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Abstract

A growing number of Type-1 Diabetes (T1D) patients globally use insulin pump technologies

to monitor and manage their glucose levels. Although recent advances in closed-loop sys-

tems promise automated pump control in the near future, most patients worldwide still use

open-loop continuous subcutaneous insulin infusion (CSII) devices which require close

monitoring and continuous regulation. Apart from specialized diabetes units, hospital physi-

cians and nurses generally lack necessary training to support the growing number of

patients on insulin pumps. Most hospital staff and providers worldwide have never seen or

operated an insulin pump device. T1D patients at nurseries, schools, in hospital emergency

rooms, surgery theatres, and in-patient units all require close monitoring and active man-

agement. The lack of knowledge and necessary training to support T1D patients on pumps

puts them at life-threatening risks. In this work, we develop a training simulation software for

hospitals to educate and train their physicians and nurses on how to effectively operate a

T1D pump and reduce hypoglycemia events. The software includes clinically validated T1D

virtual patients that users can monitor and adjust their pump settings to improve glycemic

outcomes. We develop a Fuzzy-Logic learning algorithm that helps guide users learn how to

improve pump parameters for these patients. We recruited and trained 13 nurses on the

software and report their improvement in pump administration, basal rates adjustments, and

ICR modulation.

Introduction

The need to increase the capacity and competencies of healthcare workers using innovative

and continuous training approaches is of utmost importance in providing necessary care for

patients, especially after the ongoing COVID-19 pandemic [1–3]. Diabetes management and

insulin pumps have been challenging topics for school nurses, nurses in surgical wards, physi-

cians, and most importantly people with diabetes [4, 5]. The more challenging type-1 diabetes

(T1D) demands continuous monitoring, treatment adjustments, meal inspections, and activity

patrol. The complexity of the matter increases and becomes even more challenging when deal-

ing with T1D children [6–8]. Nurses must have the proper training and knowledge on utilizing

technological advances to keep a tighter control on the more volatile blood sugar levels in chil-

dren to decrease microvascular complications.
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T1D affects an estimated 20 million people worldwide and continues to grow yearly at a 4%

rate [9–12]. Several treatments are available for patients ranging from multiple daily injections

(MDI) of insulin to continuous subcutaneous insulin infusion (CSII) therapy and sophisti-

cated hybrid and closed-loop systems [13–15]. An estimated 40% of T1D patients, and grow-

ing, utilize pumps and sensor technology as an intensive insulin therapy mechanism [16].

Recent advances in the areas of Artificial Pancreas and closed-loop systems are promising

to alleviate many of the hurdles and complications associated with managing T1D pumps.

Children of all ages with T1D have been switching from MDI to CSII therapies because of

improved overall quality of life [5]. CSII pumps provide a greater flexibility in insulin adminis-

tration and meal planning supplemented by the information retrieved from continuous glu-

cose monitoring devices [2, 6]. The goal of creating fully automated insulin delivery systems

will revolutionize glucose management and offer an increased lifestyle flexibility for T1D

patients.

People with diabetes are three times more likely to be hospitalized compared to the general

population [17–19]. Those with T1D are reported to experience higher rates of complica-

tions, longer stays, and increased hospital mortality [20–22]. T1D patients at hospitals often

experience high rates of hypoglycemia, several events of hyperglycemia, and ketoacidosis

complications [23, 24]. Moreover, they experience difficulties in adjusting insulin doses to

accommodate required nutritional support, fasting periods, and modified scheduled insulin

therapies [23–25]. The use of T1D pump technologies in the hospital setting has demon-

strated the ability to improve patients’ glycemic control, decreasing episodes of hypoglyce-

mia, and provide an improved quality of life [26, 27]. As the popularity of T1D technologies

continues to increase, hospital healthcare providers are facing the need to manage the inpa-

tient care of users with pump devices [28].

The demand for specialized diabetes inpatient services is increasing as the global T1D inci-

dence rates continues to grow [11, 23, 29]. However, the lack of awareness and lack of health-

care professionals trained in the use of pump technologies is hindering the required care [16].

