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Simple Summary: Yangtze finless porpoises’ high-frequency clicks have often been studied and used
for wild population surveys. However, the influence of captive environmental and social variables
on Yangtze finless porpoises’ production of such signals has never been investigated. In the present
study, the click production of a group of captive Yangtze finless porpoises was analyzed across
various contexts. This click production was significantly impacted by temporal factors (season),
social factors (social separation), and environmental factors (training sessions, presence of enrichment,
noise, presence of visitors). The patterns found in this study may be useful for further monitoring of
the welfare of captive groups of Yangtze finless porpoises (e.g., welfare assessments) as well as for
improving wild surveys (e.g., more accurate interpretation of click density).

Abstract: Yangtze finless porpoises use high-frequency clicks to navigate, forage, and communicate.
The way in which click production may vary depending on social or environmental context has never
been investigated. A group of five captive Yangtze finless porpoises was monitored for one year,
and 107 h of audio recordings was collected under different conditions. Using a MATLAB-generated
interface, we extracted click density (i.e., number of clicks per minute) from these recordings and
analyzed its variation depending on the context. As expected, click density increased as the number
of animals present increased. The click density did not exhibit diurnal variations but did have
seasonal variations, with click density being highest in summer and fall. Yangtze finless porpoises
produced more clicks when socially separated than when not (136% more), during training/feeding
sessions than outside of such sessions (312% more), when enrichment was provided (265% more on
average), and when noisy events occurred rather than when no unusual event occurred (22% more).
The click density decreased when many visitors were present in the facility (up to 35% less). These
results show that Yangtze finless porpoises modulate their click production depending on the context
and suggest that their echolocation activity and their emotional state may be linked to these changes.
Such context-dependent variations also indicate the potential usefulness of monitoring acoustical
activity as part of a welfare assessment tool in this species. Additionally, the click density variation
found in captivity could be useful for understanding click rate variations of wild populations that
are hardly visible.

Keywords: click rate; emotional state; enrichment; noise; social separation; visitors; vocaliza-
tions; welfare

1. Introduction

Odontocetes produce acoustic signals, including whistles, clicks, and burst-pulsed
calls [1]. Whistles are frequency-modulated, long-duration tonal calls, which often have
harmonic components [2]. Clicks are directional signals, normally of high frequency [3],
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and burst-pulsed signals are click trains emitted with very short inter-click intervals [4].
Odontocetes are known to produce clicks more than they produce other types of sounds,
probably due to the higher energetic costs of whistles in comparison to clicks [5]. Echoloca-
tion is a sensory modality used by odontocetes to obtain an assessment of their environment,
consisting of emitting clicks and receiving the echoes from the clicks reflecting off objects.
Odontocetes use echolocation clicks to explore their environment (including locating ob-
jects and prey) and as navigation cues [3,6]. Even though these clicks are assumed to be
mainly produced for echolocation purposes, they have also been suggested to be used for
social communication by some species [7–9].

Researchers may be able to obtain information about marine mammals’ behavior
or their environment based on the specific types of sounds they emit and the varia-
tions in call rates [10–12]. Some odontocete species, including porpoises (Phocoenidae
family [13–19]), Commerson’s dolphins (Cephalorhynchus commersonii [20–25]), Hourglass
dolphins (Lagenorhynchus cruciger [21,22]), and pygmy sperm whales (Kogia breviceps, [8]),
are thought to only produce narrowband and high-frequency clicks, but not whistles.
Click emission rate variations would therefore represent the only way for these animals to
communicate [7,9,26]. The variability of recorded click rates can reflect periods of activity
and rest [27–30]. Understanding the context of click production might be useful when
studying wild animals’ movement patterns; for example, a lack of acoustic detections
may not reflect the absence of animals, but rather, result from the presence of non-vocal
animals [31]. Lima et al. [32] suggested that more studies on the context of acoustic signal
production were needed to understand free-ranging odontocete behavior when animals are
not visible. Assessments of odontocetes’ responses to stimuli that are potential disturbances
usually focus on whether animals leave exposed areas [33,34]. However, animals that do
not leave can exhibit changes in activity budgets [35,36]. Monitoring such changes has
often been suggested to be partly possible through the analysis of these animals’ echolo-
cation activity [37,38]. Knowledge of condition-dependent acoustic production rates in
small odontocetes is still limited [39]. Authors have suggested that more contexts should
be investigated to study the presence of referential content in the acoustic production of
odontocetes [40–43].

