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Informatics methods, such as text mining and natural language processing, are always involved in bioinformatics research. In this
study, we discuss text mining and natural language processing methods in bioinformatics from two perspectives. First, we aim to
search for knowledge on biology, retrieve references using text mining methods, and reconstruct databases. For example, protein-
protein interactions and gene-disease relationship can bemined fromPubMed.Then, we analyze the applications of textmining and
natural language processing techniques in bioinformatics, including predicting protein structure and function, detecting noncoding
RNA. Finally, numerous methods and applications, as well as their contributions to bioinformatics, are discussed for future use by
text mining and natural language processing researchers.

1. Introduction

Text mining and natural language processing refer to com-
prehending and analyzing natural language by using com-
puter algorithms and programs. It is an important research
direction in the application field of artificial intelligence.
Research on natural language processing and text mining has
been reported as early as the emergence of computers. With
continuous and extensive research on machine learning and
data mining algorithms, existing text mining technologies
have achieved good results in automatic abstraction, auto-
matic question answering, web relational network analysis,
and anaphora resolution [1, 2].

Bioinformatics is an interdiscipline that emerged with
the progress and accomplishment of the Human Genome
Project. It predicts and solves live science problems related to
genetics by using computer and statistical informatics. Data
storage, retrieval, and analysis are the key processes in bioin-
formatics [3–7]. The National Center for Biotechnology
Information established various databases for biological data,
including sequence databases for storing DNA and protein
data (e.g., dbEST and dbSNP) [8, 9], Online Mendelian
Inheritance in Man database for storing disease data, Gene

Expression Omnibus database for storing gene chip data, and
PubMeddatabase for storing biological andmedical literature
[10].

Text mining and natural language processing techniques
are necessary to retrieve user preference knowledge from
expanding databases. Therefore, researchers retrieve papers
on certain topics of interest, such as determining protein-
protein interactions, from PubMed using computer algo-
rithms and programs. With the cracking of genetic codes,
researchers have determined that biological sequences, par-
ticularly protein sequences, are similar to human language
in terms of composition. In addition to using text mining to
retrieve bioinformatics articles directly, an increasing number
of researchers are regarding protein sequences as a special
“text” and analyzing thembased on existing textmining tech-
nologies. The relationship between bioinformatics and natu-
ral language processing is shown in Figure 1. Researchers have
also predicted the structures and functions of proteins. Based
on these two aspects, we summarize the text mining tech-
nologies used in bioinformatics research. We aim to present
these technologies to more bioinformatics researchers and
hope that the number of researchers who can use good text
mining technologies in bioinformatics studies will increase.
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Figure 1: Problems and methodology relationship between NLP and bioinformatics.

2. Mining Bioinformatics Literature

The development of text mining technology plays an impor-
tant role in retrieving biological literature, particularly in
establishing biological information databases. A special
workshop on biological literature retrieval problemswas con-
ducted during the Annual Meeting of the Association for
Computational Linguistics and the Annual International
Conference on Intelligent Systems for Molecular Biology in
2005 to discuss literature mining problems related to bioin-
formatics. Extracting protein-protein interactions and the
relationship between gene functions and diseases are two
leading application subjects.

2.1. Extracting Protein-Protein Interactions. Extracting the
protein interaction network is an important research topic
in bioinformatics and systems biology [11–14]. In previous
studies, researchers searched for protein-protein interactions
manually. However, with the exponential growth of biological
literature, a program that can recognize protein-protein inter-
actions automatically from PubMed abstracts is necessary.
Nevertheless, no unified naming rule for proteins has been
established yet. Many proteins and genes use the same name.
Consequently, recognizing protein names from the literature
abstracts and further determining their interactions are key
problems in the application of text mining in searching for
protein-protein interactions.

Initially, researchers extracted protein-protein interac-
tions through statistical and counting methods. They manu-
ally created dictionaries of protein names and then searched
abstracts that involve elements occurring at least twice. On
this basis, researchers determined that associated proteins

interact with one another [15]. Some researchers also used
dynamic planning to extract and compare protein-protein
interactions [16].

