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Abstract

Traditional drug discovery is very laborious, expensive, and time-consuming, due to the huge combinatorial complexity of the discrete
molecular search space. Researchers have turned to machine learning methods for help to tackle this difficult problem. However,
most existing methods are either virtual screening on the available database of compounds by protein–ligand affinity prediction, or
unconditional molecular generation, which does not take into account the information of the protein target. In this paper, we propose
a protein target-oriented de novo drug design method, called AlphaDrug. Our method is able to automatically generate molecular drug
candidates in an autoregressive way, and the drug candidates can dock into the given target protein well. To fulfill this goal, we devise
a modified transformer network for the joint embedding of protein target and the molecule, and a Monte Carlo tree search (MCTS)
algorithm for the conditional molecular generation. In the transformer variant, we impose a hierarchy of skip connections from protein
encoder to molecule decoder for efficient feature transfer. The transformer variant computes the probabilities of next atoms based
on the protein target and the molecule intermediate. We use the probabilities to guide the look-ahead search by MCTS to enhance or
correct the next-atom selection. Moreover, MCTS is also guided by a value function implemented by a docking program, such that the
paths with many low docking values are seldom chosen. Experiments on diverse protein targets demonstrate the effectiveness of our
methods, indicating that AlphaDrug is a potentially promising solution to target-specific de novo drug design.
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Significance Statement:

One core goal of AI-driven drug design is to generate molecules that can bind to its protein target well. However, most existing
deep learning methods seldom consider the protein target, and thus the generated molecules have a poor performance on binding
affinity. Here, we propose a protein target specific de novo molecular generation method, called AlphaDrug. We trained a Lmser
Transformer (LT) network to learn the joint distributions of protein targets and molecules efficiently. Then a value function im-
plemented by a docking program and the LT network is utilized to guide the Monte Carlo tree search (MCTS) for the conditional
molecular generation. Experiments show that our method can generate novel molecules with high binding affinities.

Introduction
The expenditure of a new drug from research and development
to the market was estimated to be between 314 million and 2.8
billion US dollars (1,2), and the development period takes more
than 10 y on average (3). Computer-aided drug design utilized in-
silico computational methods to accelerate the process and re-
duce the development cost, by modeling the interactions between
small molecules and targets.

Drug design is a challenging computational problem due to the
complex drug–target interaction and the vast chemical space of
estimated 1060 compounds with drug-like characteristics, which
is more than the number of atoms in the solar system (4).

In recent years, deep learning methods have made promis-
ing progress on the problems of molecule design, e.g. ma-
chine learning-accelerated ab-initio simulation (5,6), molecular

property prediction (7,8), receptor-ligand binding affinity predic-
tion (9,10), and so on. These methods may be used in virtual
screening through the available database of drug-like compounds
for drug candidates. However, such virtual screening relies on the
coverage and diversity of the compound database, and is very
computational intensive.

Another stream of research is de novo molecular generation by
deep generative models. For example, molecules can be generated
to satisfy certain physicochemical or customized properties un-
der Variational AutoEncoder (VAE) or Generated Adversarial Net-
works (GAN), in terms of Simplified Molecular-Input Line-Entry
System (SMILES) or molecular graph (11–15). These methods are
able to generate novel compounds as drug candidates, but ignore
the protein target in the generation process. Thus, the obtained
molecules usually do not have good binding affinity with the

Competing Interest: The authors declare no competing interest.
Received: May 7, 2022. Accepted: October 2, 2022
C© The Author(s) 2022. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access ar-
ticle distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.
org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the
original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact
journals.permissions@oup.com

https://doi.org/10.1093/pnasnexus/pgac227
http://orcid.org/0000-0001-6270-0449
mailto:tushikui@sjtu.edu.cn
mailto:leixu@sjtu.edu.cn
http://www.oxfordjournals.org
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:journals.permissions@oup.com


2 | PNAS Nexus, 2022, Vol. 1, No. 4

target. Although there exist a few efforts (16,17) in taking the pro-
tein target into account to realize target-specific molecular gen-
eration, the performance is still far from satisfactory.

In this paper, we propose a novel method called AlphaDrug to
generate molecules that can have good binding affinity with a
given protein target. To enhance representation learning of drug–
target interactions, we present a transformer variant by devising
a hierarchy of skip connections from protein encoder to molecule
decoder for improved feature transfer. We further model the
molecular generation process by Monte Carlo tree search (MCTS)
in a one-by-one symbol construction manner. We use not only the
probability of selecting the next symbol predicted by the trans-
former variant but also the docking simulations computed by an
external widely used program to effectively guide MCTS. Experi-
ments verify the effectiveness of our method.

Our contributions are briefly summarized as follows:

� We propose a model called AlphaDrug for de novo molecular
generation given a protein target. The model is featured by a
transformer variant, which enhances the efficiency of learn-
ing protein information, and an efficient MCTS guided by the
transformer’s prediction and docking values.

� Experiments and ablation studies demonstrate that our
method outperforms the existing ones to generate molecules
of binding affinity scores even higher than known ligands or
drugs.

