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Abstract: In this century, the rapid development of large data storage technologies, mobile 

network technology, and portable medical devices makes it possible to measure, record, store, and 

track analysis of large amount of data in human physiological signals. Entropy is a key metric for 

quantifying the irregularity contained in physiological signals. In this review, we focus on how 

entropy changes in various physiological signals in COPD. Our review concludes that the entropy 

change relies on the types of physiological signals under investigation. For major physiological 

signals related to respiratory diseases, such as airflow, heart rate variability, and gait variability, 

the entropy of a patient with COPD is lower than that of a healthy person. However, in case of 

hormone secretion and respiratory sound, the entropy of a patient is higher than that of a healthy 

person. For mechanomyogram signal, the entropy increases with the increased severity of COPD. 

This result should give valuable guidance for the use of entropy for physiological signals measured 

by wearable medical device as well as for further research on entropy in COPD.

Keywords: entropy, heart rate variability, physiological signal, respiratory pattern, COPD, 

irregularity

Introduction
COPD is a major threaten to public health. Its diagnosis, assessment, and treatment 

vary based mostly on the severity of airflow limitation. The widely used method for 

objective assessment of functional limitation is to characterize lung function with 

spirometry, including indices such as forced expiratory volume in 1 second (FEV
1
), 

forced vital capacity (FVC), and FEV
1
/FVC ratio. However, this spirometry cannot 

be used for the assessment of a patient’s continuous biological dynamics. Therefore, 

researchers have studied the diagnosis, assessment, and treatment of COPD by continu-

ously measuring the dynamics of physiological parameters of COPD patients.1–11

In this century, the rapid development of wearable, mobile, automatic, continuous, 

high-throughput medical device for measuring human physiological parameters heralds 

a new era – high-throughput phenotyping era.12–14 One of the key features that can be 

extracted from the data obtained by the high-throughput medical device is the entropy 

of physiological signals. Thus, entropy studies in various major diseases including 

respiratory diseases are arising as an important method to analyze these continuous-

monitoring data measured by noninvasive medical devices.

The irregularity of physiological signals can be represented by entropy of biological 

dynamics contained in the physiological signals measured by continuous-monitoring 

medical devices. Entropy was proposed by Clausius in 1854 and statistical entropy 

was proposed by Boltzmann in 1886.15 The initial entropy is applied to the physics 

of thermodynamics and statistical physics. In 1948, Shannon16,17 proposed an entropy 

(later known as Shannon entropy) that was then largely applied in information science. 

The Kolmogorov-Sinai entropy17 and Renyi entropy,18,19 which were developed on the 
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basis of Shannon’s entropy, are widely used in the nonlinear 

dynamics of the physical system. In physiological dynamic 

system, various extended concepts of entropy (such as 

approximate entropy [ApEn]),20 cross-approximate entropy 

(Cross-ApEn),21 sample entropy (SampEn),22 and multi-

scale entropy23,24 have been developed to quantify various 

physiological signals (eg, heart rate, airflow, pressure in 

airway, and sound signal). 

It is well known that the entropy of heart rate is normally 

lower in patients with cardiovascular diseases than in healthy 

people.25,26 Does a patient with COPD have a lower value of 

entropy in each type of physiological signals than a healthy 

person? If not, what pattern does the entropy of each type 

of physiological signals have based on all the major studies 

that have been conducted for entropy analysis in COPD? 

So far, a number of studies have been conducted to inves-

tigate the entropy of physiological signals in patients with 

COPD.1–11 Hence, we conducted a systematic review on the 

available literature to address these questions on the entropy 

of physiological signals in COPD patients.

Methods
Search strategy and inclusion criteria
We searched EMBASE, PubMed, and Google Scholar 

for the application of entropy in respiratory diseases until 

June 2017. The keywords for searching were respiratory tract 

diseases, respiration disorders, pulmonary disease, chronic 

obstructive, and entropy. Articles resulting from these 

searches and relevant references cited in those articles were 

reviewed. After removal of duplicates, a total of 239 poten-

tially relevant articles in the initial database search were 

identified. Finally, 12 studies met the selection criteria for 

this review (Figure 1).

