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Abstract

Coronavirus Disease 2019 (COVID-19) is a sudden viral contagion that appeared at the end of last year in Wuhan city, the
Chinese province of Hubei, China. The fast spread of COVID-19 has led to a dangerous threat to worldwide health. Also in
the last two decades, several viral epidemics have been listed like the severe acute respiratory syndrome coronavirus
(SARS-CoV) in 2002/2003, the influenza H1N1 in 2009 and recently the Middle East respiratory syndrome coronavirus
(MERS-CoV) which appeared in Saudi Arabia in 2012. In this research, an automated system is created to differentiate
between the COVID-19, SARS-CoV and MERS-CoV epidemics by using their genomic sequences recorded in the NCBI
GenBank in order to facilitate the diagnosis process and increase the accuracy of disease detection in less time. The selected
database contains 76 genes for each epidemic. Then, some features are extracted like a discrete Fourier transform (DFT),
discrete cosine transform (DCT) and the seven moment invariants to two different classifiers. These classifiers are the
k-nearest neighbor (KNN) algorithm and the trainable cascade-forward back propagation neural network where they give
satisfying results to compare. To evaluate the performance of classifiers, there are some effective parameters calculated.
They are accuracy (ACC), F1 score, error rate and Matthews correlation coefficient (MCC) that are 100%, 100%, 0 and 1,
respectively, for the KNN algorithm and 98.89%, 98.34%, 0.0111 and 0.9754, respectively, for the cascade-forward network.
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Introduction

Coronaviruses (COVs) are single-/positive-stranded RNA (++RNA)
viruses that hit humans and animals. It includes four primary
proteins which are the envelope, nucleocapsid, membrane and
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spike proteins [1]. Because of the presence of spike protein,
these viruses take the crown-like appearance under the electron
microscope. This crown is called Coronam in Latin [2, 3].

The International Committee on Taxonomy of Viruses (ICTV)
considers that the coronaviruses are Nidovirales order members
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and part of the Cornidovirineae family divided into two subfami-
lies called Letovirinae and Orthocoronavirinae [4]. Orthocoronavirinae
subfamily is classified into four types: AlphaCoV (α-CoV),
BetaCoV (β-CoV), DeltaCoV (γ -CoV) and GammaCoV (δ-CoV)
[5, 6].

The α-CoV and the β-CoV are capable to hit mammals; how-
ever the γ -CoV and the δ-CoV lead to avian infection. Effective
types of AlphaCoV are 229E-CoV and NL63-CoV, while OC43-
CoV, HKU1-CoV, MERS-CoV and SARS-CoV are BetaCoV types [7].
Taking into consideration that 229E-CoV, NL63-CoV, OC43-CoV
and HKU1-CoV result in simple respiratory marks like that in
common cold, SARS-CoV and MERS-CoV cause dangerous and
deadly respiratory tract infections [8]. In 2002 and 2012, the flare-
up of SARS and MERS happened, respectively, when death raised
at huge rates by animal–human infection.

By the end of 2019, a new β-CoV coronavirus has been
recorded in Wuhan that also can transmit from animal to
human [9]. Firstly, the World Health Organization (WHO) named
it tentatively as 2019-Novel Coronavirus (2019-nCoV) on 12
January 2020. Secondly, the WHO organization named it formally
as Coronavirus Disease 2019 (COVID-19) on 11 February 2020.
At the same time, the ICTV committee named it severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [6, 10]. The
danger of COVID-19 started to explode when human–human
contagion happened in a quick and terrifying shape. As of 14 May
2020, a total of 4 442 466 COVID-19 cases have been recorded all
over the world including 298 322 deaths and 1 668 251 recoveries
[11]. By reviewing the previous studies, it is clear that nearly all
of them have the following paths.

Analyzing the COVID-19 virus from a medical point
of view

In 2020, Tia et al. [1] studied the characteristics of the COVID-19
receptor-binding domain (RBD) by implication for the develop-
ment of RBD protein as a viral attachment inhibitor and vaccine.
Zhou et al. [3] showed that COVID-19 belongs to the species of
SARSr-CoV and also uses the same cell entry receptor that is
called angiotensin-converting enzyme II (ACE2). Pradhan et al.
[4] concentrated light on the development and pathogenicity of
the COVID-19 virus with important implications for its diagnosis.
Cao et al. [12] introduced a comparative genetic analysis of the
COVID-19 receptor ACE2 in various populations.

Comparison between different types of coronaviruses
• Before the COVID-19 outbreak, in 2014, Drexler et al. [13]

presented a general view of the obtainable studies on bat
CoVs, then conducted a comprehensive phylogenetic anal-
ysis of the genera AlphaCov and BetaCov and compared
the available data on CoV pathogenesis in bats including
SARS-CoV, MERS-CoV and HCoV-229E. In 2015, Lu et al. [14]
summarized the advance which has taken place in the
past decade in understanding the cross-species transition
of SARS- CoV and MERS-CoV by centering on the features
of the surface-located spike (S) protein, its receptor obli-
gated characteristics and the cleavage process involved in
priming. In 2015, Lee et al. [15] discussed some issues which
raised the possibility that inhibitor recognition specificity
of MERS-CoV papain-like protease (PLpro) may differ from
that of SARS-CoV PLpro. In 2017, Yuan et al. [16] presented
high-resolution structures of the trimeric envelope spike
(S) proteins of MERS-CoV and SARS-CoV in its pre-fusion
conformation by single-particle cryo-electron microscopy.

