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The experimental investigation of decision-making in humans relies on
two distinct types of paradigms, involving either description- or experi-
ence-based choices. In description-based paradigms, decision variables
(i.e. payoffs and probabilities) are explicitly communicated by means of
symbols. In experience-based paradigms decision variables are learnt from
trial-by-trial feedback. In the decision-making literature, ‘description–
experience gap’ refers to the fact that different biases are observed in the
two experimental paradigms. Remarkably, well-documented biases of
description-based choices, such as under-weighting of rare events and loss
aversion, do not apply to experience-based decisions. Here, we argue that
the description–experience gap represents a major challenge, not only to
current decision theories, but also to the neuroeconomics research framework,
which relies heavily on the translation of neurophysiological findings
between human and non-human primate research. In fact, most non-
human primate neurophysiological research relies on behavioural designs
that share features of both description- and experience-based choices. As a
consequence, it is unclear whether the neural mechanisms built from non-
human primate electrophysiology should be linked to description-based or
experience-based decision-making processes. The picture is further compli-
cated by additional methodological gaps between human and non-human
primate neuroscience research. After analysing these methodological
challenges, we conclude proposing new lines of research to address them.

This article is part of the theme issue ‘Existence and prevalence of
economic behaviours among non-human primates’.
1. The neuroeconomic research programme
The expected utility model was established as the standard normative model
of decision-making under risk [1,2]. Integrating Bernoulli’s intuition about
the curvature of the utility function and probability theories, von Neumann
and Morgenstern demonstrated that choices based on the expected utility
(i.e. the product between the utility of an outcome and its probability) satisfies
four basic axioms of rationality (completeness, transitivity, continuity and
independence). Historically, the neoclassical economics research programme dis-
regarded the study of the internal processes governing economic behaviours.
Keynes’ animal spirits [3] were considered unmeasurable, and economic
theory was built on the assumption that the human mind as well the brain
were ultimately black boxes. The ‘as-if’ hypothesis [4] illustrates this position
by endorsing an instrumentalist epistemology: theory predictive power prevails
on the realism of its initial assumptions. Accordingly, it was considered accepta-
ble to rely on unrealistic assumptions regarding the unbounded cognitive
capacities or perfect knowledge of economic agents, as far as the predictions
were sufficiently accurate.
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However, with the accumulation of behavioural evidence
against the standard normative expected utility model,
it soon appeared that it had to be profoundly amended to
successfully account for actual decisions under risk [5,6]. Posi-
tive, descriptive, models of decision-making under risk that
integrate insights from psychology, such as the notion of
bounded rationality (i.e. humans display limited compu-
tational capacities), heuristics (taking computational shortcuts
to make decisions) and biases (systematically distorted rep-
resentations of behavioural variables) were then proposed
and formalized [7–9]. Among the descriptive theories of
decision under risk and uncertainty, ‘prospect theory’ (PT)
had a strong empirical ground and stood out [8,10]. PT postu-
lates that expected utility is calculated relative to a reference
point (the frame), an asymmetric treatment of gains and
losses (loss aversion), as well as a subjective weighting of prob-
abilities ( probability distortion). PT successfully explained
known paradoxes (such as the Allais’s paradoxes) and new
ones (e.g. the Asian disease paradox, as well as a certain
number of ‘real life’ irrational behaviours [11,12]).

However, despite these successes, some aspects of the
descriptive approach, in general, and PT, in particular,
remained unsatisfactory. First, it remained difficult to ulti-
mately arbitrate between competing descriptive theories
solely based on behavioural data. For instance, alternative
behavioural theories have been proposed (such as rank-depen-
dent utility, regret and disappointment theories; see [13] for a
review) that make overlapping predictions with PT, making
them hard to disentangle. Second, while making accurate
predictions, PT, and other descriptive theories, do not specify
which are the actual cognitive operations and how they are
implemented by the brain. In terms of the Marrian analysis
of modelling, PT (as other descriptive theories) is situated at
the computational level that specifies which is the goal of the
agent (in this case:maximizing a subjective utility that includes
reference point dependence, loss aversion and probability
deformation), but is silent concerning the algorithmic (i.e.
what are the operations involved in the manipulation of
decision variables) and implementational levels (i.e. how these
operations are physically embodied and realized) [14].

A couple of decades later the time was ripe for a group of
scholars of diverse origins to seek in neuroscientific data the
way to overcome the limitations of descriptive theories,
developed by psychologists and behavioural economists.
This was facilitated by the rapid development of non-inva-
sive neuroimaging techniques in humans (most notably
functional magnetic resonance imaging: fMRI [15–17]) and
improvement of single-unit electrophysiological record-
ings in monkeys [18,19]. The hope was (and still is) that,
taking advantage of neuroscientific methods and concepts,
neuroeconomics (as this raising field was named), would
be able to address the epistemological issues of economic
theories highlighted above.