Trials included in this review met the following criteria: 

1) use of entropy to analyze physiological signals, 2) patients 

suffered from COPD, and 3) published articles, excluding 

conference abstracts because the results of conference 

abstracts may not be reliable as they have not gone through 

rigorous peer review.

Data extraction and quality evaluation
We extracted the following characteristics and results from 

selected studies: physiologic signals, study, location, number 

of subjects, age in years, gender ratio, pulmonary function, 

and entropy result.

We used the scoring system developed by Jadad et al to 

evaluate the quality of the publications.27 Randomization, 

double blinding, and description of withdraw are considered. 

Possible scores range from 0 to 5. The recommendation for 

applying entropy to analyze the physiologic signals of COPD 

using the grading of evaluation system (Table 1) was rated 

as very low, low, moderate, or high.28,29

Entropy studies on COPD
For entropy studies on COPD, various physiological signals 

have been measured. These signals include heart rate variability 

(HRV), airflow, hormone secretion, gait variability, airway 

pressure, sound signal, and mechanomyogram (MMG) signal 

(Table 2). We should examine these physiological signals 

one by one in the entropy studies of COPD.

HRV
Both COPD and heart problems (specifically heart failure) 

have one serious symptom in common – difficulty in breath-

ing, which has a high impact on heart activity. One common 

indication of heart activity is HRV which is the variation in 

time interval between heartbeats. HRV is also commonly 

referred as RR variability (where R is a point corresponding 

to the peak of the QRS complex of the ECG wave and 

RR is the interval between two successive R’s). Studies 

have demonstrated that COPD patients showed significant 

imbalances of heart autonomic regulation, with a reduction 

in HRV.25,26 Therefore, multiple studies on the entropy of 

HRV have been conducted in COPD patients with various 

•
•

•

Figure 1 PRISMA flow diagram.
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Table 1 GRADE analysis: applied entropy to physiologic parameters of COPD

Primary/secondary 
outcome

N
(arms)

Risk of 
bias

Inconsistency Indirectness Imprecision Publication 
bias

Large 
effect

Overall quality 
of evidence

HRV 46 (3) No No No No No No +/+/+/+/; high
Airflow 104 (1) No No No No No No +/+/+/+/; high
Hormone secretion 17 (1) No No No No Serious No +/+/+/−/; moderate
Gait variability 48 (1) No No No No No No +/+/+/+/; high
Airway pressure 12 (1) No No No No Serious No +/+/+/−/; moderate
Respiratory sound 37 (3) No No No No No No +/+/+/+/; high
MMG 16 (2) No No No No No No +/+/+/+/; high

Notes: GRADE working group grades of evidence: high quality, further research is very unlike to change our confidence in the estimate of effect. Moderate quality, further 
research is likely to have an important effect on our confidence in the estimate of effect and may change the estimate. Low quality, further research is very likely to have an 
important effect on our confidence in the estimate of effect and is likely to change the estimate. Very low quality, the estimate of effect is uncertain.
Abbreviations: GRADE, grading of recommendations assessment, development, and evaluation; HRV, heart rate variability; MMG, mechanomyogram signal.

degrees of severity. Table 2 summarizes the studies on the 

entropy of HRV in the COPD patients.

Goulart et al conducted a cross-sectional study in 10 COPD 

patients affected by moderate to very severe disease. They 

recorded HRV using a polar cardio-frequency meter at rest 

in the sitting position (10 minutes) and during a respiratory 

sinus arrhythmia maneuver (RSA-M, 4 minutes).1 They 

evaluated the HRV entropy using both ApEn and SampEn. 

They observed reduced entropy indicated by either entropy 

index during RSA-M. Mazzuco et al conducted a study 

on 16 sedentary males with COPD to investigate whether 

impairment of static lung volumes and lung diffusion capacity 

could be related to HRV indices in patients with moderate 

to severe COPD.2 They used ApEn to assess irregularity 

of HRV and observed a significantly (p,0.05) decreased 

entropy of HRV in sitting RSA-M as compared to either 

supine standing or supine sitting position.