Globally, T1D patients find that many hospitals and clinics lack policies and guidelines for

managing T1D technologies and lack the expertise and personnel for proper consultation on

treatments provided by these technologies. This widespread lack of expertise can lead to medi-

cation errors and harmful outcomes for patients [30]. For these reasons, the American Diabe-

tes Association (ADA), the American Association of Clinical Endocrinologists, and the

Diabetes Technology Society all advocate allowing the use of insulin pumps at hospitals for

patients that are physically and mentally able to operate their devices [31–34]. In addition,

they recommend that hospitals put in place policies for the use of these technologies and train

their healthcare providers on CSII pump management. They recommend that providers are

directly involved in adjusting pump settings and insulin requirements on these devices during

patient visits and after discharge [35, 36]. As diabetes educators, trained nurses can assist and

support children and families in their transition to pump therapy [37, 38]. Basal rate adjust-

ments, insulin-to-carbohydrate ratio (ICR) regulation, and insulin correction-doses are set-

tings that providers should be able to assist T1D patients with [39].

In this work, we develop a T1D training simulation software for providers to assist with

adjusting pump parameters in CSII devices. Existing simulators in the field are designed for

developers to test and train algorithms for closed-loop systems [40–42]. Little advance has

been made since the release of the basic AIDA simulator for diabetes education in 1996 [43].

The training environment we develop, called Leeno, aims at teaching healthcare professionals

how pumps work, how to set pump parameters to improve glycemic control, and how to avoid

severe hypoglycemia events in T1D patients. The environment utilizes a set of validated virtual

patients that mimic glycemic responses of T1D patients from past clinical trials. To guide
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training, we develop and validate a Fuzzy-Logic learning algorithm to assist in the adjustment

of basal and ICR rates. We recruited 13 nurses from Emergency, In-Patient, and Operation

Theatre hospital departments to conduct T1D training sessions on Leeno and report their pre-

and post-usage results of the platform. The results indicate an improvement in pump adminis-

tration, basal rate adjustments, and ICR modulation. Because an increasing number of diabe-

tes patients are using insulin pump technologies, it is of utmost importance that healthcare

providers have the knowledge and means to care for these patients.

Methods

In this section, we outline the work we performed to provide an effective medium to train phy-

sicians and nurses on how to operate a CSII T1D pump. We developed an industry-grade soft-

ware application, called Leeno, to provide users with an electronic dashboard to set pump

parameters and simulate their parameter choices on virtual T1D patients. Leeno allows users

to run virtual clinical trials to test various pump parameters and patient conditions, effectively

providing a training medium for users. The mathematical models governing the virtual

patients and their glycemic responses have been verified and clinically validated in one of our

previous studies [42]. Leeno was built to accommodate users who have no prior knowledge on

how to tweak glycemic parameters to provide better patient outcomes (ex. higher time-in-tar-

get values). To accommodate these users, we developed an assisted-learning environment inte-

grated into the Leeno application. The environment utilizes a Fuzzy-Logic algorithm to guide

users on pump values they should tweak to improve patient glycemic outcomes in subsequent

trials.

Application framework

We utilized best practices of Object-Oriented design and modular programming in building

the Leeno software. The component running the virtual patients was hosted on the cloud,

while the code running the pump dashboard interface, software engine to communicate

between the virtual patients and simulation view, and the smart algorithm all run on a local

personal machine. JavaFX [44] components were used to build a modern, user-friendly inter-

face and support the GUI elements of Leeno. As the software was built using Java, it is available

to run on various operating systems including Windows, MacOS, and Linux.

Upon logging into Leeno (see S1 Fig in S1 File), a user is directed to the pump interface

page, as shown in Fig 1. The interface is split into two main views: The view on the right of the

screen contains pump settings, and the view on the left displays simulation results. The pump

settings include fields to input meal-dependent ICR values and six basal rates to be used

throughout the day.