Concerning adjudicating on competing theories (our first
issue), by opening the brain ‘black box’ functional neuroima-
ging studies would provide an additional crucial observable
measure—blood oxygen level dependent signal (BOLD: an
aggregate and indirect measure of neural electrical activity),
to compare, falsify and ultimately refine behavioural models.
We define this approach as the weak neuroeconomic agenda, as
it does not involve rewriting economic descriptive theories
[20–22]. Coming back to our example, while making similar
behavioural predictions in respect of preferences under risk,
different theories postulate different utility functions that can
be searched in the brain [23–25]. Assuming one knows
where to look for utility representation in the brain,1 it
would be, in principle, possible to assess which model better
predicts its activity (a sort of neural model comparison: see
[29]). Beyond comparing different theories, the neural activity
could in principle help refining a theory by fixing some of its
parameters. For instance, in many circumstances, PT is silent
about how the reference point should be set [30]. Assuming
one knows where to look for positive (gain) and negative
(loss) utility representations in the brain, in some cases the
reference point could be inferred comparing the profile of
activity of the ‘gains’ and ‘losses’ areas2 [25,33].

Concerning building new theories (second issue), accepting
the fundamental ontological tenet that (economic) decisions
ultimately stem from neural activity in the brain (which is a
standard materialistic and monistic solution to the mind-
body problem, see [34]), entails that neuroscientific methods
should provide the conceptual and methodological tools
necessary to develop new, neurobiologically grounded, neural
models encompassing the algorithmic and implementational
levels. By contrast with the previous approach, we define this
approach as the strong neuroeconomic agenda, as it involves
rewriting economic theories in neurobiological terms. By inte-
grating biological constraints and cost functions, these
hypothetical neurobiologically grounded economic models
have the potential of explaining why human decision-
making presents certain biases from a biologically (not
logically or statistically) normative perspective [35,36].

The methodological requirements of the two main
neuroeconomics agenda are not quite the same. The weak neu-
roeconomic agendacan, in principle, be fulfilled byexperiments
relying on aggregate and indirect measures of the neural
activity, such as the BOLD signal recorded by fMRI scanners
in areas encoding subjective values. Furthermore, since the
goal is arbitrating between different behavioural theories of
decision-making developed by psychologists and economists,
the experiments belonging to this research agenda should be
preferentially (if not exclusively) performed in humans.

On the other side, as neural models are, ultimately, models
of which information is encoded in neurons and how neurons
are connected (networks), the strong neuroeconomic agenda
research programme cannot be pursued only relying on
fMRI neural signals.3 In fact, BOLD signal, at its best resolution,
aggregates over thousands of neurons [37–39]. Furthermore, it
is still unclear towhich extent it reflects presynaptic or postsyn-
aptic activity (probably a mixture of both) [39,40]. Such neural
models should eventually be validated based on the recording
of single-cell activities, which is, for obvious ethical reasons,
nearly impossible in humans.4 This is why neuroeconomics
research, from its very inception, strongly relies on electro-
physiological research on animal models, which have been
employed in the study of neural mechanisms and cognition
for almost 80 years [42]. Monkeys (especially rhesus monkey:
Macaca mulatta), are particularly popular models, because
they present a wide behavioural repertoire and high degree
of neuro-anatomical homology with humans, especially con-
cerning the prefrontal cortices that underpin decision-making
[43].

In figure 1, we represent what a prototypical workflow
should look like to combine human and monkey data to deli-
ver a neural model of decision-making. Of note, we describe
it from an abstract perspective of theory-building, but in



decision process of interest

monkey

behavioural
protocol

human
behaviour

monkey
behaviour

functional
imaging

single unit
recording

neural model

identify targets

human
behaviour

funff ctional
imaging

human

sameame

validation

out of sample
prediction assess causality

functional
imaging

single unit
recording

yes

Figure 1. Prototypical workflow combining human (purple) and monkey (green) data to pursue the strong neuroeconomic agenda. Dotted lines designate optional
steps. (Online version in colour.)

royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20190665

3

reality, its different steps can occur simultaneously (or in
reverse order), and in very distant laboratories. Once
identified as a behavioural process of interest (e.g. decision-
making under uncertainty), a behavioural protocol is designed
(typically, a series of choice problems involving different
amounts of rewards and probabilities) and administered to
both humans and monkeys. If the behaviour is comparable
across species (meaning that the monkey represents a valid
experimental model of human behaviour5), functional imaging
in humans can then be deployed to identify neural targets
encoding macroscopic variables (e.g. probabilities, outcomes)
that are later used to guide the selection of the areas where
neurons will be recorded inmonkeys. A desirable intermediate
step, to reinforce the functional correspondence between
human and monkey brain activations, would be to also
deploy fMRI in monkeys [45]. Similarly, in some neurologic
and psychiatric diseases, intra-cranial neural activity can also
be recorded in humans [41]. Finally, all these data can then
be combined together to propose and validate a neurobiologi-
cally plausible model of the behavioural process of interest.
Thereafter, the proposed model should be validated using
lesions and assessing its generalizability. Methods such as
trans-cranial magnetic stimulation and brain lesions can be
used to test the alleged causal relationship between neural cor-
relates and behavioural processes [46–48]. The model’s ability
to generalize can be assessed by generating predictions in
tasks involving different decision problems and behavioural
processes (out-of-sample validation).
A crucial step in this workflow is checking that humans and
monkeys display the same behavioural processes and biases as a
result of a true homology. This is something notoriously tricky
to assess, because several, to some extent unavoidable, meth-
odological differences exist between human and non-human
primate research.

The foundational experimental paradigm of behavioural
decision-making research consists in making choices between
‘lotteries’ or ‘gambles’, i.e. options associated with known or
unknown probabilities of obtaining different outcomes [2,5].
According to the gambling metaphor of individual choice
[49], lotteries are believed to be prototypical of real-life
decisions [50]. Outcomes and their probabilities are described
to participants, who often (especially in the first generation of
behavioural economics studies) make only one or very few
decisions, without being informed about the outcome of
their choices (in general to purposely prevent learning pro-
cesses from influencing decision-making [51]). On the other
side, monkey electrophysiological research adopts very differ-
ent methodological standards. For various reasons (including
ethical ones), monkey studies are limited in terms of sample
size, and consequently, the number of observations per subject
is greatly increased in order to increase statistical power and
reduce measurement noise. In fact, behavioural tasks in mon-
keys display a greater number of trials per subject, collected
on a sample size of often less than five subjects (e.g. [52,53]).
Both parameters (sample size and number of trials) are
roughly a couple of orders of magnitude different compared
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to what is common practice in behavioural economics (e.g.
[54,55]) (figure 2a). Interestingly, fMRI studies of decision-
making present experimental parameters somehow in-
between those used in monkeys and human studies: they
usually involve hundreds of trials and also sample sizes of
about 20–40 subjects (see two notable examples in neuroeco-
nomics: [25,56]). Assuming that decision-making possesses
ergodicity (i.e. the behaviour averaged across trials is the
same as the behaviour averaged across subjects), different
ratio trial/participants per se should not present a big chal-
lenge to compare results from human and monkey studies
(but note that ergodicity does not seem to be granted for
psychological processes, see [57]). However, in addition to
these quantitative differences, in monkey studies, an outcome
(usually a primary reward) is provided on a trial-by-trial basis.
This is because a monkey would simply stop doing the
experiment in the absence of extrinsic motivation. Thus, in vir-
tually all cases monkey experiments include a reinforcement
learning component, where actions are associated with past
outcomes. This is true even when the paradigm involves
establishing a symbolic system to communicate outcomes
and probabilities. In fact, in the absence of a shared language
or semantic system to communicate, monkeys are compel-
led to learn any representational system by trial-and-error
from feedback.

In the present article, we argue that the above-mentioned
differences do not only present a technical issue, but also a
major epistemological challenge for the (strong) neuroeconomic
agenda. We detail why below.
2. The experience–description gap
As mentioned before, foundational contributions to behav-
ioural decision-making research were made through the use
of explicitly described gambles. Several representations have
been used to convey outcome values and probabilities, includ-
ing textual and numerical descriptions (e.g. [5,8,54]), later
replaced by visual cues such as pie-charts (e.g. [25,58]). In
these paradigms, the information pertaining to the decision-
relevant variables is processed by verbal and mental calcu-
lation systems and relies upon some degree of semantic
knowledge to decode the meaning of the symbols used. In
addition to that, decision problems were usually presented
only once and, in case multiple decision problems were
used, the final outcome (i.e. the realization of the lottery)
was usually not displayed on a trial-by-trial basis (figure 2b).