Related work
Molecular generation without considering target
Deep generative models have been developed to generate and op-
timize molecules with certain physicochemical and pharmaco-
logical properties. Reinforcement learning (RL) has been adopted
to train the generative models to produce molecules with desired
properties. The de novo drug generator regarded as the RL agent,
and the agent takes actions of choosing the next SMILES sym-
bol during molecular string generation to maximize the reward,
which is computed after SMILES string completion. For string-
based methods, REINVENT algorithm (18), which combines Re-
current Neural Network (RNN) with RL algorithms, was proposed
to optimize the score of the generated molecules by fine-tuning
the model parameters of RNN, and it is capable of controlling
molecule structures. The ReLeaSE algorithm (19) integrates two
separately trained generative deep neural networks to jointly gen-
erate novel chemical libraries. RL approach was introduced to ad-
just the generation toward those with the desired physical and/or
biological properties. The ChemTS model (20) takes advantages of
RNN to learn the patterns of the next symbol conditional on the
intermediate molecular SMILES string, and uses the learned con-
nection rules to guide the molecular generation by MCTS.

Efforts have also been made on graph representation of
molecules. JT-VAE (11) generates valid tree-structured molecules
by firstly generating a tree-structured scaffold of chemical sub-
structures and assembling substructures according to the gener-
ated scaffold. GraphAF (14) is an autoregressive flow-based model
and generates molecular graphs in a sequential manner, where
the validity is checked when adding new atoms or bonds. GCPN
(15) is a general graph convolutional network based model for
goal directed graph generation through RL. It is trained to opti-
mize domain-specific rewards and adversarial loss through policy
gradient, and acts in an environment that incorporates domain-
specific rules.

Target-specific molecular generation
Recently, a few researchers have begun to pay attention to gen-
erating molecules that bind to specific binding pockets. In LiG-
ANN model (16), the structure of the protein pocket was mapped
into the shape of the ligand through the BicycleGAN, and then the
shape of the ligand was decoded into SMILES through the caption-
ing network. In order to use 3D information of proteins to con-
trol the generation of drug-like molecules, Coulomb matrix of the
coarse-grained atoms was utilized to train conditional RNN mod-
els (21). The representation of each atom in the context of the
binding site was learned via graph neural networks in (22), and an
autoregressive sampling scheme was developed to generate 3D
molecules in 3D space. Although the above methods all consid-
ered the 3D structure of the binding site, their performances are
still far from satisfactory because it is challenging to learn how
molecules interact geometrically and chemically with their pock-
ets in 3D space.

Another stream of efforts are string-based methods. The tar-
geted drug generation problem was formulated as a translational
task, and the transformer network was applied to capture the
long-range dependencies (17). On the base of ChemTS (20), which
was designed for sequential unconditional molecular generation,
SBMolGen (23) was further developed by imposing the target dock-
ing score constraints into the molecule distributions during the
process of MCTS. Our method also falls into the string-based
paradigm, which has an advantage that the molecular generation
is naturally formulated as a sequential decision-making problem.
Our results suggest that the string-based method can be very
effective in target-specific de novo molecular generation, if we
can properly learn the protein target information and efficiently
search in the vast space of possible drug molecules.

Methods
Overview of our method
We propose a novel method, called AlphaDrug, for target-specific
de novo molecular generation. The AlphaDrug takes a pro-
tein target as input and generates ligand molecules that have
strong binding affinities with the target. The generated molecules
are promising drug candidates for the given protein target. An
overview of AlphaDrug is given in Fig. 1.

Specifically, the ligand generation process is modeled in a
step-by-step growing way. AlphaDrug is featured by a context-
embedding component and a searching component. The context
Cτ at step τ is defined as the set of the target protein in terms
of amino acid sequence S and the intermediate ligand string in
the form of SMILES a1a2···aτ , i.e. Cτ = {S, a1a2···aτ }, where ai is a
SMILES symbol, i = 1, ..., τ . We devise a deep transformer net-
work for the context embedding. Inspired from the least mean
squared error reconstruction (Lmser) network (25), we modify the
standard transformer by adding a hierarchy of skip connections
from protein encoder to drug decoder as in Fig. 1, so that the de-
coder receives different levels of features of the protein and cal-
culates an accurate probability P (aτ + 1|Cτ ) of properly selecting
the next symbol aτ + 1 to be appended to the intermediate ligand
string. Then, we compute an improved ligand growing policy �

(aτ + 1|Cτ ) by MCTS, which takes the probability P (aτ + 1|Cτ ) as the
prior growing policy. We resort to an external docking software to
calculate the values for the paths in a fast rollout, which is im-
plemented by a greedy policy using P (aτ + 1|Cτ ). The docking value
is able to effectively assess the quality of look-ahead simulations,
and control the generation from the aspect of binding affinity with
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Fig. 1. An overview of AlphaDrug. (A) The computational flow of AlphaDrug. Molecules are generated in an autoregressive way based on the MCTS
growing policy �, which is computed from the protein sequence and the current state of the intermediate ligand string. (B) The left
figure demonstrates the structure of the original transformer implemented in (24); the right figure is the Lmser Transformer (LT) in the paper.

the protein target. The generation stops after the intermediate lig-
and string reaches an end symbol. The policy network is trained
on a dataset of known ligand-protein pairs. It should be noted that
MCTS is not involved in the training process of the policy network,
but it is activated when generating molecules for the testing pro-
tein targets.

Lmser Transformer (LT) for context embedding
Learning the structural context of the target protein and the inter-
mediate ligand is challenging due to the following reasons. First,
the structures of the proteins and the involved binding sites are
very complex. Second, the protein–ligand interaction patterns are
complicated. Third, proteins and ligands are different molecules
with unequal sequence lengths and consist of different atom sets.
A protein sequence is often over 10 times longer than that of a
ligand molecule. Finally, it requires good generalization to new
proteins for de novo drug design, after training on the limited
amount of available experimental data. We represent proteins
as sequences of amino acids and ligands as SMILES strings, and
consider both as biochemical languages. We use the transformer
network to translate amino acid sequences into ligand SMILES
strings, where the encoder takes the protein amino acid sequence
as input, the decoder is fed with the intermediate ligand string.
Although the original transformer (24) has been adopted in (17)
for the same task, we find that it is not efficient to involve the pro-
tein information in molecular generation. The inefficiency is due
to the information transfer bottleneck from the encoder top-layer
to various levels of decoder layers.