Upon login, Leeno pulls virtual patient clinical data from a cloud server and prepares the

environment for user simulations. A user can initiate a New Experiment (S2 Fig in S1 File)

and supply a meal protocol for a patient (S3 Fig in S1 File). Experiments run for a 48-hour

period, plotting the glucose values of the selected virtual patients, along with the insulin dos-

ages administered by the CSII pump calculated from the ICR and basal rates on the pump

interface. When the 48-hour simulation is completed, the user is prompted to update the val-

ues of the pump. At this stage, the user can analyze the performance of the previous parameters

with respect to glucose time-in-target values and hypo- and hyper-glycemia events. The user

can then select new parameters and relaunch the experiment for another 48-hour run. Details

pertaining to the system design and object-oriented components are outlined in S4-S7 Figs

and S1 Text in S1 File for interested readers.

PLOS ONE T1D Smart Training Environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0274534 September 15, 2022 3 / 15

https://doi.org/10.1371/journal.pone.0274534


Smart algorithm

It is generally a difficult process for clinicians and T1D patients to decide what parameters

need to change to improve subsequent simulation runs. At the clinic, physicians and nurses

observe patients’ previous trends and try to suggest modifications on pump parameters to

improve future targets. To assist with this decision-making process, we developed a Fuzzy-

Logic learning algorithm, integrated into Leeno, to guide users on potential pump parameters

that should be changed. The algorithm acts as an expert system by integrating T1D clinical

knowledge into computational rules that can be utilized to better calibrate the pump parame-

ters. Users conducting experiments on the Leeno software can consult this Smart Algorithm

after every 48-hour simulation run to guide them on the ICR values and basal rates that can be

changed to improve the next 48-hour pump performance.

Basal rate changes

As a 48-hour simulation unfolds, the algorithm monitors the patient glucose readings, basal

rates administered by the pump, meal amounts, and insulin boluses. The algorithm divides a

day into six intervals (4 hours per interval) and compares the glucose trends across intervals in

different days. The algorithm’s objective is to find ways to increase glucose time-in-target and

minimize hypoglycemia events. Given the outlined input, the algorithm implements a fuzzy-

logic method to suggest changes to basal rates in each of the six intervals. The algorithm per-

forms a fuzzification step on the patient glucose readings to classify a given blood glucose

numeric value into one or more fuzzy sets and associates a membership score with each set.

Fig 2 (Top) displays the membership functions used in the fuzzification process.

During the fuzzification step, the algorithm utilizes a combination of triangular and trape-

zoidal based input membership functions that transform blood glucose readings of a virtual

patient into one (or more) of four defined sets: “low”, “medium”, “high”, and “ex_high” fuzzy

sets. The transformation maps a blood glucose reading of 7.0 to the “medium” set with a 100%

Fig 1. Pump interface view. (Right) Users can specify ICR and insulin basal rate pump settings. (Left) Simulation Results displayed include

glucose readings over a 10-minute interval increments and display meal amounts, basal rates, and insulin boluses.

https://doi.org/10.1371/journal.pone.0274534.g001
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degree of membership, maps 14.0 to the “high” set with a full membership, and maps a reading

of 21 to the “ex_high” set. We defined Values between (0–7.0), (7.0–14.0), and (14.0–21.0) to

belong simultaneously to two sets, but with varying degrees of membership as outlined in Fig

2. The membership function computes and decides the most appropriate set(s) a blood glucose

reading should belong to. Once this process is complete for the various endpoints of each

interval during the 48-hour run, the algorithm proceeds with applying Fuzzy-Logic rules to

determine what if any changes in insulin basal rates are necessary.

Our algorithm includes 88 Fuzzy-Logic rules inspired from the clinical knowledge in the lit-

erature to determine if the basal rates need to change for any of the six intervals. The 88 rules

are assessed for each of the 4-hour intervals and the most appropriate rule is applied using the

center of gravity defuzzification method. The following are 5 sample rules used in the fuzzifica-

tion process. The remaining rules are provided in S1 Table in S1 File:

1. IF (Intv1GlucoseBegin IS low AND Intv1GlucoseEnd IS low AND
Intv2GlucoseBegin IS low AND Intv2GlucoseEnd IS low) THEN
InsulinRequirement IS noChange.