However, relatively few situations in real life match the
characteristics of the pure description-based paradigms, namely
complete and explicit information about outcome values and
probabilities. In fact, in many circumstances, it seems rather
prudent to assume that information about outcome values
and probabilities are shaped by past encounters of the same
decision problem. Experimentally, this configuration is often
translated into multi-armed bandit problems (starting with
Thompson [59], but see [60] for a review), where the decision-
maker faces abstract cues of unknown value and has to figure
by trial-and-error the value of the options. Computationally,
behaviour in multi-armed bandit problems is generally well-
captured by associative or reinforcement learning processes
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Figure 3. (a) Illustration of the nonlinear transformation of probabilities in description (left panel) and experience (right panel). In the description domain, sub-
jective probability is reflected by a probability weighting function (here denoted π) following an inverse S-shape (i.e. low probabilities are overweighted while high
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[61]. In the early 2000s, a line of enquiry arose where researcher
translated the typical decision problems used in behavioural
economics (i.e. involving choices between a safe and a risky
prospect in the gain and loss domain6) into experience-based
paradigms [55,63,64] (figure 2b). Systematic comparisons
between these two decision-making modes revealed the
existence of robust description–experience gaps regarding risk
preferences in humans [65–67] . More precisely, probability
weighting functions eventually show opposite deformations
when comparing description-based and experience-based
choices (figure 3, box 1). In particular, most of the tenets of PT
do not seem to hold in experience-based choices [8]. While
traditionally, in the description domain, the occurrence of rare
events is overestimated (possibility effect) and the occurrence
of frequent events is underestimated, experience-based
decisions tend to show the opposite biases: an effect that is
only partially explained by incomplete sampling [55,63,64,66].

In description-based choices, a behavioural hallmark of
loss aversion (overweighting of negative outcomes) is the reflec-
tion effect, where subjects are risk averse in the gain domain and
risk seeking in the loss domain. The opposite pattern has been
repeatedly found in the experience-based decisions [67]. This
observationmay be explained by biases in the learning process,
such as remembering preferentially extreme outcomes or inte-
grating preferentially better-than-expected outcomes [72,77].
Finally, a smaller subset of studies investigated a hybrid situ-
ation where decision problems are fully described, choices
are repeated and followed by a trial-by-trial feedback. These
‘description plus experience’ paradigms showed that probability
distortions compatible with prospect theory are initially pre-
sent, but corrected by the presence of feedback [78,79]. To
summarize, the whole spectrum of decision-making under
uncertainty in humans is far from being fully captured by
PT’s loss aversion and subjective probability deformation.
Specifically, different descriptive models seem to apply as a
function of how outcome and probability information is con-
veyed. In what remains of the paper, we illustrate why we
believe that this feature seriously challenges leveraging on
neural and behavioural data in monkeys to build a neural
model of decision-making under uncertainty.
3. Decision under risk in monkeys
In this section, we try to address the question of whether mon-
keys are a good experimental model for human decision-
making under uncertainty. We will focus this survey on
rhesus monkey (Macaca mulatta) results because most electro-
physiological studies are performed in this species (but see
[44] for a more detailed review including other primates).
Askingwhethermonkeys are a good experimentalmodel trans-
lates into asking whether in the laboratory setting their
behaviour displays the distinctive features and biases observed
in humans.We stress again that the comparison is complicated
by the fact that pure description-based paradigms cannot exist
in monkey studies because of the lack of language. In fact, in



Box 1. Description- and experience-based behavioural models.

In this box, we sketch the formalisms standardly employed to explain and quantify risk preferences in description-based and
experience-based decisions. Description and experience paradigms radically differ in how they model decision under risk. In
the description domain, risk preferences are the direct result of subjective deformations of probabilities and outcomes that are
explicitly stated. On the other side, in the experience domain there is no separate representation of outcomes’ probabilities
and no explicit deformation of outcomes’ values. Consequently, risk preferences are the indirect result of the learning process
that links past outcome information to subsequent choices. Eventually, these two approaches lead to different explanations of
risk attitudes.

Risk preferences in description-based paradigms are commonly explained by prospect theory (PT). The expected value of
k iterations of the same gamble X (which is random variable) is computed as follows:

E(X) ¼
Xk
i¼1

pixi,

where xi is the value of an individual outcome and pi is the objective probability of the outcome. PT states that the utility of an
outcome, that is the subjective value u(xi), is nonlinear and modulated by different parameters: α and β, that are the power to
which, respectively, a positive or negative outcome are elevated, and λ the loss aversion coefficient. Thus, the PT utility func-
tion is defined as follows:

u(xi) ¼
xai if xi � 0

�l(�xi)b if xi , 0

�
,

an α≤ 1 corresponds to risk aversion in the gain domain (the intuition dates back to Bernoulli), α > 1 corresponds to risk-seek-
ing behaviours. In the loss domain, the same relation is true concerning the values of β. A value of λ > 1 corresponds to loss
aversion; its typical empirical value is around 2 [10,68]. A decision-maker with α < 1, β > 1 and λ > 1 will present different risk
preference in the gain (risk aversion) and the loss (risk seeking) domain (figure 3b).

In addition, PT postulates a subjective deformation of probabilities. There are multiple ways to mathematically express the
probability weighting function. One of the most common is the ‘Prelec’ function [69]:

p( pi) ¼ e�d(� log ( pi))
g

with δ controlling the elevation and γ the curvature. When both parameters are set to 1, the function tends to linearity. The
more γ > 1, the more the function adopts an S-shape. A classical result is the overweighting of low probabilities compared to
high probabilities, where the direction of the curve follows an inverse S-shape (figure 3a), with γ < 1. Note that another prob-
ability weighting function has been proposed [54]. Finally, the subjective expected utility is given by

SEU(X) ¼
Xk
i¼1

p( pi)u(xi):

By the variation of these parameters, PT accounts for inter-individual differences in risk preferences. Of note, concurrent
theories such as regret theory [70] or rank-dependent utility models [71], which use very different representational structures
and parameterizations, are also used to model decision-making under risk.