Vocal activity has been suggested to be a valid non-invasive tool for monitoring the in-
fluence of captive environments and daily routines on farm and zoo animals (e.g., [44–51]).
However, the potential use of this method as a tool to assess captive odontocetes’ welfare
has rarely been studied [42,43,52]. Monitoring the acoustic activity of these animals might
provide valuable information about their daily rhythm, health, and welfare [42,43,52,53].
Understanding captive animals’ vocal activity patterns could aid in improving their man-
agement under human care [32]. Using acoustic activity to monitor odontocetes is con-
venient and less time-consuming than behavioral coding. Analyzing click rates can be
automated and therefore achieved relatively quickly. In addition, placing sound-recording
devices in the water is non-invasive for animals, who can habituate to these objects. Such
passive acoustical monitoring would allow caretakers to notice changes in baseline patterns,
supporting a closer examination of the animals.

Yangtze finless porpoises (Neophocaena asiaeorientalis asiaeorientlis) rely on clicks for
navigation while traveling and foraging, and they have been shown to produce click trains
every 5.1 s on average [6], with a click train rate varying from 0 to 290 click trains per
10 min [39]. Yangtze finless porpoise clicks are similar to those of other members of the
Phocoenidae family or of Cephalorhynchus spp. within delphinids: they are typical high-
frequency narrow-band ultrasonic pulses with peak frequencies ranging between 87 and
145 kHz [54]. These freshwater animals suffer from greater threats than other species,
including being trapped in shallow areas, intense anthropogenic disturbances increasing
risks of entanglement with underwater debris or fishing nets, or collision with boats. The
environment they live in (i.e., turbid water) does not enable them to efficiently use their
vision, making echolocation even more crucial for these animals’ survival. Because of
the difficulty of observing Yangtze finless porpoises in their natural habitat, population
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density is often assessed using passive acoustic monitoring that relies on counting the
number of click trains [55–57]. Because of anthropogenic threats, Yangtze finless porpoises
are now critically endangered [58,59], and in order to add to the in situ conservation
efforts, porpoises are being held in captivity or semi-natural environments [59]. The
acoustical adaptability of these animals to different environments has rarely been studied.
The only work that investigated such abilities involved three groups of Yangtze finless
porpoises living under different conditions (i.e., captivity, reserve, wild) and revealed
differences in their click production, suggesting that they would adapt their echolocation
signals depending on their living conditions [60]. This result has shown that animals
modulate their acoustical activity depending on the environment they live in, but within
each environment, the context-induced variations in porpoise click production have never
been studied. In the present study, we recorded the acoustic activity of a group of five
captive Yangtze finless porpoises and analyzed their click production variations depending
on the context. The aim of this study was to describe click rate patterns in this group to
investigate whether Yangtze finless porpoises modulate their click production depending
on the context. The usefulness of this easy-to-assess parameter as a tool to monitor captive
porpoise welfare was then considered.

2. Materials and Methods
2.1. Study Animals and Captive Management

Data were collected from October 2017 to November 2018. The study subjects were
five Yangtze finless porpoises housed in Baiji Dolphinarium, Institute of Hydrobiology,
Chinese Academy of Sciences (Table 1). Porpoises were usually housed in a two-pool
complex including a kidney-shaped pool, a connected round pool, and a non-connected
round pool (Figure 1). The social grouping changed several times during data collection.
When social separation occurred, a gate between the two connected pools was closed, still
allowing visual and acoustical contact. The three females were pregnant during the data
collection, and gave birth during summer 2018. A third pool was used to house the female
F7 and the male Taotao from February 2017, until F7 gave birth (2 June 2017). When the
female F7 gave birth, she remained alone in this pool with her calf and Taotao was moved
back into the two-pool complex. Two calves were present from their birth to their death
(two weeks after their birth), and the third one (F7′s calf) was present from its birth until
the end of data collection.