We propose a transformer variant called LT to tackle this is-
sue. Proposed in (25), Lmser network was developed by folding au-
toencoder (AE) along the central hidden layer. Such folding equiv-
alently builds forward skip connections and feedback connections
between paired layers of encoder and decoder (26). Inspired by this
idea, we impose a hierarchy of skip connections from protein en-
coder to ligand decoder, as illustrated in the right figure of Fig. 1.
The hierarchical skip connections pass various levels of features
of the input protein to the corresponding levels of decoder, and
fuse with the features of the intermediate ligand. The decoder is
filled with more details about the protein information in all lev-
els, and leverage them to obtain accurate prediction of the next
symbol for the intermediate ligand string.

The hierarchical skip connections are implemented via a cross-
attention mechanism. The details are illustrated in Fig. 2. Math-
ematically, the cross-attention block maps a query Qm from the

ligand molecule decoder and a key-value pair (KS, VS), which is
passed through the skip connections from the protein encoder,
into an output as a weighted sum of the values

fca(Qm, KS,VS ) = softmax

(
QmKT

S√
dk

)
VS, (1)

where 1√
dk

is a scaling factor, and the softmax function is used to

normalized the attention scores. The information from the pro-
tein is merged with the molecule via a product in Eq. 1.

The self-attention in both encoder and decoder is adopted, the
same as the original attention block in (24) to learn the depen-
dence within the sequences. Multihead attention mechanism is
used to perform different linear projections on the queries, keys,
and values for h times, allowing the model to attend information
from various chemical perspectives

MultiHead(Q, K,V ) = Concat(H1, ..., Hh )WO, (2)

Hi = fca(QWQ
i , KWK

i ,VWV
i ), (3)

where WO, WQ
i , WK

i , WV
i are parameters for linear projections, i =

1, …, h. Since the attention mechanism itself lacks information
about the order of the sequence, we similarly add the additional
positional encoding (PE) (24) to the embedding layer as follows:

fPE (pos, 2i) = sin

(
pos

10000
2i

dmodel

)
, (4)

fPE (pos, 2i + 1) = cos

(
pos

10000
2i

dmodel

)
, (5)

where pos denotes the position of a symbol in protein sequence or
SMILES, i is the dimension, and dmodel is the dimension of the em-
beddings. That is, each dimension of the PE corresponds to a sinu-
soid. Detailed information about PE is included in Supplementary
Material (Fig. S4).

MCTS for molecular generation
The goal of AlphaDrug is to search the space of all possible
molecules for drug candidates, such that the drug candidates can
be properly docked into the protein target in an exclusive way. Al-
though we may use LT network prediction to construct the lig-
and in a greedy manner, it is easy to stuck in a local optimum be-
cause the searching space is so huge. We further model the ligand
growing procedure in MCTS, which is a heuristic search algorithm
widely used in sequential decision-making problems.
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Fig. 2. Detailed structure of LT layer. Cross attention block in decoder layer captures protein features and integrates them with molecule features.

As shown in Fig. 1, each node in the tree represents a SMILES
symbol of the molecule and the path from the first root node a1

to the current one aτ forms an intermediate molecule a1a2···aτ .
For each step in the de novo molecular generation process, sim-

ulations are conducted S times and the child node with maximum
number of visits is chosen as the new root node aτ + 1. As given in
Fig. 3, each simulation consists of four steps: select, expand, rollout,
and backup.

Select
Each simulation starts from the current root node aτ and selects
its successive child node until a leaf node ãτ+� is reached after
� selections. For each selection t ∈ [1, �], the node is obtained by
the action of choosing symbol ãτ+t according to a variant form
of the PUCT (Predictor with Upper Confidence bounds applied to
Trees)algorithm (27)

ãτ+t = arg max
a∈A

(Q(C̃τ+t−1, a) + U(C̃τ+t−1, a)), (6)

where C̃τ+t−1 = {S, m̃} is the context with the target pro-
tein S and the current simulated intermediate molecule m̃ =
a1 · · · aτ ãτ+1 · · · ãτ+t−1, and A is the legal action space under the
context, i.e. the SMILES vocabulary of molecules. Q(C̃τ+t−1, a) =
Wa/Na represents the average rewards selecting the symbol a in
the context C̃τ+t−1, with Wa and Na being the accumulated re-
ward and visiting times, respectively, for the node; U(C̃τ+t−1, a) =
cpuctP(a|C̃τ+t−1)

√
Nt/(1 + Nt (a)), and cpuct is a constant that controls

the degree of exploration. The accumulated reward is computed
as the sum of the scores docking the set M of ligands into the tar-
get protein S, i.e. Wa = ∑

m∈M fd(S, m), where M collects the valid
simulation paths passing through the node, and fd is implemented
by the SMINA program (28). To control the scale of the SMINA
docking values, we normalize the range of Q(C̃, a) into the interval
[0, 1], using the maximum docking values observed in the search
tree as follows:

Q(C̃, a) ←
Q(C̃, a) − min

m∈M
fd(S, m)

max
m∈M

fd(S, m) − min
m∈M

fd(S, m)
. (7)
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Fig. 3. Detailed process of an MCTS simulation. A simulation consists of four steps: select, expand, rollout, and backup.

