doubly
misdirected. Not only is the tokened versus non-tokened distinction irrelevant, but the decom-
position of symbols (strings) representing complex entities into component symbols (sub-
strings) that systematically represent corresponding constituents also assumes a particular
mode of decomposition. There are many ways to split strings, only some of which support the
requisite instance of systematicity, hence the auxiliary (ad hoc) canonicity assumption intro-
duced into the classical explanation. What is missing with both tokening and non-tokening
schemes is a corresponding notion of universal construction.

We note in passing that this distinction between external versus internal structure calls to
mind an explanatory limit in regard to a category theory approach to cognition. Although the
collections of many kinds of internally structured objects constitute categories, such objects
may not form categories in their own right. Examples of objects with internal structure that are
not categories include semigroups (identity is not required), groupoids (composition is not
required), and graphs (neither identity nor composition is required). And so, category theory
has nothing to say about the internal nature of cognitive processes best modeled by these kinds
of objects. However, in each case, category theory has potentially something to say about the
external nature of such cognitive processes, since their collection forms a category.

Second-order versus weak/strong systematicity
Systematicity [1] pertains to explaining why having capacity c1 implies having capacity c2, but
not why/how c1 is obtained/learned in the first place. Weak/strong systematicity [12] also per-
tains to explaining why/how c1 is learned, via some training set, in a way that c2 is also
obtained, as demonstrated by performance on some test set. See [44] for an example of acquir-
ing a systematicity property from a realistic training set. So, an explanation for weak/strong
systematicity from our category theory approach would entail providing an explanation for the
learning of universal constructions. By our coalgebraic approach, learning a universal construc-
tion involves constructing a suitable category with a suitable universal arrow. In this situation,
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we have universal constructions at two levels: at the first level with regard to the constructed
graph/category, and at the second level with regard to the category (of coalgebras) that con-
structs graphs/categories. Put succinctly in the context of learning, second-order systematicity
is the systematicity of learning; weak/strong systematicity is the learning of systematicity.

The categorical framework, and more specifically, the coalgebraic approach can be used to
develop a system that learns to acquire systematicity through examples. For instance, the input
is a list of training pairs, and the coalgebra updates the weights of a neural network via back-
propagation. The merge function, μ, see the first diagram (“Network state as external input”
section) and subsequent text, in this case will include forward and backward propagation com-
ponents. Note that both forward and backward components can also be defined recursively,
i.e., as recursion over a list of weighted layers of neural units, suggesting that the μ component
itself involves a (co)algebra. Once trained, the generalization performance of the network can
be evaluated via testing examples, in the usual way. The performance of the network will
depend on the training set, network connectivity, as well as other parameters. So, although the
system has the capacity to learn, there may be performance-related reasons why learning may
fail in a given situation. For example, the system may fail to learn to be systematic because of
the well-known problem of local minima: the state of the system, prior to learning, has weights
that lie in the vicinity of a local minimum which can preclude learning the target function. This
distinction between capacity (competence) and performance is further discussed in the next
section.

Competence versus performance
Our explanation of systematicity employs the usual competence-performance distinction, fol-
lowing others [1, 3, 6], famously introduced by Chomsky in the context of language. However,
see [44] for a treatment of systematicity in terms of performance. Roughly, competence is what
one can do under amenable conditions; performance is what one actually does when other
extraneous factors are introduced that typically arise in real-world settings. A failure in perfor-
mance does not necessary imply a failure in competence, especially when the extraneous factors
are unrelated to the cognitive capacity of interest. As an extreme example, an obstruction of the
visual field does not imply a failure in the capacity to read.

In other situations, additional performance-related factors may indeed play an important
role in understanding failures of systematicity. For example, when one considers the cost of
learning a universal construction against the benefit it affords, a general question arises: why
incur the expense of inducing a reusable component if that component will rarely be reused?
We have made tentative steps in explaining failures of systematicity along this line. Each cogni-
tive capacity (arrow) is associated with a resource cost. When the number of related capacities
is small, the saving in cognitive resources afforded by reuse may not outweigh the cost associ-
ated with inducing the universal construction, hence a failure of systematicity [28]. Further
work is needed to develop a category theoretical account of systematicity and its failures.