• After the COVID-19 outbreak, in 2020, Ashor et al. [7]
discussed the structure, genome organization and entry of
CoVs into target cells and provide insights into SARS-CoV,
MERS-CoV and COVID-19 outbreaks. Cai et al. [17] compared
the clinical and pathological features between COVID-
19 and SARS patients. Al-Tawfiq et al. [18] discussed the
asymptomatic coronavirus infection through a comparison
between MERS-CoV and COVID-19. Gorbalenya et al. [19]
explained the classifying and naming of the novel COVID-19
epidemic among other coronaviruses. Liu et al. [20] provided
a brief introduction to the pathology and pathogenesis of
SARS-CoV and MERS-CoV and extrapolate this knowledge
to the newly identified COVID-19. Ou et al. [21] studied the
spike glycoprotein (S) characteristics of virus entry and
its immune cross-reactivity in the case of SARS-CoV and
COVID-19.

Classification of coronaviruses using image processing
algorithms

In 2020, Barstugan et al. [22] introduced a COVID-19 classification
method using different types of abdominal computed tomogra-
phy (CT) images, five feature extraction methods and support
vector machine (SVM) so that the best classification accuracy
obtained is 99.6%. Basu et al. [23] determined characteristic fea-
tures from chest X-ray images and used domain extension trans-
fer learning (DETL) for an alternative screening of COVID-19 so
that the overall accuracy was measured as 95.3% ± 0.02. Ozturk
et al. [24] used raw chest X-ray images and the DarkCovidNet
model as a classifier to make two types of classification that
were binary classification (COVID versus no findings) and multi-
class classification (COVID versus no-findings versus pneumo-
nia), and this obtained accuracy of 98.08% for the binary classi-
fication and 87.02% for the multi-class case. Elasnaoui et al. [25]
employed both X-ray and CT images for bacterial pneumonia,
coronavirus, COVID-19 and normal cases and used different deep
learning models so that the best classification accuracy obtained
is 92.18%.

On the other hand, the diagnosis of COVID-19 is currently
based on some analyses performed in different laboratories and
scan centers, for example, the reverse transcription-polymerase
chain reaction (RT-PCR) test, the one-step real-time RT-PCR (RRT-
PCR) test and the computed tomography (CT) scan recently [26,
27]. Although these methods are to a large extent accurate, they
have many drawbacks. Due to the patient number increase,
there is a lack of test kits, in addition to the difficulties of
the tests themselves such as the need for suction devices; the
experienced operators’ availability; the patient exposure to pain
because the sample is extracted from sputum, nasal swab and
throat swab; and finally its high cost and long period of time to
get results.

In this paper, the three most common coronaviruses faced by
humanity, in the last two decades, are studied. They are COVID-
19, MERS-CoV and SARS-CoV that have made a big argument
worldwide and have become dangerous epidemics that resulted
in many death cases. This research treated them as genetic
diseases, and it proposed a system with high-accuracy results
that can detect the type of disease using its genome which leads
to a rapid diagnosis of COVID-19 avoiding the disadvantages
of the previous traditional diagnostic methods. The proposed
system depends on employing the genomic signal processing
(GSP) and the classification algorithms, as explained in the next
section.
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Figure 1. The block diagram of the proposed method.

Figure 2. Cascade-forward back propagation network.

Table 1. Resulting values in COVID-19/SARS-CoV and COVID-19/MERS-CoV classifications

KNN classifier Cascade-Forward NN

(COVID-19/SARS-CoV) (COVID-19/MERS-CoV) (COVID-19/SARS-CoV) (COVID-19/MERS-CoV)

Tp 30 30 30 30
Fp 0 0 0 0
Tn 30 30 30 29
Fn 0 0 0 1

Materials and methods
The following block diagram summarizes the procedures of the
research. Firstly, the selected DNA sequences are obtained from
a suitable site according to the research need. Secondly, the DNA
string values are transformed into its corresponding numerical
values for easy use with the GSP methods. Thirdly, the GSP
techniques were applied to get the required features. Fourthly,
it is the time for the classification step using the selected clas-
sifiers. Finally, the obtained results are evaluated using different
evaluation methods; see Figure 1. Each step will be explained in
detail as shown later in this section.

