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Abstract
Background: A widely-used approach for screening nuclear DNA markers is to obtain sequence data and use 
bioinformatic algorithms to estimate which two alleles are present in heterozygous individuals. It is common practice 
to omit unresolved genotypes from downstream analyses, but the implications of this have not been investigated. We 
evaluated the haplotype reconstruction method implemented by PHASE in the context of phylogeographic 
applications. Empirical sequence datasets from five non-coding nuclear loci with gametic phase ascribed by molecular 
approaches were coupled with simulated datasets to investigate three key issues: (1) haplotype reconstruction error 
rates and the nature of inference errors, (2) dataset features and genotypic configurations that drive haplotype 
reconstruction uncertainty, and (3) impacts of omitting unresolved genotypes on levels of observed phylogenetic 
diversity and the accuracy of downstream phylogeographic analyses.

Results: We found that PHASE usually had very low false-positives (i.e., a low rate of confidently inferring haplotype 
pairs that were incorrect). The majority of genotypes that could not be resolved with high confidence included an 
allele occurring only once in a dataset, and genotypic configurations involving two low-frequency alleles were 
disproportionately represented in the pool of unresolved genotypes. The standard practice of omitting unresolved 
genotypes from downstream analyses can lead to considerable reductions in overall phylogenetic diversity that is 
skewed towards the loss of alleles with larger-than-average pairwise sequence divergences, and in turn, this causes 
systematic bias in estimates of important population genetic parameters.

Conclusions: A combination of experimental and computational approaches for resolving phase of segregating sites 
in phylogeographic applications is essential. We outline practical approaches to mitigating potential impacts of 
computational haplotype reconstruction on phylogeographic inferences. With targeted application of laboratory 
procedures that enable unambiguous phase determination via physical isolation of alleles from diploid PCR products, 
relatively little investment of time and effort is needed to overcome the observed biases.

Background
The increasing use of nuclear DNA (nDNA) sequences in
phylogeographic studies, in combination with sequence
data from a haploid organellar locus, has been driven by
the considerable improvements in strength and accuracy
of historical inference that multi-locus analyses can pro-
vide [1]. The development of conserved intron-spanning
polymerase chain reaction (PCR) primers has facilitated
amplification of low- or single-copy nuclear loci in non-

model species [2,3], and anonymous nuclear sequence
loci have also been successfully applied in phylogeo-
graphic studies of diverse taxa (e.g., arthropods [4,5]; rep-
tiles [6]; birds [7]). However, assaying nDNA sequence
variation for reasonably large population-genetic sample
sizes remains a major challenge [8]. There are several
molecular laboratory techniques suitable for screening
codominant markers by physically isolating sequence-
variable alleles [9], but none have been broadly adopted
owing to perceived or real logistical and/or technical lim-
itations (e.g., high cost and time commitment, need for
specialist equipment, difficulty resolving new or weakly
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amplifying alleles, and susceptibility to artefacts such as
PCR recombination).

Algorithm-driven reconstruction of nuclear allele hap-
lotypes following direct sequencing of diploid PCR prod-
ucts has become increasingly popular in phylogeographic
and related applications (Additional file 1). These meth-
ods are based on the premise that the phase of alleles
occurring in either homozygotes or heterozygotes that
are polymorphic at only a single position can be resolved
without ambiguity, and so this information can assist in
resolving the phase of multi-site heterozygotes. One
major advantage is that the per-locus cost of population
screening is comparable to sequencing a fragment of ani-
mal mitochondrial DNA or plant chloroplast DNA,
which is now quite routine and for which the necessary
equipment and expertise are usually readily available. In
addition, resolving power is thought to be quite good (all
single nucleotide polymorphisms in a heterozygous geno-
type should be detectable). At present, one of the most
widely used haplotype reconstruction methods is imple-
mented in the software PHASE [10,11]. This Bayesian
approach employs a neutral coalescent prior, making it
suitable for population-genetic datasets, and it is able to
accommodate recombination. Moreover, because PHASE
uses Markov Chain Monte Carlo to sample the posterior
distribution of potential haplotype pairs that could
account for an observed ambiguous genotype, confidence
probabilities for the phase of each segregating site and for
each reconstructed haplotype pair can be estimated. In
the context of genotype-phenotype association studies,
PHASE has been shown to perform quite well with simu-
lated and/or empirical human genetic datasets, but it is
also frequently reported that rare haplotypes are suscep-
tible to inference error [10-18]. This suggests that in
applications where rare haplotypes are informative, com-
putational approaches alone may be inadequate [19].

To date, few assessments of PHASE have been per-
formed using non-coding gene regions, or datasets from
species with complex evolutionary histories that are typi-
cal of non-human phylogeographic studies. However,
patterns of variation at nuclear loci may be impacted by
features of organismal biology such as effective popula-
tion size, or past events and processes including popula-
tion fragmentation, long-term isolation in refugia, and/or
the existence of semipermeable landscape-level barriers
to gene flow. For example, nuclear gene phylogeography
of arthropods has revealed that extant taxa can exhibit
highly polymorphic loci with many alleles segregating in
large, deeply subdivided populations [4,5,20,21], and
hybridization at zones of secondary contact can poten-
tially generate genotypes comprised of distantly-related
or novel recombinant allele haplotypes [22]. Previously,
Huang et al. [23] performed the first assessment of
PHASE using a large population-genetic dataset from a

non-model species (526 individuals of the migratory
locust, Locusta migratoria). The anonymous single copy
nuclear locus examined in that study was characterized
by high overall heterozygosity (HO = 0.66) and many rare
alleles, with 87.8% of the 115 distinct multi-site heterozy-
gote genotypes present at frequencies <1%. The authors
reported that 9% of individuals with ambiguous geno-
types remained unresolved owing to confidence probabil-
ity values below the chosen PHASE threshold of 0.95. In a
smaller scale study, Harrigan et al. [24] examined PHASE
performance using a sample of 30 dabbling duck (Anas
spp.) individuals with ambiguous genotypes, and found
that 13-16.7% were unresolved when running the soft-
ware with comparable settings.