Table 1. Catalog of studied individuals’ features.

Name Sex Age (year) Length (m/h)

Duoduo M 8 157

F7 * F 8 145

F9 * F 8 145

Taotao M 14 156

Yangyang * F 11 147
* pregnant females that gave birth during the data collection.
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Figure 1. Design of the housing pools and position of the Soundtrap in both pools.

Porpoises were fed between 3 and 3.5 kg of thawed Basilewsky fish (Siniperca chuatsi)
and/or live fish per day during four to six training/feeding sessions. The total amount
of fish provided per day to each animal varied with age, sex, season, and reproductive
status, and was designed to maintain a healthy body weight and optimum condition.
Occasional visitors were allowed to watch animals both from the surface and from un-
derwater windows. Visitors were groups of between two and thirty persons (4.57 ± 5.99
persons on average), and visits were planned randomly (usually not more than one visit
per week). Enrichment was provided (toys, live fish, or free interaction with caretakers).
Pools were cleaned by divers and/or caretakers scrubbing the upper part of the pools’
walls approximately once per month.

2.2. Data Collection

A Soundtrap 300 HF (Ocean Instruments Ltd., Whangateau, New Zealand) was used
to record underwater sound. The sampling rate was set at 576 kHz, the number of analog-
to-digital bits was set at 16 bit, and high-pass filtering was turned off. Animals had been in
contact with the Soundtrap from September 2017, and were therefore habituated to it and
rarely explored it or interacted with it. The Soundtrap was tied to a rope and placed in the
corridor between the two connected pools or on a side of the pool in the non-connected
pool, at approximately 2 m depth. Data were collected for a minimum of two days a week,
and the Soundtrap was usually placed in the pool in the early morning and removed in the
late afternoon in order not to create a change in the porpoises’ environment right before
recording. When a group was housed in the non-connected pool, and one in the two-pool
complex, the Soundtrap was randomly placed in one of the two pools for the entire day,
or was placed in one pool in the morning and in the other at noon. Each recording day, a
minimum of three 10–20 min samples were extracted from the Soundtrap: usually one in
the morning, one at noon, and one in the afternoon. The precise sampling time depended
on the day’s schedule, which was never exactly the same.

For each of the 10–20 min samples, the associated conditions were noted, including:
season, time of day, time relative to training/feeding sessions, social grouping, presence of
enrichment, unusual events, and presence of visitors (Table 2).
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Table 2. Context variables.

Season Time of Day Time Relative to
Training * Social Grouping Enrichment Unusual

Events Visitors

Winter
(December–February)

Morning
(8 am–11 pm) Outside of training Together None None None

Spring (March–May) Noon (11 pm–2 pm) During training Separated Toys a Pool cleaning d Few h

Summer
(June–August)

Afternoon
(2 pm–5 pm) Humans b Noise e Many i

Fall
(September–November)

Humans and toys Social event f

Live fish Other event g

New object c

* Training: training or feeding session. a Balls. b Caretakers or other humans interacting with porpoises from the surface or from underwater
windows. c Stretcher, material used for new experiments, new toys. d Diver and/or caretaker scrubbing the surface using long-handle
brushes. e Construction work or people having meetings next to the pool to prepare events such as transport of animals. f Right after
separation or reunion of groups (or separation attempts for BDs). g Shoal of small fish in the pool, unusual water level. h <5 persons next to
the pool: employees or visitors. i >5 persons next to the pool: visitors.