Extracting protein-protein interactions has been a
research hot spot in bioinformatics for a long time and has
attracted an increasing number of researchers in the fields of
text mining and natural language processing. First, the gram-
mar of literature abstracts is analyzed more carefully, rather
thanmaking a simple statistics of dictionary words. Kim et al.
converted a complicated semantic structure analysis into cal-
culating the shortest path in a graph by creating a nucleus [17].
Similar analysis methods of literature abstracts include gram-
matical analysis [18–21], context-free grammar analysis [22],
ontology analysis [23], and other information retrieval meth-
ods. Protein-protein interactions are examined using these
analysis methods. In addition, manymachine learning meth-
ods, such as ensemble learning [24] and Bayesian network
[25], are applied to recognize protein names and interactions.

2.2. Extracting the Relationship between Gene Functions and
Diseases. Extracting protein-protein interactions involves
searching for two proteins in the text and determining
whether they interact with each other. Similarly, extracting
the relationship between gene functions and diseases also
involves searching for gene names and disease names simul-
taneously in the literature and then determining whether a
particular gene is related to a certain disease [26].

In general, such extraction process can be divided into
three steps. First, the abstracts of associated papers are
searched through comparison with a dictionary. Second, the
search scope has to be expanded forward and backward
sometimes based on the location of the related word or clause
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to ensure accuracy. Finally, facts are evaluated using grammar
analysis methods or machine learning methods. Such extrac-
tion methods frequently yield good results for special genes
and diseases. Bui et al. examined the relationship between
drugs and HIV variation in PubMed [27]. Jiang et al. deter-
mined the relationship between approximately 3000 microR-
NAs and different diseases based on the naming rule of
microRNA [28]. Cheng et al. developed a text mining system
based on the relationship among human diseases, variations,
and drug effects [29]. Iossifov et al. focused on investigat-
ing malformations of human and mouse encephalon [30].
Jensen et al. made a detailed summary of related document
databases, literature mining software, and functions [31].

2.3. Retrieving References. A considerable amount of bio-
science literature has been published. Searching for interact-
ing proteins and examining the relationship between genes
and diseases are only two application cases. Text mining
technology is required to obtain answers to many other
bioscience and bioinformatics problems in various databases,
such as PubMed.

Biological literature mining and related problem solving
have to cope with two major problems, namely, recognizing
name entities and extracting relations. These problems are
mainly solved by (1)methods based on linguistic analysis [32],
(2) methods based on dictionaries [33], (3) machine learning
methods [34, 35], and (4) statistical methods [36].

Several important databases are also selected with text
mining. STRING [37] and BioGRID [38] are built for protein-
protein interaction with literature mining. For predicting
gene function, PubTator [39] and GeneCards [40] are impor-
tant databases using text mining techniques. Related works
were reviewed in detail in Huang and Lu’s work [41] recently.
As the development of crowdsource, artificial text searching
and mining can also be helpful for biomedicine literature
collection [42].

Moreover, converting PubMed database into an Exten-
sible Markup Language relational database [43] and a fuzzy
search of papers and author names through short-term
matching are also current research hot spots [44].

3. Applying Text Mining Technologies to
Protein Research

DNA and protein sequences are a meaningful genetic lan-
guage and are regarded as the sealed book of life. Therefore,
an increasing number of natural language processing and text
mining algorithms are being applied to study bioinformatics.
For example, latent semantic analysis was applied to protein
remote homology detection [45, 46], and protein spectral
analysis originates from word frequency statistics in natural
language processing. Furthermore, some grammar rules of
protein, DNA, and RNA sequences were discovered, and
several web servers were constructed so as to extract these
features and rules [47].

3.1. Predicting Protein Structure. Protein structure deter-
mines function [48]. Hence, it should be analyzed to deter-
mine protein function. The structural analysis of protein

mainly focuses on certain protein sequences and classifies
regions into the 𝛼-helix, 𝛽-lamella, and protein disordered
regions. Predicting the 𝛼-helix and 𝛽-lamella regions is the
same as predicting the secondary protein structure.

If a protein sequence is regarded as a natural language,
then analyzing the type of protein in a region is similar to
calibrating grammar in natural language processing. First, the
secondary protein structure is predicted by combining rules
and statistics [49–52]. However, faced with the bottleneck of
statistical prediction, some researchers have proposed using
machine learning prediction methods, including methods
based on artificial neural network (ANN) [53], support
vector machine (SVM) [54, 55], random forest [56–58], and
maximum entropy [59].