Broadly speaking, genetic datasets known to be
impacted by technical artefacts that operate in a non-ran-
dom manner need to be analyzed and interpreted with
caution (e.g., non-amplifying 'null' alleles [25]). However,
an examination of papers focusing on phylogeography,
hybridization and speciation indicates that in most
empirical applications of PHASE, unresolved genotypes
are simply omitted from the dataset (Table 1). Although
this practice is generally considered to have negligible
impacts on subsequent estimates of population genetic
parameters and associated phylogeographic inferences
[26], no formal assessment has been performed to date
[27]. Indeed, there are reasons to believe that the duel loss
of rare alleles and heterozygous genotypes could intro-
duce systematic bias into downstream analyses. For
example, consider the parameter Θ (4Neμ for diploid
autosomal genes, where Ne is effective population size
and μ is the locus-specific per-generation mutation rate).
This parameter is central to widely-used coalescent phy-
logeographic analyses (e.g., population size changes [28];
migration matrix estimation [29]; isolation-with-migra-
tion divergence modelling [30]), and Ne-values derived
from Θ underpin simulation-based tests of alternative
vicariance scenarios [4,21,31-33]. The estimation of Θ is
heavily dependent on the number of segregating sites in a
sample of sequences [34], and rare alleles usually contrib-
ute new segregating sites. It is therefore possible that
computational haplotype reconstruction leads to the
removal of a sufficiently large number of genotypes con-
taining rare alleles so as to downwardly bias Θ. The
potential for systematic bias also extends to other analy-
ses. For example, contrasts between within-population
heterozygosity and the number of alleles form the basis of
tests for recent genetic bottlenecks [35], and the fre-
quency distributions of allele haplotypes [36] or pairwise
nucleotide differences [37] are commonly used to distin-
guish exponential growth from population size constancy
(Table 1).
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Table 1: Literature survey of empirical studies focusing on phylogeography, hybridization and speciation that used PHASE 
for haplotype reconstruction (see Additional file 44 for a complete list of references).

Birds Herpetofauna Mammals Fish Invertebrates Total

(N = 15) (N = 12) (N = 10) (N = 8) (N = 15) (N = 60)

PHASE threshold used

0.95 3 - 1 4 2 10

0.90 - 4 1 1 2 8

0.75-0.80 4 - - - - 4

0.70 1 1 - - - 2

0.60 - - - 2 3 5

Best of replicate 
runsa

- 1 - - 2 3

Not reported 7 6 8 1 6 28

Unresolved genotypes

Excluded or coded 
as missing

5 5 1 5 3 19

Resolved 
experimentally

2 - - - 2 4

Included despite 
uncertainty

3 - - - - 3

None present 1 1 - 3 4 9

Not reported 4 6 9 - 6 25

Experimental validation

Cloning 1 2 - 1 4 8

Allele-specific PCR 3 - - - - 3

None 11 10 10 7 11 49

Downstream analyses

Theta (Θ)b 14 6 9 4 7 40

Nucleotide 
diversity (Π)

9 7 9 4 7 36

Neutrality or 
population growth

7 6 4 6 5 28

Network or 
phylogenetic tree

10 9 9 6 10 44

aUses all inferred haplotypes from the run with the best average goodness-of-fit
bIncludes studies that implicitly calculated theta as part of coalescent analyses (e.g., MIGRATE, FLUCTUATE, IM)

In the present paper we assess the performance of
PHASE using five large nDNA sequence datasets from
two Collembola species (Hexapoda), for which all geno-
types have been resolved by laboratory procedures [38].
In addition, we analyze 35 simulated datasets with con-
trasting levels of polymorphism and, for the first time,
examine the impact of unresolved genotypes and 'lost
alleles' on downstream phylogeographic analyses. Out-

comes are considered under PHASE confidence probabil-
ity thresholds of 0.90 (i.e., the default value used by the
software) and 0.60, both of which are commonly used in
the relevant empirical literature (Table 1). We conclude
with a discussion of the complementarity of laboratory-
based physical isolation of alleles and computational hap-
lotype reconstruction.
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Methods
Literature survey
Papers citing Stephens et al. [10] or Stephens and Don-
nelly [11], and focusing on phylogeography, speciation or
hybridization of natural populations of non-primate ani-
mals, were identified using Web of Science® (accessed
December 2009). Literature searches were conducted
using the keywords "phylogeograph*", "speciation", or
"gene flow" to find relevant papers in any journal, and by
examining all citing articles in BMC Evolutionary Biology,
Evolution, Molecular Ecology, and Molecular Phylogenet-
ics and Evolution. If papers were within the scope of this
survey, the Methods and Results sections were examined.
Papers that primarily used PHASE in conjunction with
non-coding nDNA sequence data were included, because
we wanted to determine how the software was being
used, and the types of downstream analyses that were
performed using computationally-phased datasets.

Datasets and polymorphism levels
Our empirical nDNA sequence datasets were generated
as part of a comparative phylogeographic investigation
that included two saproxylic Collembola species
[5,39,40]. Sequence variation at five nuclear loci was
assayed in >200 individuals of either Acanthanura sp.
nov. (three loci, prefix 'Uc') or Pseudachorutinae gen. nov.
sp. nov. (two loci, prefix 'Sm'; Table 2). These markers
included an intron (elongation factor-1α; EF1α) and three
non-coding anonymous loci. The number of nucleotides
ranged from 92-266-bp, and alleles were phased by physi-
cally isolating them from diploid PCR products using sin-
gle-stranded conformation polymorphism (SSCP)
followed by targeted DNA sequencing [38,41]. This
experimental approach minimizes artefacts that can arise
from PCR recombination because it is cloning-free.
Marker development and population screening methods
are given in Garrick and Sunnucks [38]. Four of the five
nuclear loci had alleles with several discontiguous inser-
tion/deletion (indel) mutations. These were recoded
using arbitrary nucleotide characters, with contiguous
multi-base indels treated as a single event. In the present
study, a 28-bp region of locus Sm2 (positions 138-165)
was removed owing to unusually high polymorphism that
exceeded the limits of PHASE. To reconstruct the
sequences that would have been generated by direct
sequencing of diploid PCR products from these five loci
(i.e., with ambiguity codes), the two alleles from an indi-
vidual genotype were collapsed into a consensus
sequence using MESQUITE v2.5 [42]. Because this trans-
formation of phase-known to ambiguous data includes
no scoring error, our datasets represent idealized condi-
tions.