Equivalence class versus schema
McLaughlin [6] characterizes instances of systematicity via specific schemas, e.g., “(SG1) Cete-
ris paribus, a cognizer is able to mentally represent that aRb if and only if the cognizer is able to
mentally represent that bRa.” (see SG1-SG5 on p. 272 of [6]). The phrase “if and only if”
denotes a formal equivalence. Equivalence determines an equivalence relation and hence a par-
tition into equivalence classes. Although McLaughlin does not use the phrase “equivalence
class” in his paper, the expression “if and only if”means that equivalence classes are tacitly
present.
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Our use of equivalence relations greatly extends McLaughlin’s use of schemas to character-
ize examples of systematicity. Note, however, that we are not saying that just any equivalence
relation forms the basis for systematicity. Any set can be partitioned into an arbitrary collection
of (non-empty) subsets by fiat. For example, the facts “the atomic weight of carbon is 6” and
“the beginning of the Japanese financial year is April 1st” can be placed in the same equivalence
class, by simply listing the members of each class, implying that they are systematically related,
which they are not at the level of those facts. Rather, we are saying that the relevant equivalence
relations are the ones that are determined by universal constructions. For the kind of systemati-
city of associative learning that motivated the current work (i.e., systematic associative learning
capacity over unrelated associates), the relevant equivalence relation is at the level of associative
processes, which is the final coalgebra, not at the level of the items being associated. This situa-
tion is an example of having second order systematicity without having first order systemati-
city, as mentioned in the Introduction. Other forms of systematic associative learning that also
depend on the items being associated are discussed in the “Wide versus narrow systematicity”
subsection, later.

The relationship between universal construction, equivalence class and systematicity may
itself sound paradoxical given that every collection of equivalence classes, determined by an
equivalence relation, can be expressed as a coequalizer [45], i.e. another kind of universal con-
struction. However, there is no paradox, because in this situation the coequalizer is derived
from an independently given equivalence relation. That is, given an equivalence relation R over
a set A, we obtain the coequalizer of projections p1, p2 : R! A as an assignment of the elements
to equivalence classes, qR : A! R/A, in a minimal way, i.e., every other assignment factors
through qR. Since R need not be derived by some other universal construction, there is no
claim of systematicity, as we would expect.

Elemental versus configural association
The data with regard to development indicate that both younger and older children can learn
elemental associations, but configural assocations are difficult to learn for younger children
[26, 27]: the set of elemental associative learning capacities is a subset of the union of the sets of
elemental and configural associative learning capacities. This inclusion relationship between
capacities seems to violate our characterization of systematicity in terms of (structural) equiva-
lence relations—recall that equivalence classes are disjoint. Note, however, that in category the-
ory every function (and morphism generally) is distinguished (in part) by their (co)domain.
So, for example, the function f : A! B and the function f restricted to A0 � A, denoted
f|A0 : A0 ! B, are two distinct functions. (If A = A0 then f and f|A0 are the same function.) Inclu-
sion relations between functions are defined analogously. However, our characterization of sys-
tematicity is given in terms of structural relations over morphisms (f : A! B) not their
mappings (f : a 7! b, in the case that the relevant morphisms are functions between sets or set-
like objects, e.g., groups). Hence, the equivalence classes are indeed disjoint. Put another way,
although a capacity for elemental and configural associative learning implies a capacity for ele-
mental associative learning, it does not imply a capacity for elemental associative learning only.
In the same way, more generally, inclusion relations between cognitive capacities do not violate
our characterization of systematicity in terms of equivalence classes.

Recall, also, our earlier discussion on the external (categorical) versus internal (classical)
perspective on structure. A focus on internal structure in terms of the domains of cognitive
processes would violate the very characterization of systematicity that classicists purport to
explain, as we have just discussed with regard to elemental versus configural associations.
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Wide versus narrow systematicity
Up to this point, we have appealed to a general capacity in humans to learn or memorize cue-
target associations over a wide range of stimuli as examples of second-order systematicity
properties. A systematic capacity for learning associations in other species, in contrast, can be
more narrowly selective, e.g., rats can learn odour-food associations, but not colour-food or
tone-food associations [46]. Selectivity varies not only with stimulus type, but also with
response type, e.g., pigeons learn to associate colour with food, but not tone; and learn to asso-
ciate tone with shock avoidance, but not colour [47]. The kind of selectivity also varies with
species, e.g., rats learn to avoid flavoured water, whereas quails learn to avoid coloured water
that in both cases was subsequently associated with an induced illness [48]. This difference
concerns the scope, not the absence, of a second-order systematicity property, except in the
extreme case of one-capacity equivalence classes, whence there is no second-order systemati-
city property to be explained. How, then, can we reconcile a wide form of systematicity for
associative learning in humans with an almost arbitrarily narrow form in other species?