Database

The National Center for Biotechnology Information (NCBI) at
the National Institutes of Health (NIH) is one of the most
important sources of nucleotide databases for many different
genetic diseases. These databases are called GenBank [28]. In this
work, 76 complete genomes for each epidemic (COVID-19, SARS-
CoV and MERS-CoV) are used. For each epidemic, each DNA
sequence has a length of 30 000 nucleotides. RNA was extracted
for whole genome sequencing of the viral isolate. Briefly,
RNA was extracted from clarified cell culture supernatant and

Table 2. Resulting values in COVID-19/SARS-CoV/MERS-CoV
classification

KNN classifier Cascade-Forward NN

T1 30 30
F1 0 0
T2 30 30
F2 0 0
T3 30 29
F3 0 1

randomly amplified cDNA prepared by sequence-independent
single-primer amplification (SISPA) [29, 30]. Sequencing was
performed with a combination of Oxford Nanopore Technologies
and Illumina short-read sequencing. Genomic assembly of
the BetaCoV/Australia/VIC/01/2020 genome was confirmed by
parallel de novo and reference-guided methods [31].

Numbering method

There are various mapping methods used for converting the
nucleotide bases from strings A, T, C and G to numbers, so
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Table 3. Comparison of calculated parameters for the three systems

KNN classifier Cascade-Forward NN

(COVID-19/SARS-
CoV)

(COVID-19/MERS-
CoV)

(COVID-19/SARS-
CoV/MERS-CoV)

(COVID-19/SARS-
CoV)

(COVID-19/MERS-
CoV)

(COVID-19/SARS-
CoV/MERS-CoV)

ACC % 100 100 100 100 98.33 98.89
Error rate 0 0 0 0 0.0166 0.0111
MCC 1 1 1 1 0.9672 0.9754
F1% 100 100 100 100 98.36 98.34

the GSP techniques can be applied to them. The electron–ion
interaction pseudopotential (EIIP) representation is one of these
mapping methods [32–35]. The EIIP values symbolize the free
electrons’ energy distribution along the nucleotide sequence
[36]. These values are 0.1260, 0.1335, 0.1340 and 0.0806 for A, T, C
and G, respectively.

Feature extraction

Discrete Fourier transform (DFT)

In the discrete Fourier transform, discrete time data sets are
converted into a discrete frequency representation [37]. The DFT
is a numerical variant of the Fourier transform. Specifically,
given a vector of n input amplitudes with length N, the DFT
yields a set of frequency magnitudes and is defined as:

X [k] =
N−1∑
n=0

x [n] e
−j2πkn

N (1)

where k denotes the frequency domain ordinal, n represents the
time domain ordinal and N is the length of the sequence to be
transformed. To reduce the feature number resulted from using
the DFT, the mean of its values is used to get only 1 feature
instead of about 30 000 features for each sequence.

Discrete cosine transform (DCT)

The DFT transforms a complex signal into its complex spectrum.
If the signal is real (as in most of applications), half of the data is
redundant, i.e. half of the computation is wasted. In time domain
the imaginary part of the signal is all zero, and in frequency
domain, both real and imaginary parts of the spectrum are
symmetric [38]. Discrete cosine transform (DCT) generates real
spectrum of a real signal and thereby avoids redundant data and
computation [39]. The DCT of a real sequence, x (n), with length
N is defined as:

d(k) = u(k)
N∑

n=1

x(n) cos
π (2n − 1)

(
k − 1

)
2N

, k = 1, .., N (2)

u(k) =
{

1/
√

N, k = 1√
2/N, 2 ≤ k ≤ N

(3)

Similarly in DCT features, the variance of its values is taken
to reduce the feature number from about 3000 features to only
one for each sequence.

Moment invariants

In this step, moment invariants are used as features for the clas-
sification. They are first introduced by Hu in [40]; next of that dif-
ferent researches applied them as in [41–44]. The seven moment

invariants are defined as six absolute orthogonal invariants
and one skew orthogonal invariant. These invariants are con-
structed using the generalized fundamental theorem of moment
invariants (GFTMI) [45].

For a function of intensity α(x1, . . . ., xn) = α(y), the n-
dimensional moments of order r are calculated in terms of
Riemann integral [46] as follows:

vr1...rn =
∫

· · ·
∫

xr1
1 . . . . . . xrn

n α(x) dx1 . . . .dxn (4)

where ri + . . . rn = r, 0 < r < ∞. Then, the central moment will be:

μr1....rn =
∞∫

−∞
. . .

∞∫
−∞

. . . . . .
(
xn − xnα(x) dx1 . . . dxn (5)

where

x = v1...0

v0...0
, . . . . . . , xn = v0...1

v0...0
(6)

Finally, to get the seven moment invariants, use these equa-
tions:

ρ1 = 1
μ4

∣∣∣∣∣∣∣
μ2...0 . . . μ1...1

. . . . . . . . .