Simulated DNA sequence datasets comprising 50 dip-
loid genotypes sampled from a hypothetical panmictic
population of constant size were generated with MES-
QUITE. Given that it is common for screening of nDNA
loci to be performed on a subset of individuals taken from
a larger phylogeographic study sample (e.g., 28 of the 60
studies included in our literature survey had total sample
sizes of ≤ 100 individuals per nDNA locus per species),
our chosen sample size achieves a balance between statis-
tical power and the reality of empirical datasets. Coales-
cent gene trees with 100 allele copies (i.e., terminal
branches) were simulated backward-in-time within an
isolated population of haploid Ne = 1,000 individuals and
age = 2,000 organismal generations. This scheme of 2Ne
generations since isolation represents the theoretical
expectation of the average time taken for alleles at a hap-
loid locus to become reciprocally monophyletic on a gene
tree. We did not use more complex models that included
growth or decline because we wanted to assess PHASE
performance under a best-case scenario, where the
underlying assumptions of neutral coalescence within a
single unstructured population of constant size were sat-
isfied. Next, nucleotide characters (250-bp) were evolved
forward-in-time along the branches of the coalescent
gene trees using a HKY85 substitution model (root states
and equilibrium base frequencies: A 0.30, C 0.20, G 0.15,
T 0.35; ts/tv = 2.5). This substitution model and base fre-
quency set is representative of our empirical Collembola
data, and also typical of nDNA loci assayed for other
organisms, as reported in the phylogeographic literature.
To ensure independence, only one DNA sequence dataset
was simulated per coalescent tree. During this process,
scaling factors were used to convert branch lengths of
coalescent gene trees (measured in organismal genera-
tions) into units that are typical of DNA sequence data-
sets (e.g., substitutions per site). To obtain levels of
polymorphism that span the full range seen in empirical
studies, scaling factors were determined by trial-and-
error. We used the number of different alleles (AN) and
segregating sites (S), calculated using DNASP v4.10.3
[43], as yardsticks of overall polymorphism. Scaling fac-
tor values between 1.0 × 10-5 to 9.0 × 10-6 generated a
pool of 500 datasets, and from these we arbitrarily
selected 35 datasets with S-values of 5, 10, 15, 20, 25, 30
or 35 (five datasets each; Table 2; Additional file 2).
Within each of these 35 datasets, diploid genotypes were
manually constructed by randomly pairing two haploid
DNA sequences (i.e., alleles), to generate a diploid geno-
type. This represented random mating in a sexual out-
crossing species. To mimic the phase-unknown geno-
types produced from direct sequencing of diploid PCR
products, consensus sequences for each genotype, with
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Table 2: Characteristics of five empirical and 35 simulated datasets used in the present study.

Empirical Ambiguous Polymorphism measure Simulated Ambiguous Polymorphism measure

datasets N genotypes S AN GN HO datasets N genotypes S AN GN HO

Pseudachorutinae sp. Sim01 50 5 5 6 6 0.26

Sm2 Pop1 80 0 2 3 4 0.03 Sim02 50 14 5 6 11 0.58

Sm2 Pop2 61 0 2 3 3 0.02 Sim03 50 2 5 6 9 0.66

Sm2 Pop3 118 2 9 5 7 0.14 Sim04 50 9 5 6 9 0.50

Sm2 Pop4 62 0 2 4 4 0.03 Sim05 50 6 5 6 8 0.50

Average 80 1 4 4 5 0.06 Sim06 50 25 10 8 12 0.76

SmEF1α Pop1 81 2 9 6 9 0.10 Sim07 50 34 10 9 17 0.90

SmEF1α Pop2 60 8 6 3 4 0.13 Sim08 50 25 10 10 22 0.76

SmEF1α Pop3 105 40 11 9 12 0.39 Sim09 50 38 10 9 15 0.80

SmEF1α Pop4 54 9 6 6 8 0.22 Sim10 50 31 10 9 23 0.80

Average 75 15 8 6 8 0.21 Sim11 50 36 15 11 17 0.82

Acanthanura sp. Sim12 50 38 15 12 30 0.86

Uc3 Pop1 26 0 2 3 4 0.08 Sim13 50 31 15 10 20 0.78

Uc3 Pop2 19 0 0 1 1 0.00 Sim14 50 32 15 11 19 0.76

Uc3 Pop3 67 3 8 8 9 0.24 Sim15 50 36 15 12 23 0.80

Uc3 Pop4 78 6 7 7 12 0.14 Sim16 50 39 20 13 31 0.90

Uc3 Pop5 15 8 17 9 11 0.67 Sim17 50 30 20 16 33 0.72

Average 41 3 7 6 7 0.23 Sim18 50 24 20 13 22 0.62

Uc180 Pop1 24 5 7 5 8 0.54 Sim19 50 27 20 12 21 0.62

Uc180 Pop2 19 1 2 2 2 0.05 Sim20 50 41 20 15 30 0.86

Uc180 Pop3 67 0 2 3 3 0.03 Sim21 50 40 25 19 37 0.90

Uc180 Pop4 78 0 1 2 2 0.01 Sim22 50 32 25 15 22 0.70

Uc180 Pop5 15 0 0 1 1 0.00 Sim23 50 30 25 17 32 0.72

Average 41 1 2 3 3 0.13 Sim24 50 20 25 13 21 0.70

UcEF1α Pop1 26 6 6 6 8 0.23 Sim25 50 35 25 18 29 0.84

UcEF1α Pop2 19 1 7 4 4 0.16 Sim26 50 40 30 20 39 0.84

UcEF1α Pop3 67 21 15 10 11 0.36 Sim27 50 41 30 17 36 0.90

UcEF1α Pop4 78 12 14 10 11 0.26 Sim28 50 32 30 19 29 0.82

UcEF1α Pop5 15 0 0 1 1 0.00 Sim29 50 40 30 21 38 0.90

Average 41 8 8 6 7 0.20 Sim30 50 41 30 22 42 0.92

Sm2 321 2 13 11 14 0.07 Sim31 50 37 35 17 35 0.88

SmEF1α 300 59 17 17 27 0.24 Sim32 50 41 35 17 36 0.94

Uc3 205 17 26 17 30 0.19 Sim33 50 41 35 16 32 0.88

Uc180 203 6 12 9 13 0.08 Sim34 50 46 35 20 38 0.92

UcEF1α 205 40 27 21 32 0.26 Sim35 50 38 35 15 28 0.80

Average 247 25 19 15 23 0.17 Average 50 31 20 13 25 0.77

Genetically distinct populations of two Collembola species identified previously [5,40] were pooled prior to reanalysis using PHASE, but are 
separated here for comparison with the single-population simulated datasets. N is the number of diploid individuals, and 'ambiguous genotypes' 
are those containing at least two heterozygous sites. Polymorphism measures are: S, number of segregating sites; AN, number of different alleles; 
GN, number of different genotypes; HO, observed heterozygosity.
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standard IUPAC nucleotide ambiguity codes at heterozy-
gous positions, were generated in MESQUITE (as for the
empirical Collembola data, above). In addition to calcu-
lating S and AN for each empirical and simulated dataset,
we also quantified overall polymorphism via the number
of different genotypes (GN), and observed heterozygosity
(HO). Although the four summary statistics are non-inde-
pendent (Additional file 3), they do reflect different com-
ponents of the standing genetic variation, and so it is
useful to investigate their relationships with PHASE per-
formance.