2. IF (Intv1GlucoseBegin IS low AND Intv1GlucoseEnd IS medium
AND Intv2GlucoseBegin IS low AND Intv2GlucoseEnd IS high)
THEN InsulinRequirement IS increase.

3. IF (Intv1GlucoseBegin IS low AND Intv1GlucoseEnd IS medium
AND Intv2GlucoseBegin IS low AND Intv2GlucoseEnd IS exHigh)
THEN InsulinRequirement IS exIncrease.

Fig 2. Algorithm membership function. (Top) Input Membership Function. The algorithm classifies glucose input into 4 sets:

low, medium, high, and ex_high. The x-axis plots blood glucose values and the y-axis plots the range of truth value from 0 to 1.

(Bottom) Output Membership Function involved in the center of gravity defuzzification process to produce basal-rate insulin

changes.

https://doi.org/10.1371/journal.pone.0274534.g002
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4. IF (Intv1GlucoseBegin IS exHigh AND Intv1GlucoseEnd IS high
AND Intv2GlucoseBegin IS exHigh AND Intv2GlucoseEnd IS high)
THEN InsulinRequirement IS decrease.

5. IF (Intv1GlucoseBegin IS exHigh AND Intv1GlucoseEnd IS high
AND Intv2GlucoseBegin IS high AND Intv2GlucoseEnd IS low)
THEN InsulinRequirement IS exDecrease.

In rule 1, the algorithm compares the glucose fuzzy sets at the beginning and end of a

4-hour interval in day 1 and day 2. If the glucose readings are all low, the algorithm decides not

to change the insulin basal rate for that interval. The repeated low glucose readings might be a

result of an aggressive bolus prior to entering the interval duration. In rule 2, when the glucose

levels increase at the end of the 4-hour interval on both days 1 and 2, the algorithm decides to

slightly increase the basal rate associated with this interval to counter the increase of insulin in

day 3. In rule 3, the basal rate is increased at a higher rate due to a slightly upward trend in glu-

cose behavior. Rules 4 and 5 exhibit a suggested decrease in basal insulin requirement due to a

downward glucose 2-day trend during the same time interval. The bottom part of Fig 2 dis-

plays the output membership function used in the defuzzification step to translate the decision

regarding whether to increase an insulin basal rate, decrease the rate, or keep it unchanged.

Similar to the fuzzification process, the defuzzification step computes and decides the most

appropriate output decision. The algorithm will recommend an alteration to the basal rate

depending on the selected set and the degree of membership assigned to it. We selected the x-

axis bounds for the input and output sets from our observations of past clinical data.

S1 Algorithm in S1 File outlines the logic used to process the defuzzification results and

provide a maximum 20 percent increase or decrease in basal rates, as practiced in various clini-

cal protocols. The new basal rate suggestions are then displayed to the user as shown in Fig 3.

To perform the core mathematical fuzzification and defuzzification functions behind the fuzzy

logic process, we integrated the jFuzzyLogic [45] control application in our software.

ICR suggestions

The algorithm updates meal ICRs separately from basal rates. Meal ICRs are used in calculating

insulin boluses that are inherently larger doses of insulin required to counteract glucose changes

after meals. The Fuzzy-Logic algorithm monitors glucose values up to 4 hours after each meal. In

addition, the algorithm attempts to recompute and recalibrate the different ICR values by com-

paring the carbohydrate intakes during a meal with the glycemic effect resulting from the given

bolus. The calculation is complicated with the existence of multiple meals or snacks during any

4-hour window. To adjust for multiple meals, the algorithm computes time between meals and

correlates the first derivative of the glucose trend during and after meals. S2 and S3 Algorithms

in S1 File detail the logic used in this process and return the decision of increasing, decreasing, or

maintaining the ICR value as is. The values returned are displayed to the user as shown in Fig 4.