μ1...1 . . . μ0...2

∣∣∣∣∣∣∣ (7)

ρ2 = 1
μ4

(
μ20μ02 − μ2

11

)
(8)

ρ3 = 1
μ10

[
(μ30μ03 − μ21μ12)

2 − 4
(
μ30μ12 − μ2

21

) (
μ21μ03 − μ2

12

)]
(9)

ρ4 = 1
μ6

(
μ40μ04 − 4μ31μ13 − 3μ2

22

)
(10)

ρ5 = 1
μ9

(
μ40μ22μ04 + 2μ31μ22μ13 − μ40μ

2
13 − μ2

31μ04 − μ3
22

)
(11)

ρ6 = 1
μ5

(μ200μ020μ002 + 2μ110μ101μ011 (12)

−μ200μ
2
011 − μ2

110μ002 − μ2
101μ020

)
ρ7 = (

μ2
20μ04

) − 4μ20μ11μ13 + 2μ20μ02μ22 + 4μ2
11μ22 (13)

−4μ11μ02μ31 + μ2
02μ40

where ρ1 to ρ7 represents the seven moment invariants, μ is the
central moment gotten from Equation (5), α is the intensity func-
tion and νr is the n-dimensional moments of order r obtained
from Equation (4).

Classification

The research uses two types of classifiers: the k-nearest neighbor
(KNN) algorithm and trainable cascade-forward back propaga-
tion neural network for the classification step.
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K-nearest neighbor (KNN)

The K-nearest algorithm is a learning method based on states,
so it doesn’t want a learning stage. It treats with the training
pattern that is related to a distance function and the choice of
the class function based on the classes of the nearest neighbors
[41, 42]. When a new pattern is classified, it must be compared
to others using a similarity measure taking into consideration
the k-neighbors. The distance between the new pattern and
the neighbor is used as the weight [47–49]. The most prevalent
method to measure this distance is Euclidean. To measure the
Euclidean distance between two vectors pi and pj, the equation
mentioned in [50] will be used:

D
(
pi, pj

) =
√√√√ n∑

r=1

(
pir − pjr

)2 (14)

Trainable cascade-forward back propagation neural network

Despite the cascade-forward NN being similar to feed-forward
NN, it contains a weighted link from the input layer to each
layer and from each layer to the next layers; see Figure 2. For a
given three-layer network, there are connections from layer one
to layer two, layer two to layer three and layer one to layer three.
In addition to this, it includes connections from the input layer
to all three layers [51]. The extra links might get better speed at
which the network learns the desired relations [52].

MATLAB R2017b is used to execute the proposed system.
The fitcknn function is used for creating the k-nearest neighbor
network with its default number of neighbors k = 1. The cascade-
forwardnet function is used for creating the cascade-forward net-
work (supervised learning machine algorithm). It uses one input
layer that has nine neurons equal to the number of features, one
hidden layer that has the default number of neurons n = 10 and
one output layer that has one neuron according to the resulting
class.

For the classification process, the training data consists of 46
complete genomes, and the testing data consists of 30 complete
genomes for each epidemic. In this step, three classification
processes are done for every classifier: firstly, creating a system
to distinguish between COVID-19 and SARS-CoV epidemics; sec-
ondly, generating a system to set apart between COVID-19 and
MERS-CoV; thirdly, building a complete system to differentiate
between the three pandemics; and finally, comparing the output
results from the two used classifiers for all processes.

Evaluation

For the two-class (COVID-19/SARS-CoV and COVID-19/MERS-
CoV) classifications, some effective evaluation parameters are
calculated. They are accuracy (ACC), error rate, Matthews corre-
lation coefficient (MCC) [53] and F1 score (the coordinated mean
of precision and sensitivity) [54, 55] as follows:

ACC = Tp + Tn
Tn + Tn + Fp + Fn

× 100% (15)

(ACC: worst value = 0; best value = 100)

Error rate = Fp + Fn
Tn + Tn + Fp + Fn

(16)

(Error rate: worst value = 1; best value = 0)

MCC =
(
Tp × Tn

) − (
Fp × Fn

)
√(

Tp + Fp
) (

Tp + Fn
) (

Tn + Fp
)
(Tn + Fn)

(17)

(MCC: worst value = −1; best value = +1)

FScore = 2Tp
2Tp + Fp + Fn

× 100% (18)

(F1 score: worst value = 0; best value = 100)
where Tp, Tn, Fp and Fn stand for true positive, true negative,
false-positive and false-negative values, respectively.

For the multi-class (COVID-19/SARS-CoV/MERS-CoV) classi-
fication, the same previous parameters are calculated, but in
macro-averaging level as mentioned in [56]:

Average ACC =
∑m

i=1
Tpi+Tni

Tni+Tni+Fpi+Fni

m
× 100% (19)

(Average ACC: worst value = 0; best value = 100)

Average error rate =
∑m

i=1
Fpi+Fni

Tni+Tni+Fpi+Fni

m
(20)

(Average error rate: worst value = 1; best value = 0)

Average MCC =
∑m

i=1
(Tpi×Tni)−(Fpi×Fni)√

(Tpi+Fpi)(Tpi+Fni)(Tni+Fpi)(Tni+Fni)

m
(21)

(Average MCC: worst value = −1; best value = +1)

Average FScore =
∑m

i=1
2Tpi

2Tpi+Fpi+Fni

m
× 100% (22)

(Average F1 score: worst value = 0; best value = 100)
where m is the number of classes.