PHASE error, unresolved genotypes and lost alleles
Simulated and empirical datasets were analyzed using
PHASE v2.1.1 [10,11], with files formatted in SeqPHASE
[44]. We employed the MR model which makes explicit
allowance for intragenic recombination, and compared to
the non-recombination model, it performs better. How-
ever, the primary reason for choosing this model was
because assessing evidence for recombinant alleles (c.f.
making a priori assumptions about their absence) is
important when using nDNA sequences in empirical
population-level studies. For tri-allelic single nucleotide
polymorphisms, the parent-independent mutation model
was used. Runs consisted of 500 iterations as burn-in, 500
main iterations, and thinning interval = 1. Datasets were
run three times with a different starting seed, and consis-
tency across runs was checked by eye. The replicate with
the best average goodness-of-fit value was used in subse-
quent analyses.

In the present paper we focus on the accuracy of
PHASE in reconstructing whole haplotypes (c.f. individ-
ual single nucleotide polymorphisms) and diploid geno-
types under two alternative thresholds, 0.60 and 0.90.
These values encompass commonly used cut-offs (Table
1; note that the PHASE default is 0.90, and if not explicitly
reported by studies included in the literature survey, we
assumed the default value was used). Under each thresh-
old, three aspects of performance were investigated:

NERR Number of individuals with a confidently
resolved (above-threshold) haplotype pair that
included errors.
NLCP Number of individuals with genotypes that
remained unresolved due to low confidence probabil-
ity values (i.e., below-threshold). We also quantified
the number of these individuals with correctly and
incorrectly inferred haplotype pairs (NLCP correct and
NLCP incorrect respectively).
NLOST Number distinct gene lineages (i.e., different
alleles) that were present in the original phase-known
dataset but were lost as a consequence of excluding
individuals with unresolved (NLCP) genotypes.

Error
There have been contrasting reports regarding the rela-
tionship between PHASE error and the number of
heterozygous sites in an ambiguous genotype (i.e., nega-
tive [14]; positive [18]; no relationship [23]), so we
assessed the correlation between the latter and the sum of
NERR + NLCP incorrect. We also examined which type of mis-
take was most prevalent in cases where PHASE haplotype
pair error is analogous to false positives (NERR), as well for
those where the software appropriately indicated low
confidence probability values (NLCP incorrect), using the fol-
lowing four categories that capture all observed mistakes:

ECOR + NOV One haplotype is correct, the other is novel
(did not previously exist).
ECOR + MIS One haplotype is correct, the other is mis-
identified (previously existing).
EMIS + MIS Both haplotypes are misidentified.
EMIS + NOV One haplotype is misidentified, the other is
novel.

Unresolved genotypes
Intuitively, phase determination for highly variable
nuclear sequence loci should be more challenging than
for relatively invariable markers. Despite this expectation,
there is still a relatively limited understanding of the spe-
cific features of a dataset that drive uncertainty associated
with haplotype pair reconstruction (i.e., which particular
aspects of genetic variation), and so this warrants further
investigation. Similarly, although the presence of rare
alleles is known to contribute to difficulties with inferring
phase of segregating sites in multi-site heterozygotes,
there is little information on the importance of the spe-
cific genotypic configurations in which rare alleles occur.
First, to determine whether relationships between NLCP
and each of the four measures of dataset polymorphism
levels (S, AN, GN and HO) exhibit different relative
strengths, regression analyses were performed, with com-
parisons made using R2-values. Second, for each unre-
solved genotype in our simulated datasets, population
frequencies of the two constituent alleles were calculated.
These data were then summarized in box plots to assess
the prevalence of small versus large asymmetries (e.g.,
pairing of two rare alleles, c.f. pairing of a common and a
rare allele). Corresponding plots were constructed for
empirical datasets.
Lost alleles
We employed two analytical approaches to assess the
impact of omitting unresolved (NLCP) genotypes on 'phy-
logenetic diversity' [45]. To examine overall loss of dis-
tinct gene lineages, NLOST values were scaled by the
number of different alleles in each original dataset, and a
regression analysis was performed using corresponding
NLCP values as the predictor variable. We also investigated
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whether lost alleles tended to be more divergent than
other alleles in the dataset, as measured by proportion of
nucleotide differences between a pair of sequences
(uncorrected p) calculated in MEGA v4.0 [46]. We chose
this simple measure of genetic distance (c.f. HKY-cor-
rected distances) because the vast majority of polymor-
phic sites (97%) were consistent with an infinite-alleles
mutation model, and uncorrected p is often used for
nDNA sequence datasets in population-level studies. We
plotted the difference between the mean from only those
pair-wise comparisons involving the lost allele under con-
sideration (pLOST) and the mean of all pair-wise compari-
sons within a dataset (pDATASET). Datasets with >1 lost
allele have non-independent data points because multiple
comparisons are made using the same pDATASET value. In
these cases (24 simulated and one empirical dataset),
pLOST values were first summed, and then deducted from
pDATASET, thereby generating a single data point per data-
set.

Standard phylogeographic analyses
The omission of unresolved genotypes from a genetic
dataset could potentially introduce biases into down-
stream phylogeographic analyses. We assessed the mag-
nitude and directionality of differences in point estimates
of two measures of population genetic diversity (Watter-
son's [34] ΘW, and Nei's [47] π), as well as two measures
of demographic growth or neutrality (Tajima's [48]D and
Fu's [36]FS). Empirical studies focusing on phylogeogra-
phy, hybridization and speciation that use PHASE often
estimate these parameters (Table 1). For each simulated
dataset, parameter values were calculated in DNASP for
the original phase-known dataset, and then recalculated
after removing unresolved genotypes under each of the
two thresholds. Significance of differences in parameter
values was assessed via one-tailed paired t-tests, imple-
mented in STATSDIRECT v2.7.7 http://www.statsdi-
rect.com. Finally, we investigated the extent to which lost
alleles can alter estimated root probabilities in intraspe-
cific haplotype networks. To do this, statistical parsimony
networks constructed for simulated datasets using TCS
v1.21 [49] with the 95% confidence criterion enforced.
The allele with the highest outgroup weight was deter-
mined for each of the original phase-known datasets, and
then compared to results obtained when constructing
statistical parsimony networks for the corresponding
'pruned' (90-NLCP and 60-NLCP) datasets.

Results
Literature survey
Sixty papers from 18 journals met our search criteria
(Table 1 and Additional file 4). Each major vertebrate
group and a diversity of invertebrates were represented.