We describe in the Results & discussion section some validation results pertaining to our

proposed algorithm and its performance on a month-long computational study. In addition,

we used the Fuzzy-Logic learning algorithm to perform a study to assess improvements in

CSII insulin pump calibration of nurses at a local hospital.

Ethics statement

The Queen Hospital Ethics Committee approved the computational study (approval no

2021421). All nurse participants gave their written informed consent prior to their inclusion in

the study.
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Results & discussion

The aim of developing the Fuzzy-Logic Learning algorithm was to capture as much clinical

decision-making rules as possible to provide physicians and users a training environment that

helps improve glucose time-in-target for patients and reduce hypoglycemia events. The incre-

mental improvements suggested by the algorithm every 48-hours to basal and ICR values con-

verge to better glycemic control. We present in this section results validating the performance

of the algorithm on improving glucose control. In addition, as a translational research effort,

we conducted training sessions for thirteen nurses on the Leeno application and outline the

improvement they exhibited on glycemic outcomes.

Smart algorithm performance

We validated the performance of our Fuzzy-Logic algorithm on the T1D simulation develop-

ment platform for artificial pancreas algorithms framework, Ulna [42]. Ulna provides an in-sil-

ico clinical trial environment populated with clinically validated T1D patient models. Our goal

Fig 3. Algorithm insulin basal rate suggestions. Upon analyzing a 48-hour simulation run, the Fuzzy-Logic

algorithm returns suggested changes to basal rates. Values displayed in green prompt the user to a necessary increase

in the pump parameter, red values suggest decreasing a basal rate, and black values suggest no change.

https://doi.org/10.1371/journal.pone.0274534.g003
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using Ulna was to compare our CSII Fuzzy-Logic learning algorithm against a traditional CSII

open-loop treatment.

We designed our experiments to run for 62 days on 15 adult patients. Using the same meal

and variability protocols, we conducted a 31-day trial for each patient using the conventional

CSII open loop algorithm implemented in Ulna, and a second 31-day trial using our proposed

fuzzy-logic algorithm. The Fuzzy-Logic algorithm was allowed to self-update its basal and ICR

values every 48-hours according to its internal S1-S3 Algorithms in S1 File and fuzzy rules in

the S1 Table in S1 File. The results of the trials are plotted in Fig 5 and highlighted in Table 1.

Our primary outcome was defined to be glucose time-in-target in the range 4.0–10.0

mmol/L. The virtual trial involving the CSII Fuzzy-Logic algorithm resulted in a higher time-

in-target outcome compared to the CSII Open-Loop trial (65.9% vs. 58.9%). We defined the

secondary outcome of the study to be the number of hypoglycemia and hyperglycemia events.

Again, the virtual trial involving the CSII Fuzzy-Logic algorithm outperformed the CSII

Open-Loop trial. The open-loop algorithm resulted in 306 hypoglycemia events and 76 hyper-

glycemia events. The Fuzzy-logic algorithm reduced both events by half. We observed 142

hypoglycemia events across the entire month and 76 hyperglycemia events with our proposed

algorithm. The results indicate an overall good incremental improvement with the Fuzzy-

Logic learning algorithm. As the algorithm updates its basal and ICR rates every 48-hours by a

maximum of 20%, it is expected that the algorithm will not result in drastic volatility. On the

Fig 4. Computed ICR values. The suggested ICR values in green indicate an increase from the current ICR and suggested ICR

values in red indicate a decrease from the current ICR.

https://doi.org/10.1371/journal.pone.0274534.g004
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Fig 5. Comparison of Open-Loop vs. Fuzzy-Logic Learning algorithms. (Top) 31-day trial using the Open-Loop

Algorithm (bottom) Fuzzy-Logic Learning Algorithm trial results. Red Lines represent the 25% and 75% IQR median

range of blood glucose levels across all 15 patients, the blue lines represent insulin basal injections, and the x-axis plots

clinical trial simulation time in hours.

https://doi.org/10.1371/journal.pone.0274534.g005

Table 1. CSII Open-Loop vs CSII Fuzzy-Logic Learning Algorithms comparison for the overall simulation study

period of 31 days across the 15 patients.