Results and discussions
In the COVID-19/SARS-CoV classification process, the cascade-
forward NN and the KNN algorithm succeeded to recognize
all the testing genes successfully (Tp = 30, Fp = 0, Tn = 30 and
Fn = 0). But in the COVID-19/MERS-CoV classification process,
the KNN algorithm could recognize all the testing genes suc-
cessfully (Tp = 30, Fp = 0, Tn = 30 and Fn = 0), while the cascade-
forward NN failed to identify one testing gene of MERS-CoV epi-
demic (Tp = 30, Fp = 0, Tn = 29 and Fn = 1). The COVID-19/SARS-
CoV/MERS-CoV classification process showed that the KNN algo-
rithm succeeded to recognize all the testing genes success-
fully (T1 = 30, F1 = 0, T2 = 30, F2 = 0, T3 = 30 and F3 = 0) while the
cascade-forward NN has one false negative in MERS-CoV gene
identification (T1 = 30, F1 = 0, T2 = 30, F2 = 0, T3 = 29 and F3 = 1);
see Tables 1 and 2. From these results, it is obvious that the KNN
classifier can differentiate the three different types of epidemic
in all the classification processes with least error rates.

Table 3 is created using the above values. Note that, the
results are perfect in the two cases (two-class and multi-class
classifications) for the KNN classifier. That is clear from the
calculated parameter values shown in the table. In the three
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classification systems, the KNN classifier gives 100% accuracy, 0
error rate, 1 MCC and 100% F1 score. But for the cascade-forward
NN, it gets these typical results only in the COVID-19/SARS-
CoV classification process. In COVID-19/MERS-CoV classification
process, it gives 98.33% accuracy, 0.0166 error rates, 0.9672 MCC
and 98.36% F1 score besides 98.89% accuracy, 0.0111 error rate,
0.9754 MCC and 98.34% F1 score in the overall classification
system.

In the comparison case, getting higher ACC, lower error rate,
higher F1 score and higher MCC is an evidence that the classifi-
cation process is more successful and the used classifier is more
efficient. These resulting parameters indicate that the classifier
can recognize the required target with minimum errors. From
the research results, the KNN classifier can achieve these condi-
tions and reach the research purpose to differentiate between
the COVID-19, SARS-CoV and MERS-CoV epidemics using the
genomic signal processing methods. The proposed system pro-
vides a new scope for coronaviruses researches as results illus-
trate the success of using the GSP methods for the epidemics’
recognition and diagnosis. Table 4 provides a simple comparison
of results obtained in the proposed work to other existing studies
in terms of the used database, extracted features, used classifier
and results.

From the previous comparison, the best accuracy obtained
from the related studies is 99.68% [22], and this research has
reached 100% accuracy.

Conclusions
After spreading of COVID-19 epidemic, many researchers all over
the world have started medically to study, analyze and plan,
hoping to reach medicine for this terrifying disease quickly.
As a result, some researchers began to compare the COVID-19
with the other coronaviruses in terms of the origin, symptoms,
envelope spike S protein characteristics, infection, CT images
shape, etc. Besides, there are many tests like RT-PCR and RRT-PCR
that can diagnose the COVID-19 cases but with some drawbacks
such as the lack of test kits, need for suction tools, high cost,
long period of time to get results and patient pain. Considering
the coronaviruses are genetic diseases, using genomic signal
processing techniques and choosing suitable classifiers are the
basic outlines for the proposed work. This work introduces an
automated system for detecting COVID-19 and how to distin-
guish it from the other coronaviruses like SARS-CoV and MERS-
CoV. This system can assist in the rapid diagnosis of COVID-19
with highly acceptable accuracy results as it does not depend
on the previously mentioned classical diagnostic methods’ dis-
advantages. It is executed simply by separating DNA sequences
using the DNA centrifuge [57] and continuing with program steps
that take just a few minutes. All the results are acceptable and
satisfying, but the KNN results are perfect for the created clas-
sification system getting the best and most efficient diagnosis
method. In the future work, either other features will be used or
different classifiers will be selected to achieve new objectives in
COVID-19 researches.

Key Points
• Coronavirus Disease 2019 (COVID-19) is a sudden viral

contagion that appeared at the end of last year in
Wuhan city, the Chinese province of Hubei, China.

• The selected database contains 76 genes for each
epidemic.

• Some features are extracted like a discrete Fourier
transform (DFT), discrete cosine transform (DCT) and
the seven moment invariants to two different classi-
fiers.

• The k-nearest neighbor (KNN) algorithm and the train-
able cascade-forward back propagation neural net-
work were used, and they gave satisfying results to
compare.

References
1. Tai W, He L, Zhang X, et al. Characterization of the receptor-

binding domain (RBD) of 2019 novel coronavirus: implica-
tion for development of RBD protein as a viral attachment
inhibitor and vaccine. Cell Mol Immunol 2020. https://www.
nature.com/articles/s41423-020-0400-4#citeas.