2.3. Analysis
2.3.1. Echolocation Signal Analysis

Data were split into one-minute recordings. MATLAB R2017a was used to analyze
each one-minute sample. Here, following previous studies, we defined porpoise echoloca-
tion signals as clicks [3] ranging between 87 and 128 kHz [54]. Because of the number of
individuals present and the potential reflection of the signals they produced by the water
surface and pool walls, records often contained a large number of clicks. These clicks were
usually produced in trains defined as a minimum of five consecutive clicks [57,61], with a
maximum of 200 ms between clicks (inter-click interval, [6,62]). The resulting large number
of click trains recorded were often overlapping or very close to each other. Using MATLAB
to analyze click trains was therefore a difficult task; it was determined that only clicks
themselves but not click trains would be analyzed to keep the analysis as simple as possible
so that captive facilities could easily reproduce it and use it to monitor their animals. The
MATLAB algorithm was based on a support vector machine (SVM) model, one of the
binary classification machine-learning methods, to distinguish clicks. A first-order finite
impulse response (FIR) high-pass filter was used to filter the signal, with a Kaiser window
function (beta = 0.5) and an 80 kHz cut-off frequency. After this first step, a short-time
Fourier transform (window = 512, noverlap = 256, nfft = 512) was applied to obtain the
time-frequency distribution of the signal. Then a dataset consisting of 2000 spectra of
representative clicks and background noise was created. Random noise was also added
within 3dB to ensure the generalization performance of the dataset. The SVM model was
performed after data enhancement, and an accuracy rate of 98.7% through 5-fold cross-
validation was eventually achieved. The goal here was not to obtain the exact number of
clicks produced by the animals or their characteristics, but to analyze variations in their
production. Even if the number of clicks obtained through the analysis was overestimated
because of the reflections, these reflections were assumed to always be the same (same
pool); therefore, variations in the number of clicks recorded reflected the actual variation in
Yangtze finless porpoise click production. To ensure the accuracy of the MATLAB analysis,
a visual/manual analysis was additionally conducted on 10% of the data. Number of clicks
per minute will hereafter be referred to as “click density”.

2.3.2. Statistical Analysis

All statistical analyses were performed using R 4.0.3. The effect of the number of
individuals present in the pool, and of the environmental and social variables on the
click density was analyzed by fitting a generalized linear mixed-effects model (GLMM)
for Poisson distributed data using the “glmer” function from the “lme4” package [63].
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A bound optimization by quadratic approximation (“bobyqa”) optimizer that performs
derivative-free bound-constrained optimization using an iteratively constructed quadratic
approximation for the objective function was added. For this model, the click density was
the response variable, the number of individuals present in the pool was included as an
offset to standardize the density, and the date and observation session ID were included as
random factors. The predictors included number of individuals present, time of day, time
relative to training, social grouping, presence of enrichment, unusual events, and presence
of visitors. A model diagnosis was conducted, including a test for overdispersion and a
test for collinearity. Collinearity was tested by looking at variables’ variance inflation factor
(VIF). Because the enrichment variable caused collinearity issues (VIF > 3), this variable
was split into four variables (presence of toys, presence of humans, presence of toys and
humans together, presence of new objects). The live fish enrichment was excluded from the
analysis because of a too small sample size. An additional case level random factor was
added to correct over-dispersion. The model with the lowest Akaike information criterion
(AIC) was selected [64]. A Wald chi-squared test was conducted to extract p-values from the
model. Pairwise tests were conducted by running the selected model with an appropriate
sub-setting (i.e., same model, with only two levels of the targeted predictor included) and
a sequential Bonferroni correction.