Based on those studies that reported how unresolved
genotypes were treated, the most common course of
action is complete exclusion. In some cases, the overall
reduction in dataset size per locus was considerable (e.g.,
21.9% [50], 13.6% [51], up to 8.5% [52]). Few studies used
laboratory procedures in conjunction with computational
phasing. Although the 60 papers used a variety of popula-
tion-level analyses, Θ and π were frequently estimated.
Many studies also examined evidence for selection acting
on nDNA and/or demographic growth using Fu's FS,
Tajima's D, mismatch distributions or related statistical
procedures, and phylogenetic relationships among alleles
were often represented as networks or bifurcating trees.

Datasets and polymorphism levels
Simulated datasets encompassed a broad spectrum of
polymorphism levels (AN = 6-22, GN = 6-42, HO = 0.26-
0.94), and the number of ambiguous genotypes ranged
from 2-46 (Table 2). These polymorphism levels were
considerably higher than those for each of the geneti-
cally-distinct Collembola populations, but at least super-
ficially similar to the mean values obtained for the
Collembola data pooled across loci and species (i.e., S =
19, AN = 15, and GN = 23; Table 2). Most papers included
in the literature survey simultaneously analyzed multi-
population datasets with PHASE, and reported AN values
were usually within or slightly above the range seen in our
empirical datasets. In this context, the present paper
should provide a useful framework for understanding
impacts of unresolved genotypes and lost alleles on
downstream phylogeographic analyses. On the other
hand, large differences exist between empirical versus
simulated values of HO, and we recognize that this dis-
crepancy warrants some caution when drawing general-
izations from present study. A likely reason for this
discrepancy is the presence of geographic substructure
within and among Collembola populations. Generally
speaking, where geographic substructure exists, rare
alleles can occur at locally high frequencies with at least
some in homozygous form, rather than at uniformly low
frequencies and always as heterozygotes. Ultimately this
would reduce heterozygosity, and in particular, may result
in fewer ambiguous genotypes that contain rare alleles
never before seen in homozygous form.

PHASE error, unresolved genotypes and lost alleles
PHASE inferences were consistent across replicate runs,
indicating that search settings were adequate. Where sev-
eral alternative solutions for a particular haplotype pair
were recovered in the replicate with the best average
goodness-of-fit, we used the reconstruction with the
highest confidence probability value. If necessary, we ran-
domly selected one of the equally well-support alterna-
tives.

http://www.statsdirect.com
http://www.statsdirect.com
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Error
The relationship between PHASE error (NERR + NLCP incor-

rect) and the number of heterozygous sites in an ambigu-
ous genotype was negative for simulated and empirical
datasets (r = -0.692 and r = -0.655, respectively; Figure 1
solid circles vs. open circles). Under the 0.90 threshold,
false positives (NERR) were very rare when considering all
simulated datasets together (5/1077 ambiguous geno-
types = 0.5%), and use of the lower stringency threshold
had little impact (9/1077 = 0.8%; Table 3). Similarly, no
increase in false positives was seen for the pooled empiri-
cal data (3/126 = 2.4% error under both thresholds). For
those datasets in which false positives occurred, error
rates were as high as 12.5% (Uc3), but all others were
<10% irrespective of PHASE threshold (Sim06, up to 8%;
Sim11, 8.3%; Sim33, 4.9%; UcEF-1α, 2.4%). Although only
2-3 of 35 simulated datasets (5.7-8.6%) included at least
one false positive, this proportion was higher for the
empirical datasets (2/5 = 40% under both thresholds). In
all cases, the most prevalent type of mistake was where
one haplotype is misidentified and the other is novel
(EMIS + NOV; Table 3).
Unresolved genotypes
Most simulated datasets had some genotypes that were
not resolved at or above the specified confidence levels
(N = 33 and 30 datasets under thresholds 0.90 and 0.60,
respectively). Under the 0.90 threshold, the number of
these unresolved genotypes (90-NLCP) per simulated
dataset ranged from 0-12 (mean = 3.37). Overall, 62.7% of
these unresolved genotypes were nonetheless inferred
correctly. Lowering the PHASE threshold to 0.60 led to
reductions in the number of unresolved genotypes, but
also in the proportion of correctly reconstructed haplo-
type pairs (60-NLCP range: 0-7, mean: 2.34, proportion
correct: 51.2%). The same general trends were seen in the
empirical datasets (90-NLCP range: 0-7, mean: 3, propor-
tion correct: 80%; 60-NLCP range: 0-3, mean: 0.80, propor-
tion correct: 25%). When NLCP was represented as a
proportion of the number of ambiguous genotypes (i.e.,
multi-site heterozygotes) present in each simulated data-
set, the frequency distribution for the percentage of
ambiguous genotypes that were not resolved under the
0.90 PHASE threshold (mode = 10-14% category; Figure
2, pale grey bars) is slightly off-set to the right compared
to that of the 0.60 threshold (mode = 5-9% category; Fig-
ure 2, dark grey bars). This indicates that enforcement of
a higher-stringency limit on acceptable confidence prob-
ability scores generally leads to an increased proportion
of unresolved genotypes per dataset.

For the simulated data, regression analyses showed that
significant positive relationships exist between each of
the four polymorphism measures and NLCP (Additional

file 5). With the exception of HO (Additional file 5, G-H),
the overall strength of each relationship increased consid-
erably as the PHASE threshold was decreased from 0.90
to 0.60, indicating that inclusion of 'marginal' haplotype
pairs in the NLCP category (i.e., those with confidence
probability scores of 0.61-0.89) mostly contributes noise.
For both thresholds, the strongest predictor variable was
AN (Additional file 5, C-D; 90-NLCP: slope = 0.264, d.f. =
1,33, F = 11.0, P = 0.002, R2 = 0.25; 60-NLCP: slope = 0.246,
d.f. = 1,33, F = 24.7, P < 0.001, R2 = 0.43). Regressions of
the empirical data showed no significant relationships
between NLCP and any of the four polymorphism mea-
sures, but these analyses were limited by small sample
sizes (N = 5 data points). Qualitatively, only one predictor
variable (HO) showed a marked discrepancy between
slopes of simulated versus empirical datasets (slope =
7.30 vs. 24.78), but this was limited to the higher PHASE
threshold, whereas there was essentially no difference
under the lower stringency settings (slope = 5.62 vs. 5.97;
Additional file 5). Overall, the simulated datasets gener-
ated under panmixia, and the empirical datasets that
include considerable substructuring, show similar rela-
tionships with polymorphism measures.