This search strategy guides MCTS to initially prefer to visit the
nodes of SMILES symbols with high prior probability and low num-
ber of visits, but asymptotically tend to visit the symbols that are
potentially to produce a molecule of strong binding affinity with
the target protein.

Expand
Given a selected leaf node ãτ+�, the probability P(a|C̃τ+� ) for each
expandable symbol a ∈ A is computed by the LT network. The chil-
dren nodes of ãτ+� are added to the tree and each node is initialized
to {Na = 0,Wa = 0, P(a|C̃τ+� )}.

Rollout
The value, i.e. the expected return of accumulated rewards, of
the reached leaf node ãτ+� is evaluated by a fast rollout. Each
SMILES symbol is selected in a greedy manner according to the
probability computed by LT until a terminal symbol ãτ+L is gen-
erated or the tree reaches a maximum depth. The path from
the initial symbol to the terminal forms a complete molecule
m̃ = a1 · · · aτ ãτ+1 · · · ãτ+L. RDKit (29) is used to validate the legiti-
macy of molecule. If the molecule is invalid, the value of node xl

is set to be min
m∈M

fd(S, m). Otherwise, a docking score is computed

by the SMINA program fd(S, m̃) as the value of the leaf node ãτ+�.

Backup
For each selection t ∈ [1, �], the nodes’ statistics are updated by
adding the rollout value of ãτ+� to the cumulative reward W and
increasing the visiting times N by 1.

MCTS was firstly adopted in ChemTS (20) for molecular gen-
erations. Our method differs from ChemTS in several aspects.
First of all, ChemTS was not developed for generating molecules
that can be bound with the target protein, but for optimizing
the octanol–water partition coefficient logP, synthetic accessibility
(SA), and penalizing unrealistically large rings. Second, we model
the molecular generation by MCTS in a more efficient and accu-
rate way. (a) As illustrated in Fig. 4, at rollout step of AlphaDrug,
only the docking score of the molecule, which is generated by the
fast rollout is set as the value of the node ãτ+�. But in ChemTS,
the value of the node ãτ+� is evaluated by uniformly accumulat-
ing values of each child node, which indicates the transition prob-
abilities from the node ãτ+� to all its children nodes are the same.

The value computed by this strategy may mislead the search pro-
cess. (b) When the simulation times S reach the preset integer,
the most visited child node is selected by AlphaDrug as new root,
and the old root is kept in memory. In contrast, the root node in
ChemTS is fixed at a1 for all simulations. AlphaDrug is more effi-
cient than ChemTS, because it balances well between the search-
ing width and depth by pruning the unlikely branches in the selec-
tion step, while ChemTS wastes too much effort on the first part
of the molecule and cares less about the later part. (c) It should
be noted that AlphaDrug makes use of protein–ligand interaction
patterns by the docking evaluation of the rollout molecule into the
target. ChemTS does not take any information about the protein
target into account to guide the molecular generation, and thus
in general the generated ligands cannot be properly docked into a
specified target.

Loss function
We train the LT in a supervised way on the available ligand–
protein pairs in the public database D. For each pair (S, m) ∈ D, S
denotes the target protein while m is the molecule in the SMILES
format a1 · · · aLm . We construct the a sequence of contexts Cτ = {S,
a1···aτ }, τ = 1, …, Lm, and feed them into LT network to compute
the probability P (a|Cτ ) of predicting the next symbol aτ + 1. The
objective is to minimize the following cross-entropy loss:

J(�) = −
∑

(S,m)∈D

Lm∑
τ=1

∑
a∈A

ya ln P(a|Cτ (S, m)), (8)

where � denotes the set of parameters in the LT network and A is
the vocabulary set of ligand SMILES. The binary label ya indicates
whether a is the next symbol.

Experiments
Datasets
BindingDB (30) is a public database of protein–ligand pairs where
the proteins are considered to be drug–targets, and the ligands
are small, drug-like molecules. We downloaded the latest version
that contains over 2.3 million binding records. Protein–ligand pairs
were filtered from the crude database using the following criteria
as similarly in (17).
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Fig. 4. Differences between AlphaDrug and ChemTS at rollout step. (A) Our rollout. (B) Rollout in ChemTS.

� Proteins only belong to “Homo sapiens”.
� The IC50 value is less than 100 nM; if the IC50 is missing, then

Kd is less than 100 nM; if both are missing, then EC50 is less
than 100 nM.

� The record has a chemical identifer (PubChem CID).
� The record has SMILES representations.
� The molecular weight is less than 1000 Da.
� The record has a protein identifer (Uniprot ID).
� Protein sequence length is greater than 79 and lower than

1001.
� Number of protein chains in target equals to 1 (>1 implies a

multichain complex).

After filtering, we built a dataset with 239,455 protein–ligand
pairs among which there are 981 unique protein sequences. Then,
we utilize Mmseqs2 (31) to yield sequence clusters at a sequence
identity level of 30%, which is similarly used to build the Big
Fantastic Database in AlphaFold2 (32) and randomly select 25
clusters as test set. We select 90% of the remaining clusters as
the training set and the other 10% for validation. In summary,
our dataset contains 192,712 protein–ligand pairs for training,
17,049 pairs for validation, and 100 proteins from the 25 clus-
ters for testing. Since MCTS is activated in the testing and the 3D
structure of the testing protein is required for the docking pro-
cess, we download the corresponding 3D protein structures from
PDB bind website (http://www.pdbbind.org.cn/index.php). We uti-
lize the Clustal Omega tool (33) provided by EMBL-EBI’s website
(https://www.ebi.ac.uk/Tools/msa/clustalo/) to compute similari-
ties between different proteins. The distributions of pairwise se-
quence similarities between different subsets are given in Fig. 5.
All of the protein sequences share less than 30% similarity. De-
tailed information about Similarity Matrix of Proteins is included
in Supplementary Material (Fig. S3).