3. Results

A total of 6442 min (approximately 107 h) of recording was analyzed. The click density
ranged between 0 and 9576 clicks per minute (3864.33 ± 2189.60 clicks on average). The
click density (i.e., number of clicks per minute) was negatively linked to the number of
porpoises present in the pool (Figure 2a, Table 3). The more porpoises in the pool, the
less clicks were produced. The click density was significantly affected by the season:
it was significantly higher in fall than in spring (Figure 2b, Table 3). The click density
did not significantly vary depending on the time of day, but it was significantly higher
during training/feeding sessions than outside of such sessions (Figure 2c, Table 3). Clicks
were significantly more frequent when porpoises were separated by a gate than when not
(Figure 2d, Table 3). Clicks were significantly more frequent with the presence of toys,
humans and toys together, and new objects, but less frequent when humans were present
alone than when not present (Figure 2e, Table 3). Clicks were significantly more frequent
during noisy events rather than when no unusual event occurred (Figure 2f, Table 3). The
presence of visitors significantly impacted the click density, with less clicks produced when
many visitors were present rather than when few or none were (Figure 2g, Table 3).
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Table 3. Model characteristics (a) and statistical outputs (b) from the generalized linear mixed-effects model.

(a)
Model Components Model Characteristics Scaled Residuals

Response
Variable Offset

Random
Predictors AIC BIC logLik Deviance df.resid Min 1Q Median 3Q Maxfactors

Selected
model

Click
density

Number of
individuals

Date, Number of individuals,

107,583.40 107,717.10 −53,771.7 107,543.40 5878 −4.1621 −0.0065 0.0019 0.0093 1.0357

Observation
session ID Season,

Time relative to training,
Social grouping,
Presence of toys,

Presence of humans,
Presence of humans and toys,

Presence of new objects,
Unusual events,

Presence of visitors

(b) Number of
individuals Season Social

grouping Presence of toys Presence of humans Presence of humans
and toys Presence of new objects Time relative to

training
Unusual
events

Presence
of public

Selected
model

χ2 = 48.687,
df = 1,

p < 0.0001

χ2 = 17.076,
df = 3,

p = 0.0007

χ2 = 18.709,
df = 1,

p < 0.0001
χ2 = 5.256, df = 1, p = 0.0218 χ2 = 6.580, df = 1,

p = 0.0103
χ2 = 13.205, df = 1,

p = 0.0003
χ2 = 30.067, df = 1,

p < 0.0001
χ2 = 617.822, df = 1,

p < 0.0001

χ2 = 8.915,
df = 4,

p = 0.0634

χ2 = 40.891,
df = 2,

p < 0.0001
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4. Discussion

First, the standardized number of clicks decreased with increasing number of animals
present in the pool. Clicks are thought to serve both as an echolocation and a communica-
tion function in odontocetes such as Yangtze finless porpoises that do not whistle [9,65–67].
With more animals present, each animal’s clicks are added to the others’, and we expected
a higher occurrence of clicks. A low number of animals in a pool always followed a
separation and transport process during which porpoises were lifted out of the water
and moved to a new pool. During this process, they were separated from some of their
congeners. They might have needed to (1) explore this new environment, and (2) locate the
congeners that stayed in the initial pool, resulting in more clicks. This hypothesis requires
further investigation.

Unlike previous findings suggesting that clicks, which are used mainly to navigate,
feed, and communicate, were unlikely to exhibit any seasonal cycle (e.g., [68]), a seasonal
pattern was found in the Yangtze finless porpoises’ click production. Yangtze finless
porpoises are seasonal breeders, and their socio-sexual activities increase in summer and
fall [69]; such periods may require more communication as well as more echolocation to
locate potential mates. Conversely, the click density did not exhibit any diurnal pattern.
Some studies have shown that wild Yangtze finless porpoises produced more clicks at
night than during the day, suggesting that these animals were feeding at night [70], while
other studies found no day/night differences [39]. Data were not collected at night in this
study, and only differences between morning, noon, and afternoon were analyzed. Such
analysis could bring additional information about the diurnal rhythm of Yangtze finless
porpoises’ acoustic production.