The differences lies with the “type” of the universal morphism. Recall that a universal
morphism is a pair (A, f), see S1 Text for details. Thus, each universal morphism and category
associated with that universal morphism, as its initial/terminal object, is indexed by A. In the
context of (co)recursion, object A is the type of the elements that make up each list. As the
basis for systematic associative learning, each final coalgebra is indexed by the set G of possible
association graphs/networks: every anamorphism in the associated category constructs a list of
type G. So, the extent of G determines, in part, the breadth of the corresponding equivalence
class of associative learning capacities. For example, the set of networks for rats, GRat, consists
of populations of neurons for representing colours, odours, and foods, and associative connec-
tions from odours to foods for learning odour-food associations, but not colours to foods
which precludes learning colour-food associations. Hence, there is a coalgebra/anamorphism
for learning odour-food associations, but no coalgebra/anamorphism for learning colour-food
associations: there is no merge function (connection strength update rule) defined over such
networks, because these networks have no such connections to update. In contrast, the set of
networks for quails, GQuail, consists of networks with colour-food, but not odour-food connec-
tions, which affords the capacity to learn colour-food, but not odour-food associations (see S3
Text for further details). Hence, different species can have differing second-order systematicity
properties regarding associative learning.

Within the context of, for example, odour-food associations, one can have a narrow form of
second-order systematicity in that one has the capacity to learn to associate with food odour o1
if and only if one has the capacity to learn to associate with food the odour o2. Such narrowly
related associative learning capacities suggest a common relationship among the underlying
association networks. This common relationship is captured by a map between list types,
which in the current context is a (graph transformation) map between graph types. We detail
this explanation in S3 Text with concrete examples that were inspired by the Rescorla-Wagner
model [49] of classical conditioning [13]. The examples and theory provided in S3 Text show
that the apparent idiosyncratic nature of associative learning in animals is just a narrower form
of systematic associative learning that follows naturally from the categorical notion of universal
construction. Note that our distinction between wide and narrow forms is primarily for exposi-
tory purposes: every “wide” construction is a “narrow” construction whose list type map is an
identity morphism. These examples also serve to further illustrate associative learning as an
anamorphism, and show how our category theory approach makes contact with psychological
data, vis-a-vis the Rescorla-Wagner model, thereby elucidating how the principle (of universal
construction) espoused by our theory of (second-order) systematicity can be tested. In the
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specific case of classical conditioning, the universal construction involves a common morphism
shared by the anamorphisms capturing the associative learning processes as instances of classi-
cal conditioning, which can be tested within the same general approach given in the section
“Empirical tests for universal constructions”. Specifically, if one ablates the network compo-
nent corresponding to the common morphism, then all associative learning capacities pur-
ported to factor through that common morphism would no longer be available.

The classical conditioning example also illustrates the general point that there is consider-
able flexibility within the coalgebraic approach to accommodate different forms of second-
order systematicity. Our theory of second-order systematicity need not be committed to a par-
ticular model of classical conditioning (see [50] for a review of computational models). Rather,
our theory is committed to a particular way in which such associative learning processes are
related, i.e., via a common final coalgebra/anamorphism. A final coalgebra captures relatively
little common structure—a common (co)recurrent process over a specific internal (e.g., associ-
ation network) state space—as one may expect, given very little in common between the facts
being learned or memorized. An anamorphism (type map) captures additional common struc-
ture, where there is greater overlap among the stimuli and responses being associated. On the
one hand, this flexibility does not imply that the theory can make arbitrary predictions. The
predictions that follow are determined by the scheme already given for initial or terminal
objects, since every universal construction can be considered as such. On the other hand, this
flexibility raises the question of what principle determines the choice of type map. Evolutionary
principles influence species-specific learning biases [46]. A possible corresponding category
theory principle is to consider optimization as a universal construction in a category that con-
sists of other categories. These object categories are indexed by the sets of associative networks,
just mentioned, and optimization is with respect to some corresponding fitness function (see
S3 Text, and also the final subsection).