2. Cascella M, Rajnik M, Cuomo A, et al. Features, evaluation
and treatment coronavirus (COVID-19). In: StatPearls [Inter-
net]. Treasure Island (FL): StatPearls Publishing, https://www.
ncbi.nlm.nih.gov/books/NBK554776/ (updated Mar 20, 2020),
2020.

3. Zhou P, Yang X, Wang X, et al. A pneumonia outbreak asso-
ciated with a new coronavirus of probable bat origin. Nature
2020;579:270–3. doi: 10.1038/s41586-020-2012-7.

4. Pradhan P, Kumar Pandey A, Mishra A, et al. Uncanny
similarity of unique inserts in the 2019-nCoV spike pro-
tein to HIV-1 gp120 and gag. bioRxiv 2020 preprint. doi:
10.1101/2020.01.30.927871.

5. Vivanco-Lira A. Predicting COVID-19 distribution in Mexico
through a discrete and time-dependent Markov chain and
an SIR-like model. arXiv 2020;2003:06758 preprint.

6. Guo Y, Cao Q, Hong Z, et al. The origin, transmission
and clinical therapies on coronavirus disease 2019 (COVID-
19) outbreak—an update on the status. Military Med Res
2020;7(11):1–10. doi: 10.1186/s40779-020-00240-0.

7. Ashour HM, Elkhatib WF, Rahman R, et al. Insights into the
recent 2019 novel coronavirus (SARS-CoV-2) in light of past
human coronavirus outbreaks. Pathogens 2020;9(3):1–15.

8. Andersen K, Rambaut A, Lipkin W, et al. The proxi-
mal origin of SARS-CoV-2. Nat Med 2020;26:450–2. doi:
10.1038/s41591-020-0820-9.

9. Wu F, Zhao S, Yu B, et al. A new coronavirus associated with
human respiratory disease in China. Nature 2020;579:265–9.
doi: 10.1038/s41586-020-2008-3.

10. Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-
19 patients with digestive symptoms in Hubei, China: a
descriptive, cross-sectional, multicenter study. Am J Gas-
troenterol 2020;115(5):766–73; (pre-print online).

11. WorldOmeter. last visited, 2020, 08:20 GMT, https://www.
worldometers.info/coronavirus/.

12. Cao Y, Li L, Feng Z, et al. Comparative genetic analysis of the
novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2
in different populations. Cell Discovery 2020;6(11):1–4. doi:
10.1038/s41421-020-0147-1.

13. Drexler JF, Corman VM, Drosten C. Ecology, evolution
and classification of bat coronaviruses in the
aftermath of SARS. Antivir Res 2014;101:45–56. doi:
10.1016/j.antiviral.2013.10.013.

14. Lu G, Wang Q, Gao GF. Bat-to-human: spike features deter-
mining ‘host jump’ of coronaviruses SARS-CoV, MERS-
CoV, and beyond. Trends Microbiol 2015;23(8):468–78. doi:
10.1016/j.tim.2015.06.003.

https://www.nature.com/articles/s41423-020-0400-4#citeas
https://www.nature.com/articles/s41423-020-0400-4#citeas
https://www.ncbi.nlm.nih.gov/books/NBK554776/
https://www.ncbi.nlm.nih.gov/books/NBK554776/
https://doi.org/10.1038/s41586-020-2012-7
https://doi.org/10.1101/2020.01.30.927871
https://doi.org/10.1186/s40779-020-00240-0
https://doi.org/10.1038/s41591-020-0820-9
https://doi.org/10.1038/s41586-020-2008-3
https://www.worldometers.info/coronavirus/
https://doi.org/10.1038/s41421-020-0147-1
https://doi.org/10.1016/j.antiviral.2013.10.013
https://doi.org/10.1016/j.tim.2015.06.003


8 Naeem et al.

15. Lee H, Lei H, Santarsiero BD, et al. Inhibitor recognition
specificity of MERS-CoV papain-like protease may differ
from that of SARS-CoV. ACS Chem Biol 2015;10(6):1456–65.
doi: 10.1021/cb500917m.

16. Yuan Y, Cao D, Zhang Y, et al. Cryo-EM structures of MERS-
CoV and SARS-CoV spike glycoproteins reveal the dynamic
receptor binding domains. Nat Commun 2017;8(15092):1–9.
doi: 10.1038/ncomms15092.

17. Cai X. An insight of comparison between COVID-19 (2019-
nCoV disease) and SARS in pathology and pathogenesis.
OSFPREPRINT 2020. doi: 10.31219/osf.io/hw34x preprint.

18. Al-Tawfiq JA. Asymptomatic coronavirus infection: MERS-
CoV and SARS-CoV-2 (COVID-19). Travel Med Infect Dis
2020;35(101608):1–9. doi: 10.1016/j.tmaid.2020.101608.

19. Gorbalenya AE, Baker SC, Baric RS, et al. The species severe
acute respiratory syndromerelated coronavirus: classify-
ing 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol
2020;5:536–44. doi: 10.1038/s41564-020-0695-z.