Social changes are likely to impact odontocete sound production [43]. Captive bot-
tlenose dolphins have been shown to whistle 7.8 times more in isolation than when they
were not separated from their congeners [71], and social separation has been reported
to affect some whistle types but not others in this species [43]. Yangtze finless porpoises
produced more clicks when they were separated in subgroups. Being physically separated
into two pools with a gate and yet remaining in acoustic contact, Yangtze finless porpoises
might have used clicks in order to communicate and maintain cohesion between pools, or
to try to locate other individuals through the gate.

Yangtze finless porpoises produced more clicks during training/feeding sessions than
outside of such sessions. This pattern has already been reported in other captive odonto-
cetes with an increase in all types of underwater sounds during training/feeding/public
presentations (bottlenose dolphins [42,72–75]; belugas, Delphinapterus leucas [76]; Pacific
white-sided dolphins, Lagenorhynchus obliquidens [77]). Such routine events might have
caused an increased level of excitement or anticipation [72,73]. In addition, studies have
shown that odontocete click rate increases when foraging because they produce buzzes
that are click trains with short inter-click intervals [8,78–80]. Yangtze finless porpoises have
been shown to emit such buzzes when feeding, especially when an individual catches its
prey [69]. During training/feeding sessions, the presence of prey (both dead and live), and
the animals’ eating behavior may have elicited a production of buzzes which resulted in
an increased click density. Porpoises could also have simply increased their echolocation
activity and produced more clicks when prey were present. The fact that the Yangtze finless
porpoises’ click density was the highest when live fish were present (compared with other
types of enrichment) is congruent with this hypothesis.

Clicks were also more frequent when toys, humans and toys, or new objects were
present together rather than when not. The presence of humans has been shown to be linked
to an increased sound production in captive odontocetes [43,74,77], which could explain
why the presence of humans and toys together resulted in a higher click density than when
toys were provided alone. However, the presence of humans alone resulted in a lower
click density. When humans were present together with toys, these humans were always
familiar and they always tried to interact with the porpoises (e.g., showing them familiar
or new toys, throwing them in the pool), and porpoises often participated in the interaction
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(e.g., approaching, observing, touching, bringing objects back). In addition, these familiar
humans were usually caretakers, and porpoises might have associated their presence with
events such as training sessions and feeding; an increase in clicks production may therefore
have been linked to an anticipation of such events when caretakers were interacting with
them. When caretakers were present without toys, porpoises were often coming to observe
them and leaving as soon as they realized no fish or toys were provided. This reaction
could be an explanation for the lower click density associated with human enrichment, but
more work is needed to validate this hypothesis. The presence of many visitors was also
linked to a lower production of clicks. Visitors were not allowed to approach the water
surface, and porpoises interacted much less with them. Such infrequent and often noisy
stimulus might have been stressful for the animals, and producing less clicks may be a
response to this stressful stimulus. Regarding the presence of new objects in the pool, the
higher density of clicks may be linked to an increased exploration behavior.

Yangtze finless porpoises’ click production was higher during noisy events (e.g.,
construction work, unusual noisy meetings) than when no unusual event occurred. When
discussing the effects of boats on wild odontocetes, it was suggested that a boat’s physical
presence, its noise, and its behavior together might impact the animals’ perception of risk
to determine their response [81,82]. Because it is often hypothesized that odontocetes are
sensitive to noise [83,84], noisy events have the potential to affect their behavior, including
vocalizations. The porpoises in this study may have used clicks to search for and investigate
the source of the noise. Social events and pool cleaning did not significantly influence
Yangtze finless porpoise click production. The few studies that investigated the impact
of unusual events that occur in captive facilities on the acoustic activity of odontocetes
reported a decreased acoustic production in beluga whales after transportation to a new
facility and after the introduction of four harbor seals (Phoca vitulina) into their pool [52],
and a decrease in acoustic productions during pool cleaning for bottlenose dolphins [43].
Here, social events were group separations and reunions, and it seems that Yangtze finless
porpoises did not change their click production much following these events. Pool cleaning,
which elicits changes in behavior in this group of Yangtze finless porpoises [85–87], did not
significantly influence their click production either. Noise and pool cleaning can represent
stressful stimuli, noise being an acoustic one, while pool cleaning involves the presence of
moving objects/humans in the water. The fact that Yangtze finless porpoises modified their
click production during noisy events but not during pool cleaning suggests that different
types of potentially stressful stimuli elicit different responses, and that behavior should be
monitored together with acoustical activity to get a full picture of the animals’ reaction.