Outcome CSII Open-Loop pump therapy

(n = 15)

CSII Fuzzy-Logic Learning Algorithm

(n = 15)

Time spent at glucose levels (%):

4.0–10.0 mmol/L� 59% (43–80) 66% (44–79)

< 4.0 mmol/L 2.4% (0.1–16.5) 1.7% (0.1–10.2)

< 3.5 mmol/L 0.7% (0.0–9.5) 1.1% (0.0–6.4)

< 3.1 mmol/L 0.2% (0.0–5.2) 0.5% (0.0–3.7)

> 8.0 mmol/L 53% (22–84) 62% (40–89)

> 10.0 mmol/L 30% (4–56) 29 (14–56)

Hyperglycemia Events,

n

76 41

Hypoglycemia Events$,

n

306 142

Data are median (IQR).

�Primary outcome, defined as 4.0–10.0 mmol/L.
$Secondary study outcome.

https://doi.org/10.1371/journal.pone.0274534.t001
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contrary, the algorithm is designed to help users tweak existing parameters and safely converge

to better results over time. This convergence can be observed in Fig 5 as the interquartile values

(IQR) of the glucose readings become tighter and closer to one another over time. In addition

to tightening the IQR bounds, the updates that occurred 15 times in the Fuzzy-Logic algorithm

throughout the month simultaneously reduced both hypoglycemia and hyperglycemia events.

S8 Fig in S1 File expands the plot of the Fuzzy-Logic output in Fig 5 and shows how the diver-

gence from hypoglycemia started to take affect at day 10 onwards. It is important to note that

the amount of insulin used at the start and end of the simulation study did not significantly

change, rather a better control was achieved by supplying insulin where most necessary. In the

first 10 days, 82 hypoglycemia events were observed across the 15 patients, in the next 10 days

the number reduced to 38, and in the final 10 days the number of hypoglycemia events was

only 22. Although still a CSII algorithm, the Fuzzy-Logic learning component was able to pro-

vide a considerable improvement over a conventional CSII treatment. This algorithm can be

used as a method to improve the glycemic control of patients on CSII pumps. We believe that

the algorithm can be used to train health providers on the pump parameters to update to

reduce hypoglycemia events and increase time-in-target values over time.

Hospital personnel training

The improvements suggested by the algorithm empowered us to conduct training sessions for

medical staff at a local hospital. As part of our translational research goals for this work, our

training focused on helping medical staff at the hospital use Leeno integrated with the Fuzzy-

Logic learning algorithm to calibrate CSII insulin pump parameter values. We recruited thir-

teen nurses from the In-Patient, Emergency, and Operation Theatre departments for training

after obtaining necessary approvals from the Ethics Committee at Queen Hospital. These

departments usually host critical patients, some of whom were T1D patients on insulin pumps.

All thirteen nurses reported an adequate knowledge of diabetes, but their knowledge of type-1

diabetes pump calibration varied. Three of the nurses reported a moderate knowledge of

pump calibration while the remaining ten had basic knowledge.

Training for the nurses was carried out individually and occurred over four stages. In the

first stage, nurses were presented with the Leeno application, how virtual simulations worked,

what pump parameters were available for a clinical trial, how to launch trials, what data is pre-

sented on the interface, and how to read the simulation results. In the second stage, we asked

each nurse to run a clinical trial for 1 patient for a duration of 6 days. After each 48-hour

mark, the nurse had a chance to update the insulin pump parameters (insulin basal rates and