Borghi-Silva et al conducted a randomized controlled trial 

to investigate the potential effect of 6- versus 12-weeks of 

physical training on cardiac autonomic function and exercise 

capacity in COPD.3 In this trial, 20 moderate to severe COPD 

patients were randomly assigned 10 each to either a training 

group or a control group. They assessed the HRV irregularity 

using SampEn at rest and during submaximal test. They 

observed significantly increased entropy in the training group 

after 6 weeks of physical training program as compared to its 

corresponding baseline. They concluded that the short-term 

rehabilitation for 6 weeks was beneficial to cardiac regulation 

in patients with COPD.

Airflow
Respiratory mechanics is known to be an important factor 

contributing to the genesis of the respiratory pattern. Also 

there are studies investigating the use of nonlinear dynamical 

analysis to characterize the entropy of respiratory patterns.30 

COPD may result in modifications in airflow pattern and 

its entropy.

Dames et al conducted an observational controlled study 

investigating the influence of airway obstruction in the 

entropy of airflow in COPD and its use as a marker of disease 

activity.4 They used a bellows spirometer to perform simulta-

neous airflow and forced oscillation measurements in each of 

the following 88 subjects: 11 mild, 18 moderate, 16 severe, 

14 very severe COPD patients, 13 NE subjects (ie, smoking 

subjects that presented a normal respiratory response to the 

spirometric exam), and 16 control subjects (ie, healthy indi-

viduals without a previous history of pulmonary or cardiac 

disease and smoking). They applied SampEn to quantify 

the entropy of airflow and found that the SampEn of airflow 

during resting breathing decreased significantly (p,0.0001) 

with increasing airway obstruction and is reduced in propor-

tion to airway obstruction in COPD patients. Further using 

receiver operating curve analysis, they found that SampEn 

exhibited adequate values for diagnostic use in all COPD 

groups. They concluded that the entropy of airflow may serve 

as a novel respiratory biomarker to facilitate the diagnosis of 

respiratory abnormalities in children and older patients, as 

well as for home-based monitoring of lung diseases.

Gait variability
Gait variability is a commonly used index as aimed to quantify 

the natural stride-to-stride fluctuations during walking. When 

compared with healthy people, patients with COPD may 

have an increased incidence of falls and demonstrate balance 

deficits while walking.31 Therefore, the measurement of gait 

variability has been used as an indicator to calculate the risk 

of falling. Yentes et al investigated whether changes in gait 

variability are present in patients with COPD as compared to 

healthy controls. They recruited 20 patients with COPD and 

28 healthy controls in this study.32 Subjects were asked to 
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walk on a treadmill at three speeds: their self-selected pace, 

120%, and 80% of their self-selected pace. Then they used 

SampEn to measure the regularity within the time series of 

step length, step time, and step width. They found that the 

SampEn of gait variability in COPD patients was lower 

than that of healthy controls while walking. This decrease 

in regularity has a possible association with a loss of flexible 

adaptations, which suggests a reasonable explanation for the 

increased occurrence of falls in COPD patients.

Hormone secretion
Catabolic illnesses and low physical fitness are characteristic 

features of COPD, likewise predicts greater responsiveness of 

beta-endorphin and corticotropic (ACTH), adrenal (cortisol), 

and adrenal medullary hormones (Epi) to an exercise stimulus. 

Iranmanesh et al conducted a study investigating the impact 

of exercise level on hormone pattern irregularity (measured 

by ApEn) of sympathoadrenal outflow, namely the secretion 

of stress-adaptive noradrenergic hormone, Epi, ACTH, and 

cortisol.5 This study involved 8 healthy men and 9 COPD 

male patients. Cross-ApEn quantifies the relative synchrony 

(joint regularity) of subpatterns in paired time series.33,34 They 

found that the entropy of hormone secretion in COPD patients 

was higher than that in healthy men during maximal exer-

cise. Higher ApEn defines greater irregularity of hormone 

secretion pattern. It was also found that exercise benefits the 

regularity of the patterns (lower ApEn) of ACTH, cortisol, 

Epi, and noradrenergic hormone release.

Therefore, men with stable COPD fail to achieve normal 

exercise-induced corticotropic axis and adrenomedullary 

outflow.