The majority of unresolved genotypes in simulated
datasets included at least one singleton allele (70% of 90-
NLCP and 94% of 60-NLCP). A considerable number of
these (19.5% of 90-NLCP and 20.7% of 60-NLCP) included a
second 'rare' allele (i.e., frequency < 0.05), indicating that
genotypic configurations involving two low-frequency
alleles are disproportionately represented (Figure 3).
Other aspects of NLCP genotypic configurations also indi-
cate that they are non-random with respect to population
allele frequencies. For example, there is usually no over-
lap between the inner 50% quantile calculated for 'fre-
quency of most common allele in an unresolved
genotype' versus that calculated for 'frequency of most
common allele in the dataset' (Figure 3 left panel). The
two exceptions (i.e., rarest allele frequency = 0.02 and
0.06 under PHASE thresholds 0.90 and 0.60, respectively;
Figure 3) both have upper and lower 25% quantiles that
do not extend beyond their inner 50% quantile, and so are
likely to have been impacted by small sample sizes. If
these two tentatively unreliable box plots are ignored,
only two meaningful comparisons across PHASE thresh-
olds are possible for the simulated datasets (i.e., 'fre-
quency of rarest allele' categories 0.01 and 0.02).
Qualitatively, empirical datasets show the same general
patterns relating to genotypic configuration of unresolved
genotypes seen in simulated data, and PHASE thresholds
do not appear to alter outcomes (Figure 3 right panel).
Lost alleles
The number of lost alleles per simulated dataset ranged
from 1-10 or 1-7 (0.90 or 0.60 threshold, respectively;
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mean = 3 for both). Regression analyses showed a signifi-
cant positive relationship between NLCP and reductions in
the number of gene lineages in simulated datasets (scaled
NLOST; Figure 4 solid circles). The nature of this relation-
ship was similar for both PHASE thresholds (90-NLCP:
slope = 0.041, d.f. = 1,33, F = 92.2, R2 = 0.74, P << 0.0001,
Figure 4 top; 60-NLCP: slope = 0.048, d.f. = 1,33, F = 92.9,
R2 = 0.74, P << 0.0001, Figure 4 bottom), indicating that

inclusion of 'marginal' haplotype pairs in the 90-NLCP cat-
egory contributes to this trend. This systematic loss of
phylogenetic diversity with increasing NLCP was mirrored
by the empirical data under the 0.60 threshold, but unex-
pectedly, not the 0.90 threshold (Figure 4 open circles).

When considering pairwise sequence divergences
among alleles, there are indications that lost alleles tend
to be more divergent than retained alleles in simulated
datasets. Although distributions of the difference in mean
p-distance (pLOST - pDATASET) under both PHASE thresh-

Table 3: Accuracy of PHASE haplotype pair reconstructions.

Error 0.90 threshold 0.60 threshold

Dataset category 90-NERR 90-NLCP 
incorrect

60-NERR 60-NLCP 
incorrect

Simulated ECOR + NOV - 1 - 1

ECOR + MIS 2 - 2 -

EMIS + MIS - 2 - 2

EMIS + NOV 3 41 7 37

Total 5 44 9 40

Empirical ECOR + NOV - - - -

ECOR + MIS - - - -

EMIS + MIS - - - -

EMIS + NOV 3 3 3 3

Total 3 3 3 3

False positives (NERR) and incorrect reconstructions that had appropriately low confidence probabilities (NLCP incorrect) are reported for 
simulated and empirical datasets under two alternative PHASE confidence probability thresholds. Error categories reflect the nature of 
inference mistakes, and are described in Methods.

Figure 1 Relationship between the number of heterozygous sites 
in an ambiguous genotype (x-axis) and haplotype pair recon-
struction error (y-axis). Simulated datasets (solid circles) and empiri-
cal datasets (open circles) both showed strong negative correlations (r 
= -0.692 and r = -0.655, respectively). The plot is identical for the 0.90 
and 0.60 PHASE confidence probability thresholds (the latter not 
shown).

Figure 2 Frequency distribution of the number of unresolved 
genotypes (NLCP) represented as a proportion of the total number 
of ambiguous genotypes present in each simulated dataset. Dis-
tributions for PHASE confidence probability thresholds 0.90 and 0.60 
are shown in pale grey and dark grey, respectively.
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olds show modal values centered on zero (histogram cat-
egory -0.002 to + 0.002), the plots are right-skewed
(Figure 5). This trend was also seen when summarizing
the data using other measures of central tendency and
degree of asymmetry (0.90 threshold: pLOST - pDATASET
mean = 0.0038, skew = 0.520; 0.60 threshold: mean =
0.0044, skew = 0.466). Loss of divergent alleles owing to
below-threshold PHASE confidence probability scores of
reconstructed haplotype pairs also extends to empirical
datasets (Uc180, NLOST = 1, UcEF-1α, NLOST = 3; pLOST -
pDATASET mean = 0.0060 under both thresholds).

Standard phylogeographic analyses
Estimated values of four commonly-used population
genetic parameters showed marked directional biases as a
consequence of omitting unresolved genotypes from sim-
ulated datasets, and the magnitude of these biases was
similar for the two PHASE thresholds (Figure 6). The two
measures of genetic diversity (ΘW and π) were increas-
ingly underestimated as more unresolved genotypes were
omitted, whereas the two measures of demographic
growth or neutrality (Tajima's D and Fu's FS) were pro-
gressively overestimated. Regression analyses confirmed
that relationships were significant (all P-values < 0.001),
with the strongest relationships seen for decreases in ΘW
(R2 = 0.64 and 0.70, Figure 6A-B, respectively) and
increases in Fu's FS (R2 = 0.78 and 0.83, Figure 6G-H,
respectively). Moreover, paired t-tests showed that
parameter values obtained after removing unresolved
genotypes differed significantly from those of the corre-
sponding phase-known datasets (all P-values < 0.0001
with d.f. = 32; Figure 6A: t = 6.39, Figure 6B: t = 6.67, Fig-
ure 6C: t = 4.71, Figure 6D: t = 4.96, Figure 6E: t = -7.47,
Figure 6F: t = -8.03, Figure 6G: t = -8.07, Figure 6H: t = -
7.62). When considering all simulated datasets together,
the maximum downward bias affecting ΘW and π were
relatively small considering the 'true' mean values esti-
mated from the original phase-known datasets (mean ΘW
= 0.0160, bias = 0.0086; mean π = 0.0157, bias = 0.0024).
However, at the level of individual datasets, reductions in
ΘW were ≥ 20% of the 'true' value for 9-10 of the 33 simu-
lated datasets with unresolved genotypes. For the pooled
simulated data, the two demographic growth or neutral-
ity parameters showed large maximum upward biases
compared to the true values (mean D = -0.057, bias =
1.135; mean FS = -0.412, bias = 4.847).