Experience-based paradigms can be seen as reinforcement learning problems operationalized as k-armed bandit tasks
[61]. Consider an environment composed by a state vector S, with s∈ S. In each of states s, there are available actions denoted
a∈A. Each state-action pair has an underlying reward probability distribution, such that P[R|s, a], is the probability of
obtaining the reward R, knowing the state-action couple (s, a). An agent must then follow a policy in order to maximize a
state-action value function Q(s, a) (i.e. to maximize the average expected reward). A common learning policy is to compute
subsequently to a choice of the prediction error δ, that will be used to incrementally update the value associated to a specific
state-action pair (s, a):

d ¼ R�Q(s, a)
Q(s, a) Q(s, a)þ ad

with α the learning rate that determines to what extent newly acquired information overrides the previous. In this
paradigm, inter-individual variability in behaviours can be accounted for by differences in individual parameters such as
the aforementioned learning rate α. However, this model with only one parameter is too simple to accommodate different
risk preferences.

A way to refine this model to account for different risk preferences, is to allow for two different learning rates, α+ and α−:

Q(s,a) Q(s,a)þ aþd if d . 0
a�d if d , 0

�

If α+ = α−, the two learning rates model is equivalent to a one learning rate model. We define the tendency to preferentially
update Q(s,a) from positive prediction errors rather than negative prediction errors as positivity bias (or loss neglect) (α+ > α−).
Conversely, we define the opposite situation (α+ < α−) as negativity bias (or loss enhancement).

The learning rate asymmetry has direct consequence for risk preferences in the setting where a subject has to learn the
value of a safe (say a fixed value of 0) and a risky (say 50% chance of winning/losing one euro) option. A subject displaying
a positivity bias would neglect the past losses and will, therefore, be a risk-seeker (figure 3b). Conversely, the negativity bias
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implies risk aversion. Both pessimistic and optimistic biases have been reported in the literature, with the latter bias being
more frequently reported [72–75].

While it is tempting to see the positivity bias as the experience-based antithesis of loss aversion, their formalism and
psychological interpretations are quite different and they are, therefore, not mutually exclusive. Indeed, loss aversion con-
cerns the valuation of prospective losses, while the positivity bias concerns the retrospective assessment of past losses.

It is important to note that, in humans, although the average values of the behavioural biases are reported as described
above (for instance: inverse S-shape in description-based paradigms and loss neglect in experience-based paradigms; see
figure 3a), their results are further tempered by a high degree of inter-individual variability in the bias parameters. At the
individual level, some subjects may in fact display opposite biases in both experimental settings [72,76]. If inter-individual
variability is equally high in other primates, the fact that monkey studies use very small sample size (figure 2) can contribute
to explaining the comparably less consistent picture observed (table 1).
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monkey studies, whenever outcomes and probabilities are con-
veyed via a symbolic system, the system is nonetheless learned
andmaintained by trial-by-trial outcomes (i.e. a situation simi-
lar to the ‘description plus experience’ paradigm, described
above). In such ‘pseudo’description-basedparadigm,monkeys
are trained to associate continuous variations in one visual fea-
ture (e.g. colour or size) to continuous variations of a decision
variable (e.g. outcomes or probabilities). The comparison is
further complicated by the fact that only few studies formalize
risk preferences in terms of model parameters (such as prob-
ability distortion, loss aversion or learning rates) and data
reporting is often limited to behavioural measures.

The general picture (table 1) emerging from ‘pseudo’
description-based paradigms in monkeys (i.e. studies relying
on learned symbolic systems to communicate values) is, at
best, mixed. PT has been explicitly tested in paradigms using
visual cues carrying symbolic information similar to those pre-
sented to humans (e.g. pie-charts). Only a few studies show
results in conformity with the pattern of description-based
decisions observed in humans. Risk aversion, suggestive of
marginally decreasing utility in the gain domain, has been
rarely reported [93]. Nioche et al. [98] is the sole study confirm-
ing all PT features: marginally decreasing utility (risk aversion
in the gain domain), loss aversion (risk seeking in the loss
domain) and subjective probability weighting consistent with
overestimation of rare events. Probability weighting function
consistentwith standard PThas been reported byother studies,
but the same studies also reported increasing marginal utility
and risk seeking in the gain domain, which is not typically
observed in description-based decisions in humans [95,97].
Many others pseudo description-based experiments also
reported risk-seeking attitudes and/or marginally increasing
utility in gains [91,92,94,96]. In addition, although the
traditional inverse probability weighting function has some-
times been observed [95,98], variation of experimental design
features (such as randomly mixing gambles instead of repeat-
ing the same gambles sequentially) can reverse the direction
of the probability weighting function [99].