Training and validation instances are constructed by shifting
right the input ligand string as the ground-truth output. For con-
venience, we add a start symbol “&” in front of all protein se-
quences and ligand strings and a terminal symbol “$” at the end.

Evaluation metrics
We use the following criteria to evaluate the generated molecules
using the testing proteins as targets. It is noted that the docking
score is the main metric because the task of this paper requires
the generated molecules to bind with the protein target well.

� Docking score. Generally, drugs should be docked well to a bind-
ing site of its protein target. Binding energy is regarded as

a general indicator to describe the binding affinity between
molecules and proteins. SMINA (28) is a free, widely used pro-
gram to compute the binding affinity. We use the negative
value of the output by SMINA as the docking score. The higher
the docking score, the better the molecule is docked into the
protein.

� Uniqueness. Drug design models should be able to generate dif-
ferent molecules according to different proteins. The higher
the uniqueness value is, the more sensitive the model is to
the protein. This metric is computed as follows:

Uniqueness(%) =
#

(
Set(

⋃
s∈S

Set(M))
)

#
(⋃

s∈S
Set(M)

) × 100%, (9)

where S indicates the set of testing proteins, M denotes the
collection of molecules generated by a method for the target
protein s ∈ S, # counts the number of molecules, and Set is an
operator to remove the repetitive molecules.

� LogP (the water–octanol partition coefficient). Large LogP
value indicates the substance is lipophilic, while small LogP
means it is easy to dissolve in water. According to Ghose filter
(34), the LogP value of a drug should range from −0.4 to + 5.6.

� Quantitative estimate of drug-likeness (QED). The score ranges
from 0 to 1. A higher QED indicates that the molecule is more
likely to be a potential drug-like compound, with the desired
molecular properties such as hydrogen bond acceptor, hydro-
gen bond donor, and polar molecular surface area.

� SA score. Low SA score is preferred such that the molecules
are easy to synthesize.

� Natural products likeness (NP-likeness). Natural products play
an important role in the history of drug discovery. Many drugs
are natural products and their derivatives. The higher the
score is, the more likely the molecule is to be a natural prod-
uct.

Implementation details
We include the existing methods, i.e. original Transformer with
Beam Search (T+BS) in (17), LiGANN (16), SBMolGen (23), which is
developed from ChemTS (20) for target-specific molecular genera-
tion, and SBDD-3D (22), for comparisons. In (17), when each time a
symbol is decoded, the candidates with top K highest probabilities
computed by the transformer are selected, where K is the beam
size. Here, we use K = 10 as in (17) to generate 10 ligand candidates
for each testing protein, and denote it as “T+BS10”. Moreover, we
implement LT with BS (LT+BS10) as a baseline to compare LT with

http://www.pdbbind.org.cn/index.php
https://www.ebi.ac.uk/Tools/msa/clustalo/
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Fig. 5. Kernel density estimates for the distributions of protein sequence similarity between different subsets.

Table 1. Average scores of the metrics of all generated molecules on 100 testing proteins.

Methods Docking Uniqueness LogP QED SA NP

Decoys 7.3 - 2.4 0.8 2.4 −1.2
Known ligands 9.8 - 2.2 0.5 3.3 −1.0
LiGANN (16) 6.7 94.7% 2.9 0.6 3.0 −1.1
SBMolGen (23) 7.7 100% 2.6 0.7 2.8 −1.2
SBDD-3D (22) 7.7 99.3% 1.5 0.6 4.0 0.3
T + BS10 (17) 8.5 90.6% 3.8 0.5 2.8 −0.8
LT + BS10 8.5 98.1% 4.0 0.5 2.7 −1.0
AlphaDrug (freq) 10.8 99.5% 4.9 0.4 2.9 −1.0
AlphaDrug (max) 11.6 100% 5.2 0.4 2.7 −0.8

the original transformer. We directly use the web-based appli-
cation (https://www.playmolecule.org/LiGANN) from the original
authors to implement LiGANN on the testing proteins. For SBDD-
3D, we utilize the trained model published by the authors. For a
fair comparison, we both collect 10 generated molecules for each
testing protein from LiGANN and SBDD-3D.

In AlphaDrug, we set the constant cpuct in Eq. 6 to 1.5 for balanc-
ing between exploitation and exploration. The simulation times S
affect the performance and computational burden of MCTS. For a
reasonable trade-off, we set S = 50. We provide two versions of Al-
phaDrug for molecular generation on a given testing protein. First,
we execute MCTS by selecting the next symbol with the maximum
visited times of simulations, and denote this version as AlphaDrug
(max). Second, we execute MCTS by randomly selecting the next
symbol according to the frequency of visited times, and denote
this version as AlphaDrug (freq). For fair comparisons, we also use
AlphaDrug to generate 10 molecules for each testing protein.

Results
The average scores of the metrics on all testing proteins are re-
ported in Table 1. Ten candidate molecules are generated for each
testing protein. All 1000 candidates are evaluated by the metrics,
and the scores are averaged for an overall comparison. The “de-
coys” in the first row is implemented by randomly selecting 10
compounds from ZINC database (https://zinc.docking.org/), a free
database of commercially available compounds for virtual screen-
ing of drugs. The “known ligands” in the second row indicates the
original molecules binding to proteins in the database.