In our study, the omission of unresolved genotypes led
to changes in the rooting of haplotype networks in three
of 35 simulated datasets (8.6%). The example of a root
switching error shown in Figure 7 was also seen in a data-
set ('Sim26') that produced a more complex set of three
disconnected networks. In the latter case, switch errors
affected two of these networks. However, changes in the

rooting of haplotype networks do not always involve root
switching. For example, one of our simulated datasets
('Sim33') produced two disconnected networks, but fol-
lowing removal of unresolved genotypes, these were sub-
sequently split into four (the same outcome resulted
under both 90-NLCP and 60-NLCP thresholds). This was
caused by the loss of a single allele that occupied an
important position in one of the original networks-a
position that served as a link between otherwise dis-
tantly-related alleles (not shown).

Discussion
Haplotype reconstruction errors
False positive PHASE inferences, defined here as ambigu-
ous genotypes for which above-threshold haplotype pair
reconstructions included errors, were generally very low
(Table 3). At the level of individual datasets, rates were
usually <10% (with the exception of one empirical data-
set, Uc3). Considering all simulated datasets together,
false positive rates were <1%, and <3% for the pooled
empirical data. Haplotype pair reconstruction errors usu-
ally involved misidentifying an existing allele coupled
with the creation of a novel allele, such that both inferred
haplotypes were incorrect (Table 3). The misidentified
allele was usually inferred to be the most common allele
in the dataset (35-39% or 83% of EMIS + NOV for simulated
or empirical datasets, respectively). Our data also showed
a negative correlation between the number of heterozy-
gous sites and PHASE error (c.f. [18] and [23]), and so
even two-site heterozygotes can be difficult to recon-
struct accurately (Figure 1). However, given the low false
positive rates, overestimation of common allele frequen-
cies is unlikely to impact downstream analyses.

Low false positives from PHASE have been reported in
several studies based on simulated data and/or well-char-
acterized functional loci in humans [10-18]. The present
work, together with two recent papers [23,24], extends
these assessments to non-coding anonymous or intronic
nDNA from other organisms. The consistently good per-
formance suggests that PHASE is robust to some viola-
tions of the underlying neutral coalescent model (e.g.,
selection, kin clustering, population structure [53]).

Drivers of uncertainty
Although highly polymorphic nuclear sequence loci often
carry considerable phylogeographic signal, they also tend
to produce challenging datasets for computational haplo-
type reconstruction. The number of different alleles (AN)
is a particularly strong predictor of the number of unre-
solved (NLCP) genotypes because allele-rich datasets usu-
ally contain many rare alleles. Indeed, the presence of a
rare allele in an ambiguous genotype is perhaps the single
most important determinant of PHASE's ability to confi-
dently and accurately reconstruct haplotype pairs [19]. In
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populations that have undergone relatively recent and
rapid range expansion, coalescent theory predicts an
excess of low-frequency haplotypes [28,36,37], and so
demographic history may contribute to the number of
unresolved genotypes.

Our investigation of the influence of rare alleles on
PHASE confidence probabilities indicated that genotypic
configurations involving two low-frequency alleles were
disproportionately represented in the pool of unresolved
genotypes (Figure 3). In out-crossing panmictic popula-
tions, these heterozygotes will tend to be very uncom-
mon. However, in hybrid zones, the propensity for rare
alleles to reach locally high frequencies or for novel alleles
to be found only in individuals of mixed ancestry is well
documented [54]. In these cases, the coupling of two oth-
erwise rare alleles in a single diploid genotype may
account for a non-negligible proportion of the total data-
set. For example, in a study of the Passerina amoena
(Lazuli bunting) and P. cyanea (Indigo bunting) hybrid
zone, Carling and Brumfield [52] reported that PHASE
was unable to confidently resolve genotypes of as many as
21 individuals per locus. Phylogeographic studies often
detect the signals of both range expansion and secondary

contact [5,6,55,56]. Accordingly, complex organismal his-
tories may have a compounding effect on the number of
unresolved genotypes.

Impacts of omitting unresolved genotypes
Rare alleles constitute an important component of the
molecular signature used to estimate several population
genetic parameters, and so omitting genotypes in which
rare alleles reside could affect phylogeographic analyses.
However, as noted by Edwards and Bensch [27], this has
not previously been assessed. We found that systematic
biases do exist, and that the absolute number of unre-
solved genotypes omitted from a dataset is a significant
predictor of the magnitude of bias. The parameters ΘW
and π tend to be underestimated (Figure 6A-D), whereas
Fu's FS and Tajima's D tend to be overestimated (Figure
6E-H). Even when only 3-4 unresolved genotypes are
omitted, parameter estimates can still be quite biased
(Figure 6). Although ΘW and π were mostly used for
descriptive purposes in the studies included in our litera-
ture survey, they are increasingly important in phylogeo-
graphic hypothesis-testing. For example, estimates of Θ

Figure 3 Genotypic configurations of unresolved genotypes in simulated and empirical datasets. Population allele frequency values for the 
more common allele in an unresolved genotype are shown on a continuous scale (y-axis), with a separate box plot drawn for each observed value of 
the rarer allele in an unresolved genotype (x-axis). In each plot, the box represents the inner 50% quantile (median marked by a solid black line), and 
the whiskers represent the upper and lower 25% quantile, excluding outliers (solid black circles). For comparative purposes, the population frequency 
of the most common allele present in each dataset was used to calculate an overall median and inner 50% quantile (dashed grey lines) for simulated 
and empirical datasets.
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may be used to set effective population size (Ne) when
modelling alternative vicariance scenarios [4,21,31-33],
and it is widely appreciated that fixed parameters such as
Ne can have a large impact on the outcome of such tests.
The parameter Θ can also be important when ranking
alternative models under an information-theoretic
framework for phylogeographic inference [57]. Similarly,
the combination of Tajima's D and π has been identified
as particularly powerful when testing simultaneous vicar-
iance under an approximate Bayesian computation infer-
ence framework [58].