Predicting the protein disordered region is also con-
ducted. This region refers to the area without a stable or
unique 3D structure in the protein space structure. Many text
mining and machine learning methods, including ANN
[60–62], SVM [63–65], conditional random field [66], and
random forest [67], have been used to predict the protein
disordered region. Common existing server addresses are
listed in Table 1.

3.2. Predicting Protein Function. Predicting protein function
is one of the most basic research topics in bioinformatics.
It involves predicting protein-protein interactions and inter-
action sites [68, 69], localizing subcellular protein [70–78],
predicting and classifying transmembrane protein [79–82],
protein remote homology detection [83, 84], classifying pro-
tein functions [85–93], recognizing multifunctional enzymes
[94–96], and DNA binding protein identification [97, 98].

The protein sequence is easy to determine. Similar to
natural language, the protein sequence hasmany complicated
rules. However, summarizing and understanding the rules
of protein sequences are difficult. Therefore, analyzing and
predicting the “protein language” expressed by amino acid
sequences by using computational linguistics and machine
learning methods are necessary. Through these procedures,
we may be able to understand the functions of protein
sequences.

Predicting protein-protein interactions is one of the most
basic research topics in protein functions. Many researchers
are committed to predicting whether two protein sequences
exhibit interactions. To date, many machine learning meth-
ods have been applied, including SVM [99], kernel method
[100, 101], decision-making tree [102, 103], random for-
est [104], Bayesian network [105], and the autoregressive
model [106]. Several text processing methods, such as ontol-
ogy annotation and sample weighting [107], are used to
detect features and process training data. When predicting
protein-protein interactions, researchers also aim to ana-
lyze the region of protein-protein interactions, which is
used to predict protein-protein interaction sites. Information
approaches commonly used in grammatical analyses, such
as condition random fields [108] and a hidden Markov
model (HMM) [109], have been used to analyze interaction
sites and have achieved good results. Moreover, random
forest [110], SVM [111], ANN [112], Bayesian network [113],
linear regression [114], and other machine learning methods
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Table 1: Web server for protein disorder prediction.

Problem Name Websites Input format

Protein
disorder
prediction

DisProt
http://www.disprot.org/pondr-fit.php

Fasta or EMBL sequence formathttp://www.disprot.org/metapredictor.php
http://www.dabi.temple.edu/disprot/predictor.php

DisEMBL http://dis.embl.de/ SwissProt ID
DRIPPRED http://www.sbc.su.se/∼maccallr/disorder/cgi-bin/submit.cgi Only plain sequence; one sequence once; slow
FoldIndex http://bip.weizmann.ac.il/fldbin/findex Only plain sequence; one sequence once
IUPred http://iupred.enzim.hu/ SwissProt ID or plain sequence
PONDR http://www.pondr.com/cgi-bin/PONDR/pondr.cgi Fasta
PSIPRED http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1 Raw sequence or fasta format
SCRATCH http://scratch.proteomics.ics.uci.edu/ Only plain sequence; one sequence once; slow

Spritz http://distill.ucd.ie/spritz/ Raw sequence or fasta format
RONN http://www.strubi.ox.ac.uk/RONN/ Fasta, but only one sequence once

Table 2: Web server for protein-protein interaction and sites prediction.

Problem Name Websites Input format

Protein
interaction sites
prediction

PPISP http://pipe.scs.fsu.edu/ppisp.html PDB file
http://pipe.scs.fsu.edu/meta-ppisp.html

Protemot http://protemot.csbb.ntu.edu.tw/index.html PDB ID
SPPIDER http://sppider.cchmc.org PDB file or PDB ID
Whiscy http://nmr.chem.uu.nl/Software/whiscy/index.html PDB file

Protein-protein
interaction
prediction

InterPreTS http://www.russell.embl.de/cgi-bin/tools/interprets.pl Fasta, 40 sequences at most
PIE http://www.ncbi.nlm.nih.gov/CBBresearch/Wilbur/IRET/PIE/ Gene ID or name
PPI http://121.192.180.204:8080/PPI/Home.jsp Fasta