Airway pressure
Rabarimanantsoa et al and Letellier et al conducted a study 

for the evaluation of patient-ventilator interactions during 

noninvasive ventilation.6,35 They applied pressure support 

noninvasive ventilation to 4 COPD patients, 4 obesity 

hypoventilation syndrome patients in stable state, and 

4 healthy subjects during six successive 10-minute periods 

with various inspiratory pressure and recorded airflow and 

airway pressure using sensors located near the mask. They 

applied Shannon entropy to airway pressure and the total dura-

tion of the respiratory cycle. If these two entropies are ,1, 

then it means that the quality of patient-ventilator interactions 

during noninvasive ventilation was high. They found that the 

Shannon entropy can evaluate patient-ventilator interactions 

objectively during noninvasive ventilation. Because airway 

pressure is a reflection of the interaction between a patient 

and a ventilator, not just a physiological signal of a patient, 

this study did not illustrate the difference in entropy between 

COPD patients and healthy people.

Respiratory sound
Sound signals produced by the airflow during inspiration and 

expiration can now be used to detect potential pulmonary 

dysfunctions. There are some entropy analysis methods pro-

posed which showed valuable potential in the evaluation and 

discrimination of the complexity of respiratory sound signals 

in COPD patients. The respiratory sounds can be classified 

as breath sounds, abnormal breath sounds, and adventitious 

sounds.36 Adventitious sounds are abnormal sounds that can 

indicate some type of respiratory disorders. These sounds 

include wheezes (continuous sounds), stridors, squawks, 

rhonchi, and crackles (discontinuous sounds). Wheezes are 

characterized by periodic waveforms with a dominant fre-

quency (.100 Hz) and with a duration (.100 ms). Based on 

their total duration, crackles are commonly being classified 

as fine (,10 ms) or coarse (.10 ms).

Mendes et al tested 7 different features to identify the 

best subset of features that allows a robust detection of 

coarse crackles.7 One of the features is local entropy, which 

is essentially Shannon entropy. For this entropy, respira-

tory sound signals are quantized into 6 levels first. Then 

the Shannon entropy is calculated based on the frequency 

of sound signals in each of the 6 levels. Mendes et al calcu-

lated the features including Shannon entropy in two datasets 

(ie, the first channel of the repository “Crackle a” and the 

repository “Crackle c”) available online. This is the expected 

type of crackles to be found in patients with COPD. They 

found that the Shannon entropy tends to be higher in presence 

of crackles. They also calculated the quartile for different pro-

cessing algorithms to improve the robustness against outliers 

and to improve the performance of the detection of crackles. 

Shannon entropy was the best individual feature.

Mondal et al proposed an automatic lung status detection 

algorithm based on SampEn approach. This method consists 

of two approaches: Hilbert transformation and SampEn.8 They 

used SampEn to value the frequency spectrum of lung sound. 

The lung sound recordings included normal and abnormal 

lungs conditions from 8 subjects. These pathological prob-

lems contained COPD, asthma, and interstitial lung disease 

(ILD). The SampEn in abnormal subjects was higher than 

that in normal subjects.37 Then they conducted another study 

and extracted sound signals from 10 normal and 20 abnormal 

subjects to analyze. The SampEn index for abnormal subjects 

was found to be higher for normal cases due to the unstable 
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condition of the respiratory system associated with the 

disease severity. They found that SampEn of respiratory 

sounds can reflect the pulmonary status. The authors sug-

gested that this algorithm could be used as a diagnostic tool 

for its capability to assist the physicians in prognosis of the 

lung status of COPD patients.

Aydore et al developed a method to classify the wheeze 

and non-wheeze epochs within respiratory sound signals.9 

They chose four features for classification: kurtosis, Renyi 

entropy, f50/f90 ratio, and mean-crossing irregularity. The 

data used in this study were taken from the data of COPD 

and asthma patients, which were recorded by the 14-channel 

respiratory sound data acquisition system. Data obtained 

from 4 male and 3 female subjects at the age of 50±17 were 

used. The results showed that the Renyi entropy was higher 

in presence of wheezes.