20. Liu J, Zheng X, Tong Q, et al. Overlapping and discrete aspects
of the pathology and pathogenesis of the emerging human
pathogenic coronaviruses SARS-CoV, MERS-CoV, and 2019-
nCoV. Med Virol 2020;92(5):536–44. doi: 10.1002/jmv.25709.

21. Ou X, Liu Y, Lei X, et al. Characterization of spike gly-
coprotein of SARS-CoV-2 on virus entry and its immune
cross-reactivity with SARS-CoV. Nat Commun 2020. doi:
10.1038/s41467-020-15562-9.

22. Barstugan M, Ozkaya U, Ozturk S. Coronavirus (COVID-19)
classification using CT images by machine learning meth-
ods. arXiv:2020:2003:09424, preprint.

23. Basu S, Mitra S, Saha N. Deep learning for screening COVID-
19 using chest X-ray images. arXiv:2020:2004:10507. preprint.

24. Ozturk T, Talo M, et al. Automated detection of covid-
19 cases using deep neural networks with X-ray
images. Comput Biol Med 2020;121(103792):1–12. doi:
10.1016/j.compbiomed.2020.103792.

25. Elasnaoui K, Chawki Y. Using X-ray images and deep learn-
ing for automated detection of coronavirus disease. J Biomol
Struct Dyn 2020;1–12. doi: 10.1080/07391102.2020.1767212.

26. Udugama B, Kadhiresan P, et al. Diagnosing COVID-19: the
disease and tools for detection. ACS Nano 2020;4:3822–55.
doi: 10.1021/acsnano.0c02624.

27. Tahamtan A, Ardebili A. Real-time RT-PCR in COVID-19
detection: issues affecting the results. Expert Rev Mol Diagn
2020;20(5):453–4. doi: 10.1080/14737159.2020.1757437.

28. Benson DA, Karsch-Mizrachi I, Lipman DJ, et al. Gen-
Bank. Nucleic Acids Res 2008;36(Database issue):D25–30. doi:
10.1093/nar/gkl986.

29. Lewandowski K, Xu Y, Pullan ST, et al. Metagenomic
nanopore sequencing of influenza virus direct from clinical
respiratory samples. J Clin Microbiol 2019;58:e00963–19.

30. Kafetzopoulou LE, Efthymiadis K, Lewandowski K, et al.
Assessment of metagenomic nanopore and illumina
sequencing for recovering whole genome sequences of
chikungunya and dengue viruses directly from clinical
samples. Euro Surveill 2018;23:1800228.

31. Caly L, Druce J, Roberts J, et al. Isolation and rapid sharing
of the 2019 novel coronavirus (SARS-CoV-2) from the first
patient diagnosed with COVID −19 in Australia. Med J Aust
2020;212(10):459–62.

32. Das J, Barman S. Bayesian fusion in cancer gene prediction.
Int J Comput Appl 2014;1:5–10.

33. Trad CH, Fang Q, Cosic I. Protein sequence comparison
based on the wavelet transform approach. Protein Eng
2002;15(3):193–203. doi: 10.1093/protein/15.3.193.

34. Ghosh A, Barman S. Prediction of prostate cancer cells
based on principal component analysis technique. In: Pro-
cedia Technology International Conference Computational Intelli-
gence: Modeling Techniques and Applications (CIMTA), 2013, doi:
10.1016/j.protcy.2013.12.334.

35. Wassfy HM, Abd Elnaby MM, Salem ML, et al. Eukaryotic
gene prediction using advanced DNA numerical represen-
tation schemes. In: Processing of Fifth International Confer-
ence Advances in Applied Science and Environmental Engineering
(ASEE), Kuala Lumpur, Malaysia, 2016.

36. Nair SA, Sreenadhan SP. A coding measure scheme employ-
ing electron-ion interaction pseudopotential (EIIP). Bioinfor-
matics 2006;1(6):197–202.

37. Fessler J. Digital signal processing and analysis. Lecture Notes
2004; Student Version. Available Online: https://docplayer.
net/34200912-Eecs-451-digital-signal-processing-and-ana
lysis-lecture-notes-j-fessler.html.

38. Ko LT, Chen JE, Hsin HC, et al. A unified algorithm for
subband-based discrete cosine transform. Math Probl Eng
2012. doi: 10.1155/2012/912194.

39. Jain AK. Fundamentals of digital image processing, ch. 5,
1989, 150–4. Prentice Hall, Englewood Cliffs, NJ.

40. Hu M. Visual pattern recognition by moment invariants. IRE
Trans Inf Theory 1962;8:179–87.

41. Mabrouk MS. A nonlinear pattern recognition of pandemic
H1N1 using a state space based methods. Avicenna J Med
Biotechnol 2011;3(1):25–9.

42. Mabrouk MS, Marzouk SY. A chaotic study on pandemic and
classical (HINI) using EIIP sequence indicators. In: 2nd Inter-
national Conference on Computer Technology and Development
(ICCTD 2010), 2010.

43. Huang Z, Leng J. Analysis of Hu’s moment invariants on
image scaling and rotation. In: Proceedings of 2010 2nd
International Conference on Computer Engineering and Technol-
ogy (ICCET), Chengdu, China. IEEE, 2010, DOI: 10.1109/IC-
CET.2010.5485542.