We observe that, in terms of docking score, the decoys base-
line is obviously worse than most other methods because the ran-
domly selected molecules are usually not good candidates for a
specific target. Notice that although LiGANN takes the 3D struc-
ture information of the protein target into account, its docking
score is even lower than the decoys baseline. LiGANN would pro-
duce some molecules to have relatively small molecular mass
(usually containing only one ring and quite short side chains).
These molecules are too small to bind well to the protein, dragging
down the docking scores. The results of SBMolGen is even worse
than the “T+BS10” (17) using BS, because the context of the target
is not properly learned by SBMolGen and the adopted MCTS from
ChemTS is not efficient, as illustrated in Fig. 4. Although SBDD-3D
has used 3D coordinates of atoms of protein pockets as chemical
contexts to coach the model to generate molecules, the resulted
docking score is still far from satisfactory. SBDD-3D, which also
used BS, is even inferior to “LT+BS10”. It seems that the sequence-
based representation learning by the vanilla transformer or LT
may be more effective than the context learning on the 3D protein
by SBDD-3D. It is noted that the uniqueness percentage is further
improved when replacing the vanilla transformer with LT based
on BS.

The average docking scores in Table 1 demonstrate that
AlphaDrug outperforms other methods, and AlphaDrug (max)
achieves the highest average docking score. AlphaDrug (max) may
output the same molecule for each protein because its decision-
making of next symbol in MCTS is deterministic according to the
maximum visited times and the fast rollout for docking values
is made by choosing the child nodes of the highest probability.
AlphaDrug (max) is better than AlphaDrug (freq) in terms of the

https://www.playmolecule.org/LiGANN
https://zinc.docking.org/
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Fig. 6. Box plots of docking scores between the target proteins and their corresponding generated molecules by different methods.

Table 2. P-values of two tailed t-test for molecules generated by
different methods for all testing proteins.

Ours vs (17) Ours vs (22) Ours vs (23) Ours vs (16)

1.9 × 10−145 2.9 × 10−287 2.8 × 10−308 <1 × 10−500

average docking score, but AlphaDrug (freq) allows to search more
paths for top candidates. The frequency-based random decision-
making of next symbol gives more chances to explore better pos-
sibilities, at the cost of lowering the mean performance.

We further investigate the distributions of docking scores be-
tween the generated molecules and the target protein. As given
in Fig. 6, all distributions are approximately unimodal in bell-
shapes, and they are consistent with the observations from Ta-
ble 1. We assess the statistical significance of the improvement by
AlphaDrug (freq) over the state-of-the-art methods, i.e. “T+BS10”
(17), SBDD-3D (22), and LiGANN (16). We compute P-values of two
tailed t-test for all testing proteins and report them in Table 2.
The results suggest that the improvements by AlphaDrug (freq)
are all significant (P < 0.01) for all targets, verifying the general-
ization performance of AlphaDrug for generating promising drug
candidates.

Finally, we check the physicochemical properties of the gen-
erated ligand candidates. The results in Table 1 indicate that the
produced molecules by all methods have comparable QED, SA, NP-
likeness scores, and suitable range of LogP for drugs. Detailed dis-
tributions of each property are in Supplementary Material (Figs. S1
and S2).

Case study
According to the docking scores between molecules generated by
AlphaDrug and known ligands in the testing set, we find that 86%
of the new molecules have higher scores than the corresponding
known ligands. In this section, we will visualize examples of gen-
erated molecules of top binding affinities and study their details.
We consider the following three target proteins:

� Protein 3gcs is a human P38 MAP kinase in complex with So-
rafenib (a novel multitargeted oral drug for the treatment of
tumors).

� Protein 3eig is a crystal structure of a methotrexate-resistant
mutant of human dihydrofolate reductase. Its known ligand
is MTX, the main drug for the treatment of rheumatoid arthri-
tis.

� Protein 4o28 is a structural basis for resistance to diverse
classes of nicotinamide phosphoribosyltransferase (NAMPT)
inhibitors, a bottleneck enzyme that plays a key role in re-
cycling nicotinamide to maintain the adequate nicotinamide
adenine dinucleotide (NAD+) level inside the cell (35).

We consider two groups of generated molecules based on the
similarity with the known ligands. We compute the Tanimoto co-
efficients implemented by RDKit (29) between the molecules and
known ligands. Tanimoto coefficient is a popular similarity mea-
sure for comparing chemical structures represented by means of
fingerprints (36). In the first group, we select three molecules with
high Tanimoto coefficients to the known ligands and visualize
them in the third column of Fig. 7. To facilitate the comparisons,
we highlight in green the maximum common substructure shared
between molecules and known ligands. For protein 3gcs, the gen-
erated molecule contains 1-ethyl-4-methyltetrahydroquinoxaline
instead of N-methylpicolinamide in the known ligand. For protein
3eig, the generated one can be derived from the known ligand
by replacing the glutamic acid part with aspartic acid part. The
only difference between them is that the side chain of glutamic
acid has one more methylene group than that of aspartic acid.
For protein 4o28, the (R)-3-hydroxy-N-benzoyl-pyrrolidine is gen-
erated instead of imidazo[1,2-a]pyridine in left part, and the car-
boxyl group instead of 3,5-difluorophenylsulfonyl group in right
part. The results indicate that our method is reliable and consis-
tent with known experimental evidence, and is able to suggest
possible modifications to optimize the known ligands.