Auxiliary versus ad hoc assumption
As we have seen, the scope of a collection of systematically related learning capacities is also
determined by list type, i.e. the object G in the first diagram (“Network state as external input”
section) and the third diagram (“Network state as internal input” section). The flexibility with
which G is determined seems to suggest that it can be adjusted in an arbitrary, ad hoc manner
to fit any collection of associative learning capacities. However, the determination of G is not
ad hoc, by the criteria for an ad hoc assumption that guides the development of an explanation
for (first-order and second-order) systematicity [3].

Ad hoc assumptions are auxiliary assumptions that are: (1) motivated only to fit the data at
hand, (2) not verifiable independently of verifying the theory, and (3) unconnected to the theo-
ry’s core principles [3]. The representability assumption is not ad hoc on any count. Firstly, the
representability of cues such as words, or shapes is independently motivated by facts such as
the capacity to recognize words and shapes, regardless of whether such elements take part in
word-shape associations. Secondly, we have already shown that the test of representability pro-
ceeds independently of the test for association. Thus, each auxiliary assumption can be verified
independently of verifying the (universal constructions-based) theory. Thirdly, every universal
construction is (by definition) an arrow between an object and a functor. In category theory,
one cannot speak of a morphism without speaking about its domain and codomain objects.
Thus, each auxiliary assumption is intimately connected to the theory’s core principle of uni-
versal construction. Therefore, the representability assumption is not ad hoc by the explanatory
standard for systematicity, and science generally [3].
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Prospective remarks
Ultimately, there is a price to be paid for taking a categorical approach. One cannot employ cate-
gory theory without (tacitly, at least) specifying the category within which the explanation of sys-
tematicity is couched. Yet, what determines the ambient category, or the relevant functor to/from
which we obtain the universal construction? To put it another way, what determines the categori-
cal context relative to which a construction is (necessarily) universal? We have not yet answered
this question in general. To some extent, the choice is determined by the (“shape” of the) domain
of interest. For example, a large class of universal constructions, called limits, derive from a shape
category that consists of (typically) a small number of (content irrelevant) objects and morph-
isms. For instance, in regard to the systematic ability to represent binary relations [10], the natu-
ral choice is the shape category with just two objects and no non-identity morphisms. There is no
question of choosing a one-object or three-object shape category, because they pertain to (respec-
tively) unary and ternary, but not binary relations. On the other hand, because limits and other
universal constructions are defined at the level of abstract categories, the collections of such con-
structions are parameterized by the specific (concrete) categories that afford them. Not all catego-
ries have limits, or other kinds of universal constructions, but there may still be choices among
the categories that do for the problem at hand. One possible approach is higher-order category
theory [51], where for example objects are categories, morphisms are functors, whence universal
morphisms are universal functors to/from other functors.

This issue of context notwithstanding, category theory offers a significant advance over
other approaches for a further reason. Universal construction provides necessary and sufficient
conditions for having a collection of related cognitive capacities. Science, generally, strives for
theories of the natural world that provide necessary and sufficient conditions for the causal
relations it seeks to explain. In this sense, category theory is a theory of structure: for a universal
construction, see S1 Text (Definition 6), the existence criterion (necessity) means that there is
at least one such construction; the uniqueness criterion (sufficiency) means that there is at
most one such construction (i.e., there can only be one, if it exists), in contradistinction to clas-
sical, connectionist and other approaches, which afford variousmodels of those structures.
These may well be “tough times to be talking systematicity” [5]. However, category theory
appears to offer cognitive science the best hope yet of explaining systematicity in that it makes
a principled distinction between core (universal) and auxiliary assumptions (other morph-
isms). This distinction is, after all, what the explanatory criteria for systematicity demand.

Supporting Information
S1 Text. This text provides the basic category theory needed for our model.
(PDF)

S2 Text. This text provides an algebraic (recursive) formulation of associative learning for
comparison with the coalgebraic (corecursion) approach.
(PDF)

S3 Text. This text provides an illustration of species-specific associative learning (narrow
second-order systematicity).
(PDF)
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