Although studies investigating the link between vocalizations and welfare in odon-
tocetes are scarce, previous studies have suggested that variations in odontocete signals
might be related to emotional states and specific events [88–90]. Most studies focused
on the link between behavior/context (e.g., excitement, bow riding, feeding, socializing)
and wild animal whistle production (Hawaiian spinner dolphins, Stenella longirostris [27];
common dolphins, Delphinus delphis [91]; pilot whales, Globicephala sp. [92]; bottlenose
dolphins [93,94]). For porpoises that are thought to only produce one type of vocalization
(high-frequency clicks), it has been suggested that differences in click train characteristics
(e.g., inter-click interval) are dependent on behavioral context [9,68,95]. Here, because of
the reflection phenomenon, we could not analyze click trains and their parameters.

However, despite these reflections, the variations we observed in click density seemed
to be reliable and to indicate which variables influenced Yangtze finless porpoises’ click
production and in what ways. The variations observed depending on the number of
animals present and on the presence of prey allow us to validate the patterns we found for
the other variables. Among these other variables, social separation, presence of enrichment,
presence of visitors, and potentially stressful events probably resulted in changes in the
animals’ emotional state, and the changes in click production we observed might be
indirectly reflecting these emotional state changes. The patterns we found might help the
care team to understand their animals’ acoustical activity and to adapt their management to
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this activity. An abrupt change in click density after a management decision such as group
separation or the occurrence of any kind of unusual event should be alerting and trigger a
closer monitoring of the animals to ensure they are adapting adequately to the situation for
instance. Also, starting a training session when porpoises’ click production is relatively
high might not be very efficient as the animals might not be fully attentive, but this
hypothesis needs further work to be validated. It seems that the relationship between click
production and emotional state can be ambiguous, and hard to interpret on its own. For
instance, click density is particularly high when porpoises are feeding, which can be seen
as a positive situation, but it is also very high when animals are socially separated, which
is probably experienced as a negative situation by these porpoises [85–87]. Noting the
context when collecting data is crucial to avoid misinterpretations. Additionally, because
some variables may influence acoustic production while others may influence behavior,
and because behavioral data may help the interpretation of acoustical data, monitoring
captive animals’ click production should be combined with behavioral observations.

In addition to these potential applications in captive settings, our study also provides
information that can be used when monitoring wild populations. Such information on the
contexts in which captive Yangtze finless porpoises increase or reduce their click production
could aid in understanding wild animal responses to anthropogenic disturbances. A low
click density could reflect not only the absence or low number of porpoises in a zone,
but also their low click production in response to a noisy environment. In addition, the
important click density difference when animals are eating/hunting versus when they are
not should be considered when using clicks as an indicator of Yangtze finless porpoise
density. Foraging animals and resting/traveling/socializing animals do not produce the
same number of clicks, and the number of Yangtze finless porpoises present may be over-
or underestimated. However, the click production of wild and captive individuals may
differ, and studying the differences in click rates between wild and captive porpoises as
well as the variation of click rates depending on potential wild disturbances is needed
to determine if results obtained in captivity can be applied in the wild. Considering the
different environments in which wild and captive porpoises live, their click rates may not
vary depending on similar factors or following similar patterns for instance. We therefore
suggest that more research should be conducted to investigate the acoustical response of
Yangtze finless porpoises to various stimuli, in both wild and captive settings, and that
other kinds of signals should be analyzed (e.g., burst-pulsed signals).
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