Regarding ‘pure’ experience-based studies in monkeys (i.e.
involving no symbolic system to communicate values), the pic-
ture is somehowclearer. Indeed, rhesusmacaques exhibit robust
risk-seekingbehaviour in thegaindomain [80–89]. Risk-seeking
attitudes have also been reported in the loss domain [90].

Risk-seeking behaviour in experience-based studies can be
computationally explained byan increased sensitivity to positive
(compared to negative) prediction errors (‘positivity’ bias) which
is generally documented in human reinforcement learning
(box 1) [72–74]. This hypothesis is corroborated by studies
demonstrating a stronger impact of past positive outcome in
choices using either model-free or model-based measures
[81,82,101].

Finally, it can be argued that if monkeys are a good model
for human decision-making under uncertainty, they should
display a description–experience gap. To our knowledge, so
far only one study explicitly tackled this issue [102]. Monkeys
were asked to make repeated choices between safe, and risky
options, whose outcome probability was either learned by
experience or described by the ratio between colours on a rec-
tangle. Replicating previous findings in monkeys, and in
discordance with the standard result in humans, Heilbronner
and Hayden found that monkeys were risk-seekers in the
description domain. However, consistent with the gap
observed in humans, they also found that risk-seeking
behaviour was higher for experience-based cues.

To summarize, the literature seems to suggest that monkeys’
decision-making for experience-based choice is quite consistent
with what is observed in humans in terms of risk preference.
This is consistent with a large body of literature showing that
the neural substrates of reinforcement learning are largely pre-
served in the two species [103,104]. Risk seeking in this context
may be driven by a higher learning rate from positive compared
to negative prediction errors, which is essentially a compu-
tational reinforcement learning translation of the ‘hot hand’
fallacy [105,106]. The situation is much less reassuring concern-
ing description-based decisions, as preferences compatible with
PT are rarely observed. This can be due to the fact that pseudo
description-based design in monkeys resembles the ‘description
plus experience’ set-up in humans, where PT-like deformations
arebluntedorevendisappear, as if description-basedandexperi-
ence-based biases reciprocally cancel themselves [78,79]. As a
result, it remains unclear to what extent description-based pro-
cesses can be elicited in the non-human primate animal model.
4. The impact of other experimental differences
Experimental results concerning decision-making under
uncertainty in monkeys do not seem to straightforwardly
comply with the predictions of PT. Overall it seems that mon-
keys’ behaviour is better accounted for as an experience-based
decision process, which is consistent with the fact that pure
description-based paradigms are not possible and monkey
experiments always involve trial-by-trial feedback. The sys-
tematic presence of trial-by-trial feedback is not the only
systematic methodological difference between the monkey
and human studies (figures 2 and 4).

First, monkey studies essentially rely on primary rewards
(mainly water or fruit juice), while human studies are realized



Table 1. Studies investigating risk attitudes in rhesus monkeys. E, experience-based paradigms (i.e. without explicit representation of outcomes and
probabilities); D, description-based paradigms (i.e. involving explicit representation of outcomes and probabilities; note that in monkeys this implies a
’description plus experience’ set-up); liquid, the utilization of either water or fruit juice; tokens, the acquisition of a secondary reward, which is later exchanged
for a primary reward; seek, an overall preference for the risky option; avoid, an overall preference for the safe option; inverse S-shape, the probability distortion
postulated by prospect theory; S-shape, the probability distortion traditionally found in experience-based paradigms; N/A, the information is not available.

study
sample
size modality reward

risk attitude
in gains

risk attitude
in losses

probability
distortion

loss
aversion

McCoy & Platt [80] 2 E liquid seek N/A N/A N/A

Hayden & Platt [81] 2 E liquid seek N/A N/A N/A

Hayden et al. [82] 5 E liquid seek N/A N/A N/A

Long [83] 3 E liquid seek N/A N/A N/A

Watson [84] 8 E liquid seek N/A N/A N/A

O’Neill & Schultz [85] 2 E liquid seek N/A N/A N/A

Heilbronner et al. [86] 3 E liquid seek N/A N/A N/A

Kim et al. [87] 2 E liquid seek N/A N/A N/A

Heilbronner & Hayden [88] 2 E liquid seek N/A N/A N/A

Xu & Kralik [89] 2 E liquid seek N/A N/A N/A

Smith et al. [90] 7 E liquid seek seek N/A N/A

Hayden et al. [91] 4 D liquid seek N/A N/A N/A

So & Stuphorn [92] 2 D liquid seek N/A N/A N/A

Yamada et al. [93] ? D liquid avoid N/A N/A N/A

Raghuraman & Padoa-Schioppa [94] 2 D liquid seek N/A N/A N/A

Staufer et al. [95] 2 D liquid seek seek inverse S-shape N/A

Farashahi et al. [96], experiment 1 3 D liquid seek N/A none N/A

Farashahi et al. [96], experiment 2 3 D token seek seek S-shape N/A

Chen & Stuphorn [97] 2 D liquid seek seek inverse S-shape N/A

Nioche et al. [98] 2 D liquid avoid seek inverse S-shape yes

Ferrani-Toniolo et al. [99]