Respiratory muscle MMG
Respiratory muscle dysfunction is a common problem 

in COPD patients. The MMG of respiratory muscles is a 

promising noninvasive technique to evaluate the respiratory 

muscular effort. MMG quantifies the low-frequency lateral 

oscillations of the muscle fibers during contraction. The time 

and frequency domain of the MMG signal can be used to 

assess a patient’s respiratory muscle function.10,11,38–40

Torres et al conducted a study to assess the respiratory 

muscular function in COPD patients.10 The MMG signals 

from left and right hemidiaphragm were acquired using two 

capacitive accelerometers placed on both left and right sides 

of the costal wall surface in 6 patients with severe COPD 

while these patients carried out an inspiratory load respira-

tory test. The maximum inspiratory pressure (IPmax) and 

diaphragm MMG parameters were analyzed in 6 patients 

with severe COPD. Renyi entropy was used to quantify the 

amplitude change in the MMG signal. They found a positive 

correlation between the IPmax developed in a respiratory 

cycle and Renyi entropy with alpha =0.5 (left side: 0.73±0.11 

and right side: 0.77±0.08). It was also found that the Renyi 

entropy of the MMG signal amplitude also increased when 

the inspiratory pressure increased.

In their previous works, Torres et al studied animal 

models (dogs) and found a positive correlation between 

amplitude parameters of the diaphragmatic MMG signal and 

the respiratory effort. They calculated the Shannon entropy 

of the MMG signal during the diaphragm muscle voluntary 

contraction.41 Then they used Renyi entropy to analyze the 

spatiotemporal patterns of the MMG signal.42 Their results 

showed an increase in Renyi entropy of the MMG signal 

with an increase in the respiratory effort. They demonstrated 

that Renyi entropy shows better performance than Shannon 

entropy and other metrics in all the MMG signals analyzed.

Sarlabous et al quantified the amplitude variations in 

biomedical signals by means of moving ApEn with fixed 

tolerance values.43 Their MMG signals were acquired in 

animal models (dogs). The results showed that the informa-

tion provided by MMG signals could be used to evaluate the 

respiratory effort and muscular efficiency in COPD patients. 

Then they conducted a study to noninvasively evaluate the 

mechanical activation of inspiratory muscles during tidal 

volume breathing in patients with severe to very severe 

COPD.39 They investigated the IPmax and respiratory muscle 

MMG of 5 severe and 5 very severe COPD patients under 

both quiet breathing and maximal voluntary ventilation 

conditions.38 They used moving SampEn with fixed tolerance 

values – fixed sample entropy (fSampEn) to estimate the 

respiratory muscle effort from MMG recordings. Then they 

calculated fSampEn for each inspiratory cycle of the averaged 

MMG. They found that the average fSampEn in very severe 

COPD patients was significantly higher (p,0.05) than that 

of severe COPD patients under either quiet breathing or 

maximal voluntary ventilation condition.

Through our review on the entropy studies, we obtained 

the following general results: regarding HRV, the entropy 

decreases during respiratory sinus arrhythmias; regarding 

airflow and gait variability, the entropy in a patient is lower 

than that in a healthy person; regarding hormone secretion, 

the entropy in COPD patients is higher than that in healthy 

people during maximal exercise; regarding sound signal, the 

entropy is higher in abnormal subjects; and regarding MMG 

signal, the entropy increases as the severity of the disease 

increases. These general results regarding HRV, airflow, and 

MMG are illustrated in Figure 2.

Discussion
With the rapid development of wearable, mobile, automatic, 

continuous, high-throughput medical device, continuous 

monitoring of physiological signals is becoming more and 

more important in the diagnosis and treatment of COPD.12,13 

One of the keys in analyzing continuous-monitoring data is 

the entropy of physiological signals. Consequently, a number 

of studies have been conducted to investigate the entropy 

of physiological signals in patients with COPD. However, 

so  far as we know, no one has published a sophisticated 

review specifically on the entropy change of COPD. To look 

for the pattern in the entropy change in COPD, we conducted 

a systematic review on the available literature.
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The results from our review show that the pattern of 

entropy change in COPD depends on the physiological 

signals, which is summarized as follows. In case of COPD, 

in each of three physiological signals – HRV, airflow, and 

gait variability – the entropy in a patient is lower than that 

in a healthy person; it is lower in more severe patients; and 

exercise increases entropy. By contrast, in case of hormone 

secretion, the entropy in a patient is higher than that in a 

healthy person during maximal exercise; in case of respira-

tory sound, the entropy is higher in COPD patients with 

abnormal sound signals. In case of MMG, the entropy is 

also higher in more severe patients or in those with increased 

inspiratory pressure (Table 2).