44. Flusser J. Moment invariants in image analysis. Proc World
Acad Sci Eng Technol 2006;1(11):3721–6.

45. Mamistvalov AG. N-dimensional moment invariants
and conceptual mathematical theory of recognition n-
dimensional solids. IEEE Trans Pattern Anal Mach Intell
1998;20(8):819–31.

46. Weisstein EW. Riemann Integral 2000. http://mathworld.
wolfram.com/RiemannIntegral.html (last visited 10 April
2020).

47. Al Bataineh A. A comparative analysis of nonlinear machine
learning algorithms for breast cancer detection. Int J Mach
Learn Comput 2019;9(3):248–54.

48. Fogliatto FS, Anzanello MJ, Soares F, et al. Decision sup-
port for breast cancer detection: classification improvement
through feature selection. Cancer Control 2019;26(1):1–8. doi:
10.1177/1073274819876598.

49. Medjahed SA, Saadi TA, Benyettou A. Breast cancer diagnosis
by using k-nearest neighbor with different distances and
classification rules. Int J Comput Appl 2013;62(1):1–5.

50. Negnevitsky M. Artificial Intelligence: A Guide to Intelligent
Systems. Pearson, Edinburgh, England. ch. 6, 2005;3:175–9.

51. Goyal S, Goyal GK. Cascade and feed-forward backprop-
agation artificial neural network models for prediction
of sensory quality of instant coffee flavoured steril-
ized drink. Can J Artif Intell Mach Learn Pattern Recogn
2011;2(6):78–82.

52. Demuth H, Beale M, Hagan M. Neural Network Toolbox User’s
Guide. Natrick, USA: The MathWorks. Inc., 2009.

https://doi.org/10.1021/cb500917m
https://doi.org/10.1038/ncomms15092
https://doi.org/10.31219/osf.io/hw34x
https://doi.org/10.1016/j.tmaid.2020.101608
https://doi.org/10.1038/s41564-020-0695-z
https://doi.org/10.1002/jmv.25709
https://doi.org/10.1038/s41467-020-15562-9
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1080/07391102.2020.1767212
https://doi.org/10.1021/acsnano.0c02624
https://doi.org/10.1080/14737159.2020.1757437
https://doi.org/10.1093/nar/gkl986
https://doi.org/10.1093/protein/15.3.193
https://doi.org/10.1016/j.protcy.2013.12.334
https://docplayer.net/34200912-Eecs-451-digital-signal-processing-and-analysis-lecture-notes-j-fessler.html
https://docplayer.net/34200912-Eecs-451-digital-signal-processing-and-analysis-lecture-notes-j-fessler.html
https://docplayer.net/34200912-Eecs-451-digital-signal-processing-and-analysis-lecture-notes-j-fessler.html
https://doi.org/10.1155/2012/912194
https://doi.org/10.1109/ICCET.2010.5485542
http://mathworld.wolfram.com/RiemannIntegral.html
http://mathworld.wolfram.com/RiemannIntegral.html
https://doi.org/10.1177/1073274819876598


A diagnostic GSP-based system for automatic features analysis and detection of COVID-19 9

53. Chicco D. Ten quick tips for machine learning in com-
putational biology. BioData Mining 2017;10(35):1–17. doi:
10.1186/s13040-017-0155-3.

54. Chicco D, Jurman G. The advantages of the Matthews cor-
relation coefficient (MCC) over F1 score and accuracy in
binary classification evaluation. BMC Genomics 2020;21(1):6.
doi: 10.1186/s12864-019-6413-7.

55. Sokolova M, Japkowicz N, Szpakowicz S. Beyond
accuracy, F-score and ROC: a family of discriminant

measures for performance evaluation. Adv Artif Intell
2006;4304:1015–1021. doi: 10.1007/11941439_114.

56. Sokolova M, Lapalme G. A systematic analysis of perfor-
mance measures for classification tasks. Inf Process Manag
2009;45(4):427–37. doi: 10.1016/j.ipm.2009.03.002.

57. Mabrouk MS, Ezz MA. HSLC_FUGE: high speed and low
COST LABORATORY centrifuge for genomic DNA purifica-
tion. J Mech Med Biol 2012:12(05). doi: 10.1142/S02195194124
0026X.

https://doi.org/10.1186/s13040-017-0155-3
https://doi.org/10.1186/s12864-019-6413-7
https://doi.org/10.1007/11941439_114
https://doi.org/10.1016/j.ipm.2009.03.002
https://doi.org/10.1142/S02195194124&break;0026X

	A diagnostic genomic signal processing GSP-based system for automatic feature analysis and detection of COVID-19
	Introduction 
	Analyzing the COVID-19 virus from a medical point of view
	Comparison between different types of coronaviruses
	Classification of coronaviruses using image processing algorithms

	Materials and methods
	Database
	Numbering method
	Feature extraction
	Classification
	Evaluation

	Results and discussions
	Conclusions
	Key Points