PredHS http://www.predhs.org/ PDB files, 10 files at most
Pred-PPI http://cic.scu.edu.cn/bioinformatics/predict ppi/default.html Two fasta sequences
Prism http://cosbi.ku.edu.tr/prism/ Two PDB IDs or PDB files

Struct2Net http://groups.csail.mit.edu/cb/struct2net/webserver/ Gene names or keywords

are used to predict protein-protein interaction sites. Never-
theless, some researchers doubt that determining the protein
sequence alone is inadequate to provide sufficient infor-
mation for predicting interactions [115]. Text mining and
machine learning researchers should develop new features
and classificationmethods to solve this problem.Thewebsites
of existing common software used to predict protein-protein
interactions and interaction sites are provided in Table 2.

4. Applying Natural Language
Processing Techniques to Noncoding
RNA Identification

4.1. Comparative RNA Prediction Methods. Alignment is also
an important topic in natural language processing. DNA or
RNA sequences can also be viewed as text. Sequence-based
multiple sequence alignment methods can be used only at
the sequence similarity level. The secondary structures of
ncRNAs are usually more conserved than their sequences
[116, 117]; for example, miRNA precursors share the common

hairpin-like structure and tRNAs form cloverleaf structures
[118, 119].The functions of many ncRNAs are therefore deter-
mined by their secondary structure rather than by their
sequences. As a result, structure-based multiple sequence
alignment methods have been developed to align an input
sequence to known ncRNA structures to determine the
ncRNA class to which the input sequence belongs.

LocARNA [120] can produce fast and high-quality pair-
wise and multiple alignments of RNA sequences. It uses a
complex RNA energy model for simultaneous folding and
sequence/structure alignment of the RNAs. LocARNA per-
forms global and local sequence alignments as well as local
structural alignment of RNA molecules. An upgraded ver-
sion of LocARNA, called LocARNA-P, has been developed
recently [121]. The new version incorporates a probabilistic
model that can compute accurate multiple alignments based
on a probabilistic consistency transformation and reliability
profiles for assessing local alignment quality and localizing
RNAmotifs.These features are based on computing sequence
and structure match probabilities based on the LocARNA
alignment model.
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Table 3: Multiple sequence alignment tools.

Tool Alignment method URL
BLAT

Sequence-based
http://genome.ucsc.edu/

BLAST http://www.ncbi.nlm.nih.gov/
BWA-SW http://bio-bwa.sourceforge.net
Multilign

Structure-based

http://rna.urmc.rochester.edu/
FoldalignM http://foldalign.ku.dk/
LocARNA/LocARNA-P http://www.bioinf.uni-freiburg.de/Software/LocARNA/
MASTR http://mastr.binf.ku.dk/
RAF http://contra.stanford.edu/contrafold/
RNASampler http://ural.wustl.edu/software.html
RNAshapes http://bibiserv.techfak.uni-bielefeld.de/rnashapes/
RNAalifold http://www.tbi.univie.ac.at/RNA/
StemLoc N.A.
MAFFT http://mafft.cbrc.jp/alignment/software/index.html
MiRAlign http://bioinfo.au.tsinghua.edu.cn/miralign/

Table 4: miRNA identification methods.

Method URL Online service Local service
MiPred http://www.bioinf.seu.edu.cn/miRNA/ ✓ ✓

microPred http://www.cs.ox.ac.uk/people/manohara.rukshan.batuwita/microPred.htm ✓