In the second group, we pick three novel top-scored molecules,
which are very different from the known ligands. They are
listed in the last column of Fig. 7, where the common part is



Qian et al. | 9

Fig. 7. Protein pockets and co-crystal structures of protein with generated molecule. Shared maximum common substructure are colored in green or
blue. The numbers under molecular pictures are docking scores computed by SMINA.

Table 3. Statistics and analysis of docking calculations and efficiency of our methods.

Method Molecular length Docking times [L × S] Score ↑ Validness ↑

LT + Greedy (baseline) 53.96 - 8.3 80.0%
AlphaDrug (max)∗ 55.88 104.8 [559.0] (81.3% ↓) 10.9 (31.3% ↑) 100% (20% ↑)
AlphaDrug (max) 56.54 394.3 [2825.0] (86.0% ↓) 11.6 (40.0% ↑) 100% (20% ↑)

All values in this table are average of results on 100 testing proteins. Here, “∗” denotes the MCTS simulation times S = 10, while S = 50 are set as default. “Validness”
indicates the ratio of generated molecules that are chemically legal. Values in the third column, e.g. 104.8 and 559.0, are actual docking times and theoretical
docking times, respectively.

highlighted in blue. For the three proteins, the common parts
are only an aniline, or a pyrimidine-2,4-diamine, or a phenyl-
methanamine in both molecules. Notice that the two groups of
newly designed molecules, all have higher docking scores than
the known ligands. Therefore, AlphaDrug is a promising method
for de novo drug design.

The effect of MCTS
MCTS is a tree search process guided by a trade-off between ex-
ploration and exploitation via Eq. 6, making the search to focus
on high-reward nodes.

We take “LT + Greedy”, which is realized via a greedy policy
based on the probability computed by LT, as a baseline for evalu-
ating the improvements on the docking score metric brought by
MCTS. The (average) docking score metric is computed by docking
the generated molecules into the target protein. The results are
reported here in Table 3. Detailed trace plots of docking scores
can be found in Supplementary Material (Fig. S5). We observe that
MCTS brings a significant increment of the docking score met-
ric under two settings of different simulation times (31.3% ↑ and
40.0% ↑, respectively). It is expected that the version of AlphaDrug
(max) with 50 MCTS simulations performs better than the one
with 10 simulations, because it consumes more computational re-
sources.

We count the number of docking calculations in our method
and evaluate the efficiency of our approach. In MCTS, consider-
able dockings are carried out for exploring the huge unknown
chemical space where one docking process can even take up
to 30 seconds on average. Theoretically, to generate a molecule,

which has a length of L, our approach needs to utilize SMINA for
L × S times, where S is the MCTS simulation times. However, in
many situations, docking values of the same molecule–protein
pair are computed due to the use of “LT + Greedy” at the rollout
step. To improve the efficiency of MCTS, we keep a docking table
T ((S, m), fd(S, m)) in memory. Each time a new molecule protein
pair (S

′
, m

′
) is produced at the rollout step, a fresh record (S

′
, m

′
), fd

(S
′
, m

′
) will be added into the docking table. As in Table 3, the actual

docking times in the two AlphaDrug versions are much smaller
than the theoretical docking times in square brackets (81.3% ↓
and 86.0% ↓, respectively).

Besides, we also compare the performance of MCTS with other
regular search under the same number of docking times. Here, BS
method is chosen as a baseline from the regular search methods.
All methods are constrained to use the same number of docking
times, and use the same LT network for predicting the probability
of selecting the next symbol. Specifically, we consider MCTS under
three different search settings, i.e. S = 10, 50, 500, where S denotes
the number of simulations in MCTS. For each S, the number of
actual docking times taken in MCTS is counted, and BS is con-
strained to use exactly the same docking times. Table 4 reports
the average over the docking scores of all generated molecules,
and the average (in parenthesis) over the top-1 score among all
docking scores for each of 100 testing proteins, as well as the t-
test P-values between BS and MCTS.

It is observed that MCTS outperforms BS under the same num-
ber of docking times, in terms of the average docking scores not
only on all molecules or but also on the top-1 molecules for each
testing protein. The increments of MCTS over BS are all signifi-
cant as the corresponding P-values are smaller than 0.05. MCTS
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Table 4. Average docking scores by different search methods on 100 testing proteins.

Docking times N \ Method BS MCTS P-value

N = 105; S = 10 8.4 (10.9) 10.9 (11.5) 1.8 × 10−34 (4.5 × 10−3)
N = 394; S = 50 8.3 (11.4) 11.6 (12.2) 1.4 × 10−31 (1.8 × 10−3)
N = 1345; S = 500 8.4 (11.9) 12.4 (13.2) 2.2 × 10−39 (8.2 × 10−6)

All methods are constrained to use the same number N of docking times, and use the same LT network. The average is computed in two ways, i.e. over the docking
scores of all generated molecules or (in parenthesis) over the top-1 score among all docking scores for each testing protein. P-values are computed using t-test on
the results between BS and MCTS.

Table 5. An ablation study on analysing how well input of the protein sequence information would help MCTS find high-affinity binders.