experiment 1

2 D liquid N/A N/A inverse S-shape N/A

Ferrani-Toniolo et al. [99],

experiment 2

2 D liquid N/A N/A S-shape N/A

Eisenreich et al. [100] 3 D liquid seek seek N/A N/A
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Figure 4. The figure illustrates how human (purple) and monkey (green) experimental settings map into a four-dimensional space, whose axes are: the way value
information is provided (from description to experience); the nature of the reward (from primary to secondary; a), the amount of training (from moderate to
extreme; b) and the level of the stakes (from low to high; c). (Online version in colour.)
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mainly with secondary rewards (sometimes hypothetical
ones) and primary reinforcers are only occasionally used
[107,108]. Preliminary evidence from a study comparing
risk propensity for different kinds of rewards in humans
(money versus sport beverage) and monkeys showed similar
patterns in the two species, thus suggesting that in more
comparable experimental condition risk preferences in both
species could converge [109]. Furthermore, while the neural
correlates of different kinds of rewards converge in the ven-
tral prefrontal and striatal systems (principle of the
common currency; [110]) they also have specific correlates,
which may contribute to the different neural mechanisms
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and result in distinct, reward-specific, risk preferences [107].
On the other side, a proxy for secondary reward can be
found in monkey paradigms that involve collecting (virtual)
tokens to be later exchanged for a primary reward. Unlike
pure primary reward tasks, where losses cannot be
implemented (it is impossible to take some fruit juice away
from the stomach of a monkey), tokens have the advantage
of making possible subtracting previously acquired rewards
from the animal, thus inducing ‘losses’ in the same manner
as in human. However, a recent study using tokens, showed
risk-seeking attitudes comparable to that observed using pri-
mary reward [96]. Furthermore, when tokens are used, they
are almost immediately changed against primary reward,
making them not really comparable to money, whose value is
much more permanent. Taken together, the available evidence
suggests that the primary/secondary reward dichotomy does
not explain the fact that human description-based biases are
hardly observed in monkeys.

Second, in addition to the difference in the nature of the
reward, description-based paradigms in humans and para-
digms in monkeys often present a systematic difference in
the amount of the reward (figure 4). Indeed, most of the orig-
inal studies about PT used hypothetical gambles of hundreds
of dollars and the same biases have been replicated using real
stakes of about a month’s salary [111]. On the other side,
monkey studies use very small amounts of rewards (mere
drops of liquids). It has been argued that part of the descrip-
tion–experience gap may simply derive from this difference
in stake instead of being induced by fundamental differences
in the decision-making process [88]. This would be consistent
with Markowitz utility function which supposes risk seeking
for small stakes (peanuts effect) before converting to risk
aversion for higher stakes [112] and is supported by the find-
ing that increasing the relative amount of reward (by
reducing its frequency) decreases risk seeking down to risk
neutrality in monkeys [88,112]. However, risk aversion in
the gain domain (and a reverse pattern in the loss domain:
the reflection effect) has also been observed with small
stakes in description-based decisions in humans [67]. Thus,
available evidence suggests that differences in the size of the
stake cannot fully explain the fact that human description-
based preferences are hardly observed in monkeys.