TripletSVM http://bioinfo.au.tsinghua.edu.cn/mirnasvm ✓

PlantMiRNAPred http://nclab.hit.edu.cn/PlantMiRNAPred/ ✓ ✓

miRNApre http://121.192.180.205:8080/miRNApreWeb/ ✓ ✓

MIReNA http://www.ihes.fr/∼carbone/data8/ ✓

HuntMi http://adaa.polsl.pl/agudys/huntmi/huntmi.htm ✓

Mirident http://www.regulatoryrna.org/pub/mirident ✓

CSHMM http://web.iitd.ac.in/∼sumeet/mirna/ ✓

HeteroMirPred http://ncrna-pred.com/premiRNA.html ✓ ✓

Although comparative methods perform well in most
cases, they have three intrinsic limitations: (1) they are highly
dependent on the availability of homologous sequences or
structures and cannot make predictions when no relevant
sequence similarity or structure similarity is available; (2)
they cannot correctly identify real ncRNAs that have low
homology with known ncRNAs; and (3) they can identify
only ncRNAs that are homologous with members of known
ncRNA classes but cannot identify members of novel ncRNA
classes. Most lncRNAs (long noncoding RNAs) cannot be
predicted using comparative methods because they do not
have specific structures or sequence similarity. These limita-
tions mean that comparative methods display low specificity
for identifying ncRNAs. The multiple sequence alignment
tools that are currently available are listed in Table 3.

4.2. Noncomparative RNA Prediction Methods. The noncom-
parative methods are independent of homologous informa-
tion and can, therefore, detect nonconserved ncRNAs. Most
noncomparative methods employ machine learning tech-
niques to make the predictions [122], which are similar to the
text mining techniques.

Table 5: Secondary prediction tools.

Tool URL
RNAfold http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi
RNAstructure http://rna.urmc.rochester.edu/rnastructure.html
mfold http://www.bioinfo.rpi.edu/applications/mfold/
vsfold http://www.rna.it-chiba.ac.jp/∼vsfold/vsfold4/
evofold http://users.soe.ucsc.edu/∼jsp/EvoFold/
sfold http://sfold.wadsworth.org/cgi-bin/index.pl

Because of the importance of RNA structure, several
computational RNA folding tools have been developed, such
asmfold, RNAfold, vsfold, evofold, and sfold. Generally, these
algorithms determine the folded secondary structure from
and input sequence by optimizing the intermolecular base
pairing to minimize the free energy. Some miRNA identi-
fication methods are shown in Table 4 and existing RNA
secondary prediction tools are listed in Table 5.

5. Conclusion and Future Research

As research on natural language and text mining methods
develops, different application fields will be the key to future
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studies. Interdisciplines represented by bioinformatics are
becoming the focus of an increasing number of information
science researchers. The application of text mining technolo-
gies and methods in bioinformatics study will become the
focus of text mining researchers. Meanwhile, bioinformatics
researchers have to learn textmining technologies intensively
to solve specific bioinformatics problems.

In retrieving biological literature, apart from the afore-
mentioned prediction of protein-protein interactions and
gene-disease relationship, many problems, particularly those
that require updating literature retrieval results, such as the
relationships between adverse drug reaction and molecule
composition as well as among single nucleotide polymor-
phism sites, diseases, and adverse drug effects, require the use
of text mining to search for related knowledge in a literature
database.

In bioinformatics, nearly all studies related to proteomics
and predicting protein structure according to amino acid
sequences can be conducted using text mining and natural
language processing technology. Many mature texts mining
technologies, such as word frequency statistics, condition
random fields, HMM, and context-free grammar, have been
successfully applied to predict secondary protein structures,
irregular regions, interactions, and interaction sites. How-
ever, the latest research results in text mining and natural
language processing should be verified by applying them
in protein and DNA languages. No effective computation
method is available yet for predicting third and fourth protein
structures, protein homology remote detection, protein dis-
ordered region detection, interaction network establishment,
and drug target prediction. Information science researchers
should develop and provide more effective algorithms. In
addition, new machine learning and text mining methods
(e.g., semisupervised learning and active learning) have been
proposed and will be applied in biological literature retrieval
and bioinformatics. At present, recommending systems based
on feedback has become a new hot spot problem in retrieving
biological literature. And the Hadoop technique for big data
is another hot spot for biology sequences [123].

The development of bioinformatics relies on information
science. In particular, text mining and natural language proc-
essing researchers should provide a more extensive appli-
cation space. Researchers of text mining algorithms should
develop more effective intelligent algorithms based on the
characteristics of biological data. This study does not only
summarize text mining methods used in bioinformatics and
corresponding problems, but it also provides related web-
sites of successful prediction software. Recently, text mining
researchers who are involved in bioinformatics can test and
compare different types of software.The authors hope that the
number of text mining researchers who can apply their own
methods in bioinformatics will increase, which will facilitate
the development of bioinformatics and even genetic studies.
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