Group Method Uniqueness ↑ SpS ↑ Molecular length

1 TE + MCTS∗ (baseline) 65.0% 0.1771 66.15
T + MCTS∗ 98.0% (33%↑) 0.1959 (10.62% ↑) 59.33
LT + MCTS∗ 100.0% (35%↑) 0.2025 (14.34% ↑) 55.88

2 TE + MCTS (baseline) 81.0% 0.1926 62.93
T + MCTS 98.0% (17%↑) 0.2149 (11.58% ↑) 55.63
LT + MCTS 100.0% (19%↑) 0.2159 (12.10% ↑) 56.54

Here, “∗” denotes the MCTS simulation times S = 10, while S = 50 are set as default. “TE”, “T” and “LT” denote a transformer encoder, a vanilla transformer, and our
LT, respectively. In MCTS, we select the next symbol (the new root node) with the maximum visited times of simulations, which is the same with AlphaDrug (max).
“SpS” denotes score per symbol.

balances well between exploitation and exploration in the selec-
tion step by the criterion in Eq. 6, which takes into account both
LT’s predicted probability and the SMINA’s docking score. More-
over, it is expected that the performances of both methods be-
come better as the number of docking times increases, where BS
achieves higher average top-1 scores and MCTS improves in terms
of both average docking scores.

The effect of protein sequence as input
We perform an experimental analysis on the role of the protein
sequence jointly as input, and the results are reported in Ta-
ble 5. Here, we train a transformer encoder, denoted as “TE”, to
learn molecular growth strategies, without the input of protein se-
quences. Note that “TE” is trained similarly like “T” (vanilla trans-
former) and “LT” and shares the same training hyperparameters
with the encoder of “T” and “LT”. The difference of “TE” from “T”
and “LT” is that “TE” does not have protein sequence as input,
while the latter two have. More details of the training hyperpa-
rameters can be found in Supplementary Material (Table S1). We
introduce two metrics, Uniqueness and Score per Symbol (denoted as
SpS) to demonstrate the effect of the protein sequence in inputs.
Uniqueness is computed in Eq. 9 and SpS is given below

SpS = 1
|S|

∑
s∈S

1
|M|

∑
m∈M

fd(s, m)
Length(m)

, (10)

where S indicates the set of 100 testing proteins, M denotes the
set of molecules generated by a method for the target protein
s ∈ S, and fd (s, m) evaluates the docking score of the generated
molecule m with the target protein s.

The Uniqueness metric indicates the sensitivity of a model to
the target protein. The higher the uniqueness value is, the more
sensitive the model is to the protein. Besides, within a certain suit-
able length, the longer molecules intend to have higher scores due
to more explorations in MCTS. The SpS metric is used to get rid of
the influence of the length factor on the docking score.

We consider two groups of experimental settings, i.e. Group 1
and Group 2 for the MCTS simulation times being 10 and 50, re-
spectively. The results of both groups in Table 5 demonstrate that

the baseline (i.e. “TE + MCTS”) is improved in terms of Uniqueness
by 33% and 17%, respectively, when the protein target sequence is
jointly fed into the model of “T + MCTS”. The improvement is also
observed in terms of SpS, i.e. by 10.62% and 11.58%, respectively.
These improvements indicate that it is better to use the protein se-
quence as an additional input, because our method is developed
to capture the conditional distribution of the high-binding affinity
molecules given the protein target.

The effect of LT
We also observe slight improvements in Table 5 on Uniqueness
and SpS in both groups when replacing the vanilla transformer (T)
with our LT. The improvement becomes marginal when MCTS is
growing more powerful in explorations with five times more simu-
lations, i.e. from Group 1 to Group 2. The hierarchical skip connec-
tions employed by LT are effective in sending more information of
the protein target to the molecular decoder.

According to Table 3, “LT + MCTS∗” (i.e. AlphaDrug∗) only takes
about a quarter of the time of “LT + MCTS” (i.e. AlphaDrug) to gen-
erate molecules (52 and 197 minutes per protein on average, re-
spectively), but their performances are comparably similar. Thus,
“LT + MCTS∗” is preferred in situations where computing re-
sources are scarce.

Conclusion and discussion
We have proposed a deep learning model, AlphaDrug, for de
novo molecular generation according to given protein targets. The
model is featured by an effective representation learning on the
protein target information, and an efficient heuristic search by
MCTS to reduce the computational complexity due to the huge
search space of all possible drug molecules. Specifically, we de-
vised a variant transformer with a hierarchy of skip connections
from protein encoder to molecule decoder for enhanced feature
transfer. Molecular generation is modeled as searching optimal
paths in MCTS, and the searching process is properly guided by
not only the predicted probabilities of growing the next symbol of
the molecule by the variant transformer, but also a value function
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of docking score. Experiments and ablation studies verify the ad-
vantages of our method over the existing methods. AlphaDrug is
a promising model to speed up the drug discovery process.

There is still room to improve AlphaDrug’s performance for
real world drug design applications. First, the deep representa-
tion learning of AlphaDrug is made on sequence data, i.e. SMILES
strings of molecules and amino acid sequences of proteins. Al-
though AlphaDrug has been demonstrated to be even more effi-
cient than the existing methods that used 3D coordinates of the
proteins, the 3D structure of the binding pocket is definitely a crit-
ical context to guide the molecular generation. Recent advances
about 3D structure deep learning methods, such as 3D convolu-
tional neural network, geometric deep learning, and so on, may be
employed to take 3D information into account. Second, the value
function of AlphaDrug is currently implemented by calling an ex-
ternal, fixed docking program, i.e. SMINA, which is computational
expensive when the number of calls grows large in MCTS sim-
ulations. Building a learnable end-to-end deep value network is
a good direction to go, because joint learning of both policy and
value would benefit from each other and adapt better to the data.
Third, it is not efficient to execute fast rollout in every MCTS simu-
lations in AlphaDrug. If we want to tackle this limitation, we need
to evaluate the potential binding affinity without growing a com-
plete, valid molecule, which is extremely challenging. To summa-
rize, it deserves more future work to improve AlphaDrug, which is
potentially powerful in real applications.

Previous Presentation
The results were not presented anywhere before.
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