ICRs) to improve time-in-target and reduce hypo and hyperglycemia events. In this stage,

nurses did not receive any assistance or suggestions from the learning algorithm. The third

stage was the training stage that used the Fuzzy-Logic algorithm on one of the virtual patients

with high susceptibility to hypoglycemia. This focused their training on avoiding hypoglyce-

mia events. In this stage, each nurse ran a second clinical trial on a different patient (patient 4)

for a duration of 6–24 days with the assistance of our Fuzzy-Logic algorithm. At every 48-hour

mark, the algorithm provided suggestions for the nurse on what parameters to change and cor-

related the suggestions to the rules found in S1 Table and S3 Algorithm in S1 File. We

explained the logic behind the algorithm choices at each step to the nurses. The nurses were

free to take the suggestion of the algorithm or to override it with their own values. In stage 4,

we asked each nurse to re-run the 6-day clinical trial on the same patient they chose in stage 2

and apply the knowledge they gained from the training phase in stage 3. They were not allowed

to use the assistance of the Fuzzy-Logic algorithm in this stage. In total, each nurse performed

three clinical trials. The outcome of the training sessions is presented in Table 2.
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Table 2. Training session results for 13 nurses spanning training stages 2–4.

Nurse Hospital Pump Virtual Training Outcome (mmol/L) Hypo Rescue

No. Dept Expert Patient Stage < 4.0 4.0–10.0 > 10.0 Events Meals

1 In-Patient Moderate 5 CSII-Prior 23.1 72 4.7 6 200g

4 Learning AVG 41.8 58.2 0 10 400g

5 CSII-Post 28.2 71.8 0 9 200g

ΔCSII 5.1 -0.2 -4.7 3 0g

2 ER Moderate 5 CSII-Prior 15.7 76.6 7.7 4 125g

4 Learning AVG 39.7 60.3 0 9 350g

5 CSII-Post 13.9 86.1 0 3 100g

ΔCSII -1.8 9.5 -7.7 -1 -25g

3 ER Low 5 CSII-Prior 35.5 64.5 0 8 300g

4 Learning AVG 40.5 59.5 0 9 325g

5 CSII-Post 5.2 69.9 24.8 2 25g

ΔCSII -30.3 5.4 24.8 -6 -275g

4 OT Low 5 CSII-Prior 8.4 87.8 3.8 3 75g

4 Learning AVG 43.6 56.4 0 11 375g

5 CSII-Post 6.6 82.5 10.8 2 25g

ΔCSII -1.8 -5.3 7 -1 -50g

5 ER Moderate 5 CSII-Prior 12.2 62.9 24.8 3 75g

4 Learning AVG 40.8 59.2 0 9 400g

5 CSII-Post 9.1 65.7 25.2 2 50g

ΔCSII -3.1 2.8 0.4 -1 -25g

6 OT Low 5 CSII-Prior 14.7 76.6 8.7 5 75g

4 Learning AVG 41.8 58.2 0 10 375g

5 CSII-Post 12.6 77.3 10.1 3 75g

ΔCSII -2.1 0.7 1.4 -2 0g

7 In-Patient Low 5 CSII-Prior 12.6 78.7 8.7 5 75g

4 Learning AVG 42.5 57.5 0 12 350g

5 CSII-Post 15 51.7 33.2 5 50g

ΔCSII 2.4 -27 24.5 0 -25g

8 OT Low 5 CSII-Prior 15 78 7 4 125g

4 Learning AVG 46.3 53.7 0 11 350g

5 CSII-Post 9.8 83.2 7 3 75g

ΔCSII -5.2 5.3 0 -1 -50g

9 In-Patient Low 5 CSII-Prior 17.8 73.4 8.7 4 100g

4 Learning AVG 42.9 57.1 0 9 400g

5 CSII-Post 8 78.7 13.3 3 50g

ΔCSII -9.8 5.3 4.6 -1 -50g

10 ER Low 5 CSII-Prior 12.9 82.9 4.2 4 100g

4 Learning AVG 43.3 56.6 0 10 350g

5 CSII-Post 8 87.8 4.2 3 50g

ΔCSII -4.9 4.9 0 -1 -50g

11 OT Low 5 CSII-Prior 14 78 8 5 100g

4 Learning AVG 44.9 55.1 0 10 375g

5 CSII-Post 7.3 66.8 25.9 2 50g

ΔCSII -6.7 -11.2 17.9 -3 -50g

(Continued)
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To keep the clinical setting variability as low as possible, each nurse performed their Stage 3

training on Virtual Patient 4, and their Stage 2 and Stage 4 trial on Virtual Patient 5. During

the study, when the patient’s glucose level fell below 3, an automatic 25g rescue meal was

administered to bring the patient out of hypoglycemia. We define ΔCSII in Table 2 to be the

difference in numerical results between outcomes in Stage 2 (CSII-Prior) and Stage 4 (CSII--