These results can be effectively explained based on 

Goldberger hypothesis which states that increased regularity 

(ie, low entropy) of signals represents a “decomplexification” 

that is characteristic of illness.44 Through our review, we note 

that in case of COPD, in each of three important physiological 

signals – airflow, HRV, and gait variability – the entropy in 

a patient is lower than in a healthy person and it is lower in 

a more severe patient.

The higher entropy of hormone secretion in a COPD 

patient during maximal exercise could be explained by the 

selective attenuation of pulsatile hormone secretion and 

failure to regularize ACTH secretion patterns. The impact 

of catabolic illness in COPD on corticotropin secretion 

is important (many studies have shown cross interaction 

between hormone secretion and catabolic disorders). And 

this pathway is impaired in patients with COPD.5

It should be noted that Goldberger’s hypothesis could 

not explain few other physiological signals such as MMG 

and respiratory sound. In case of MMG signal, irrespec-

tive of the type of entropy calculation used (eg, Renyi 

entropy, Shannon entropy, ApEn, and SampEn), the entropy 

increases as the severity of COPD increases.10,38,39 This may 

be explained by the fact that following the exacerbation of 

airflow obstruction, greater mechanical activation of respira-

tory muscle is required.40 In case of respiratory sound, higher 

entropy in abnormal subject may be due to the fact that the 

sound signals of patients with wheeze or crackle are irregular 

or more complex in nature. These abnormal sound signals are 

produced by the unstable condition of the respiratory system 

associated with disease severity.8

It is worth to mention that the analysis of MMG signal 

could be a useful alternative approach for assessing the 

function of respiratory muscles in patients with COPD.41,42 

Respiratory muscle MMG reflects the mechanical counterpart 

of the neural activity measured by electromyography. The 

amplitude of the MMG signal is usually estimated by average 

rectified value (ARV) or root mean square (RMS). In these 

studies, they found that entropy analysis is robust against 

cardiac vibration interference. Although MMG vibrations are 

Figure 2 Entropy change in COPD.
Notes: The error bar represents standard error. First part uses approximate entropy and sample entropy as mentioned in Goulart Cda et al.1 Second part uses sample 
entropy as mentioned in Borghi-Silva et al.3 Third part uses sample entropy as mentioned in Dames et al.4 ^Smoking subjects that presented a normal respiratory response to 
the spirometric exam. Fourth part uses fixed sample entropy as mentioned in Sarlabous et al.11

Abbreviations: HRV, heart rate variability; MMG, mechanomyogram signal; RSA-M, respiratory sinus arrhythmia maneuver.
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random in nature, the entropy is less influenced by cardiac 

vibrations than ARV and parameters. These are the advan-

tages for the use of entropy as compared to ARV and RMS.

Currently, entropy analysis using entropy for discrimi-

nating the disease progression of COPD patients had not 

been broadly utilized according to the available literature. 

As shown in our review, despite the availability of various 

newly proposed entropy measures, none of them have been 

broadly accepted for classifying COPD-related physiological 

signals. Sample entropy, which has the biggest clinical 

potential to be a novel index in COPD, is gaining increasing 

popularity among all the other available entropy measures. 

However, the difficulty with sample entropy analysis lies 

in the requirement of multiple parameters adjustment such 

as tolerance and embedding dimension, because different 

results might be produced from different settings of the 

parameters. Therefore, entropy alone is inadequate to be 

used as a credible clinical analysis tool at present. Besides, 

our review shows that, to optimize the analysis result, for 

different physiological signals, there should be different 

entropy measures. Thus, the most practical way at present 

is to explore the comprehensive pattern of entropy change 

in different disease statuses as well as to compare the cons 

and pros of all proposed entropy measurements. It is hoped 

that in the future more stable entropy measures would be 

developed with broader clinical usage in various COPD-

related physiological signals.

Conclusion
The summarized result obtained through our review should 

give valuable guidance for further research on the entropy in 

COPD and provide basis for the use of entropy for physiological 

signals measured by wearable medical device.
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