Tests for distinguishing population growth from size
constancy often use information from the frequency of
distribution of DNA substitutions or haplotypes, where
an excess of singletons is indicative of expansion [59]. In
the absence of selection and intra-locus recombination,
significantly negative values of Tajima's D and Fu's FS are
consistent with population growth. Indeed, many species
have experienced rapid population expansions since the
Last Glacial Maximum. In these cases, current practices
of omitting unresolved genotypes should have greater
impacts on analyses than those seen from simulations
performed under a model of constant population size.
However, even under the best-case scenario represented
in simulations, our results indicate a strong upward bias
in these two statistics when unresolved genotypes are
omitted from a dataset (Figure 6E-H). In a highly cited
paper, Ramos-Onsins and Rozas [59] reported on the
superiority of Fu's FS to detecting population growth, and
this statistic is now widely used in phylogeographic analy-
ses. The marked overestimation of FS reported in the
present paper could ultimately mask the signature of
expansion. In a comparative phylogeographic context,
understanding species' demographic histories is critical
for assessing the degree to which co-distributed taxa have
responded to past landscape-level events in concert
[5,6,60,61]. Given the increasing number of studies that
include re-analysis of datasets generated by other
research groups [62,63], it may become necessary to
make a clear distinction between computationally- versus
experimentally-phased nDNA sequence datasets.

Some comparative phylogeographic analyses focus on
the topology and branch lengths of estimated gene trees.
Here we have shown that omitting genotypes with low
confidence probability scores usually leads to reductions
in two components of phylogenetic diversity-the number
of gene lineages and pairwise sequence divergences
among them (Figure 4, 5). Rare alleles can be particularly
difficult to resolve (Figure 3), and so some loss of distinct
gene lineages is expected. However, we also detected an
unexpected bias towards loss of divergent alleles (c.f. the
average p-distance among all alleles in the dataset). This

Figure 4 Relationship between the number of unresolved geno-
types (x-axis) and reduction in the total number of gene lineages 
(y-axis). Top: simulated datasets (solid circles) and empirical datasets 
(open circles) examined under a PHASE confidence probability thresh-
old of 0.90. Bottom: simulated and empirical datasets examined under 
the 0.60 threshold. Except for the empirical data under the 0.90 thresh-
old, all regressions were significantly positive (P < 0.0001).

Figure 5 Frequency distribution of the difference in mean p-dis-
tance for only those pair-wise comparisons involving lost alleles 
(pLOST) and mean from all alleles within a dataset (pDATASET). Distri-
butions for PHASE confidence probability thresholds 0.90 and 0.60 are 
shown in pale grey and dark grey, respectively.
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Figure 6 Relationship between the number of unresolved genotypes omitted from a dataset (x-axis) and under- or over-estimation of pop-
ulation genetic parameters commonly used in phylogeographic analyses (y-axis). A-B, decrease in theta (ΘW) under the 0.90 and 0.60 thresh-
olds; C-D, decrease in nucleotide diversity (π) under the 0.90 and 0.60 thresholds; E-F, increase in Tajima's D under the 0.90 and 0.60 thresholds; G-H, 
increase in Fu's FS under the 0.90 and 0.60 thresholds.
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can alter estimated root probabilities in intraspecific hap-
lotype networks (Figure 7). The implications for down-
stream network-based analyses (e.g., Nested Clade
Phylogeographic Analysis [64]) is an area of research that
demands further study, but is beyond the scope of the
present paper. The systematic loss of rare alleles could
also potentially impact outcomes of molecular dating
methods that require removal of short branches [65], or
tests of topological congruence between taxa [66]. For
these reasons, some caution is warranted even when per-
forming phylogeny-based phylogeographic analyses with
computationally-phased datasets.

Mitigation of observed biases and other sources of error
We have found SSCP to be efficient for physically isolat-
ing alleles from diploid PCR products [38,41], but the
utility of cloning or allele-specific PCR has also been
demonstrated (Table 1). Regardless of which approach is
considered most feasible, we reiterate the point made by
Huang et al. [23] that the effort invested in experimental
haplotype determination can be minimized by targeting
genotypes that remain unresolved following computa-
tional approaches. Indeed, it may not be necessary to
experimentally phase all unresolved genotypes given that

biases in the four population parameter estimates exam-
ined here were always quite low when unresolved geno-
types accounted for ≤ 2% of the total dataset under the
0.90 PHASE threshold (Figure 6). Notably, lowering the
PHASE threshold to 0.60 often reduces the number of
unresolved genotypes with little or no increase in false
positives (Table 3).

The potential for some genotyping error to arise when
scoring heterozygous sites from directly-sequenced dip-
loid PCR products is well-documented. For example, base
composition bias can contribute to highly asymmetric
signal intensities [9], chain termination sequencing
chemistry may cause certain nucleotides to produce small
peaks compared to other bases at the same heterozygous
position [67,68], and the sequencing primers themselves
can have a substantial effect on accuracy [69]. Further-
more, variable sites in close proximity to the 5' or 3' ends
of an alignment may be difficult to score accurately [24],
although it is not clear if this is a general phenomenon.
Problems may also arise when one allele amplifies in PCR
with low efficiency relative to another allele [70]. Taken
together, if inconsistencies are seen between forward and
reverse sequence chromatograms for the same diploid
template, it would be prudent to experimentally validate

Figure 7 Statistical parsimony networks constructed for simulated dataset 'Sim21' using TCS [49]with the 95% confidence criterion en-
forced. A: full dataset (i.e., 100 sequences from 50 diploid genotypes). B: pruned dataset with five unresolved genotypes omitted. Ovals are distinct 
haplotypes and are drawn proportional to haplotype frequency. Each single line represents one mutational step, and small circles dividing single lines 
are inferred haplotypes that were not present in the dataset. A rectangle indicates the haplotype with the highest outgroup probability in each net-
work. In this particular case, both the 0.90 and 0.60 PHASE thresholds produced identical outcomes.
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these genotypes. Indeed, Bos et al.'s [53] recommenda-
tion for ground-truthing a sub-sample of the haplotypes
inferred by PHASE is well justified.

Conclusions
In contrast to Harrigan et al. [24], we have not been able
to escape the conclusion that a combination of experi-
mental and computational approaches for resolving
phase of segregating sites in phylogeographic applications
is essential. We have shown that the current practice of
omitting unresolved genotypes (i.e., those that cannot be
resolved with high confidence using computational
approaches implemented in PHASE) introduces system-
atic bias into estimates of important population genetic
parameters. As expected, these biases have their most
pronounced effects on summary statistics that draw on
the signal embedded in the number of rare alleles (e.g.,
tests of neutrality or population growth). Fortunately,
with targeted application of laboratory procedures that
enable unambiguous phase determination via physical
isolation of alleles from diploid PCR products (e.g., clon-
ing, allele-specific PCR, SSCP), relatively little investment
of time and effort is needed to overcome potential biases.
This notion that the 'best' strategy involves a duality of
approaches represents a recurring theme in phylogeogra-
phy [71-73].
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