Post). The results show that 10 out of the 13 nurses were able to reduce hypoglycemia events at

Stage 4, post training, by an average of 23%. The time spent < 4.0 mmol/l was reduced from

16% to 11%, a 27% reduction across the study. This reduction in hypoglycemia reduced the

number and quantity of rescue meals that the patients needed by 38%. The time-in-target 4.0–

10.0 mmol/l outcome was reduced by 3% in the study overall from 76% to 74%. The

time > 10.0 mmol/l almost doubled and increased by 91% across the study from 8% to 15%.

The focused training on avoiding hypoglycemia resulted in a respectable decrease of hypo

events and times below 4.0 mmol/l. Although this resulted in an increase in time spent in

hyperglycemia, it is an understandable consequence of T1D CSII pump management. We

focused our study on training the nurses to prioritize avoiding hypoglycemia in their hospital

setting. All 13 nurses reported benefiting from training with the learning algorithm and

reported a stronger confidence in calibrating pump parameters to improve care for type 1 dia-

betes patients.

Conclusion and future work

Managing T1D pumps is an ordeal for most patients. The number of patients on CSII pumps

is significant globally and will remain so for years to come until further technology advances

are made with the fully automated Artificial Pancreas. Many hospitals, schools, and clinics

host patients with CSII devices who require medical attention and continuous adjustment of

pump parameters. In this work, we developed a training simulation software, called Leeno, to

assist nurses, physicians, and licensed caretakers understand how to best tweak pump parame-

ters to avoid severe hypoglycemia events and keep glucose within an acceptable range for as

long as possible. The 88 rules we coded into the Fuzzy-Logic learning algorithm used by some

clinicians in adjusting basal and ICR rates for T1D patients was able to considerably reduce

hypoglycemia and improve time-in-target values when applied on a set of 15 virtual patients.

In the hospital setting, the algorithm and the Leeno package were able to help the nurses

improve their T1D glucose management skills. With further training and more time spent on

Table 2. (Continued)

Nurse Hospital Pump Virtual Training Outcome (mmol/L) Hypo Rescue

No. Dept Expert Patient Stage < 4.0 4.0–10.0 > 10.0 Events Meals

12 OT Low 5 CSII-Prior 15.7 78 6.3 5 100g

4 Learning AVG 41.8 58.2 0 9 400g

5 CSII-Post 16.1 55.6 28.3 6 100g

ΔCSII 0.4 -22.4 22 1 0g

13 ER Low 5 CSII-Prior 13.6 79.4 7 5 100g

4 Learning AVG 38.7 61.3 0 12 350g

5 CSII-Post 14.7 78.3 7 4 100g

ΔCSII 1.1 1.1 0 -1 0g

Stage 2 results are reported under the CSII-Prior Training Stage, Stage 3 results are under Learning AVG, and CSII-Post report results of Stage 4. ΔCSII reports the

difference in performance between Stages 2 and 4. Negative results in Hypo events define improvement performance.

https://doi.org/10.1371/journal.pone.0274534.t002

PLOS ONE T1D Smart Training Environment

PLOS ONE | https://doi.org/10.1371/journal.pone.0274534 September 15, 2022 12 / 15

https://doi.org/10.1371/journal.pone.0274534.t002
https://doi.org/10.1371/journal.pone.0274534


exploring and studying the choices of the Fuzzy-Logic algorithm, we believe that medical staff

at hospitals, schools, and community centers can significantly get better at calibrating insulin

pump parameters, hence improving care for T1D patients and assisting in times of critical

need. The modular design of the application allows for different algorithms to be plugged into

the system and made available for training.

Supporting information
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