Finally, another notable difference between human and
monkey experiments is represented by the amount and the
type of training required to perform the task (see figures 2
and 4). In human experiments, task training rarely takes
more than a few minutes (in some extreme cases of descrip-
tion-based paradigms, there is virtually no training: subjects
are just asked to reveal their preferences). On the other side,
monkey experiments require extensive training, in general
spanning several months (usually training takes longer than
the experiment itself ). It can be, therefore, argued that their
behaviour becomes to some extent habitual or automatized:
a cognitive state that contrasts dramatically with the declara-
tive and deliberative stance of description-based choices
taken by humans [113]. In addition to that, training in mon-
keys (and other animals) often involves simplified versions
of the task (often deterministic contingencies), which may
reinforce specific risk preferences. Although the role of
extended (several days, weeks) training and the resulting
behavioural automation (or habituation) in risk preferen-
ces is unclear, it may contribute to the fact that human
description-based biases are rarely observed in monkeys.
5. Conclusion and perspectives
Our review suggests that the rhesus monkey is a partial model
of humandecision-making under uncertainty. Risk preferences
in monkeys are generally better explained as experience-based
processes. Accordingly, monkeys proved to be a very good
model of human reinforcement learning processes, providing
crucial insights into its neural implementation (the dopamine
prediction error hypothesis: [56,62,114]). The situation is less
clear concerning description-based choices. In paradigms
using explicit symbolic information about decision variables,
monkeys only rarely displayed risk preferences compatible
with human results. Deciding by description implies a sym-
bolic system of communication. While in humans this system
pre-exists (language), in monkeys it has to be learnt by trial-
and-error, thus irremediably confounding description and
experience. In addition to differences in the way value infor-
mation is conveyed (experience- or description-based), other
methodological factors (training, reward type and stakes)
further drive apart the experimental set-ups of the two species.
This situation is problematic as building a neural model of
decision-making under uncertainty should integrate human
(fMRI) and monkey (single unit) neurophysiological data,
while explaining risk preferences in a wide range of situations
that span from pure description-based choices to pure
experience-based choices.

We propose further lines of research that could eventually
help filling these gaps and ultimately fulfilling the strong neu-
roeconomic agenda. On the human side, the description–
experience gap has been extensively studied at the behavioural
level, but surprisingly neglected at the neural level. A notable
exception [115], found different neural representations for
description- and experience-oriented decisions. Furthering
this line of enquiry would prove useful to redefine the target
areas to look specifically for description-based processes in
monkey electrophysiological studies.

With the development of online testing techniques, it is
becoming easier to implement extended massive training in
humans [116]. Translated in the field of decision-making
under risk, these experiments would provide crucial insights
into the impact of extensive training in risk preferences. While,
description-based studies in monkeys require learning ex novo
a symbolic system, in humans the meaning of pie-charts is pro-
vided by the language. It would be interesting to put humans in
situations where they have to figure out by trial-and-error the
code linking continuous visual features to decision variables.

In general, all the efforts aimed at increasing the methodo-
logical overlap between human and monkey studies will
provide further insights intowhat are the behavioural processes
shared across the two species. Popularizing fMRI experiments
in monkeys would help confirm the neuro-anatomical targets
and increase the focus on shared neural systems. The token
paradigm (conceptually closer to the notion of the secondary
reward) offers the possibility to implement losses in monkeys,
hence facilitating the cross-species study of loss aversion.

Finally, on themonkey side, PT has been sporadically repli-
cated. It will be important to clarify and formalize the
experimental factors (in terms of stimuli, training and reward
type; see table 1) that predict whether PT-like behaviour will
be observed in a monkey experiment [88]. Determining
under which experimental conditions PT is replicated in mon-
keys will imply a deeper understanding of the cognitive
mechanisms underlying decision-making under uncertainty.



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.

10
Data accessibility. This article has no additional data.

Authors’ contributions. S.P. designed the review. B.G., F.C. and S.P. dis-
cussed the review. B.G., F.C. and S.P. wrote the review.

Competing interests. We declare we have no competing interests.

Funding. S.P. was supported by an ATIP-Avenir grant (R16069JS), the
Programme Emergence(s) de la Ville de Paris, the Fyssen Foundation,
the Fondation Schlumberger pour l’Education et la Recherche (FSER)
and the CNRS projet 80 I Prime.

Endnotes
1Subjective utility (or subjective value) representation seems to be dis-
tributed across a network of areas that include the ventral and the
dorsal prefrontal cortices (both medial and lateral part), posterior cin-
gulate cortex, the striatum, the insula, the amygdala and the
hippocampus [26–28].
2It is indeed the case that brain systems encoding positive and
negative values are, at least partially, dissociable. Losses are generally
encoded by the insula, the amygdala and the dorsal prefrontal cortex,
while gains are generally encoded in the ventral prefrontal and the
striatum [31,32].
3Other non-invasive imaging techniques, such as magneto- and elec-
tro-encephalography present no advantage over fMRI when it comes
to inferring single unit activity. They present better temporal resol-
ution traded off against a worst spatial resolution.
4There are a few exceptions of single unit recordings in humans,
obtained from neurologic patients undergoing brain surgery. While
informative, these data are limited by the fact the neuro-anatomical
targets cannot be chosen freely and that findings may not generalize
to the general population [41].
5Of course, there is a lot of information to be gained also in the case
where humans and monkeys do not display the same decisions and
biases. Such differences currently represent a strong area of research
in comparative psychology and ethology [44]. However, the (not so
implicit) assumption of the vast majority of research in neuro-econ-
omics is that monkeys are valid experimental models for human
cognition, and they are not investigated for comparative reasons.
6In the human reinforcement learning literature, the most frequently
used paradigms involve options that possess, at a given trial, differ-
ent expected values but overall similar risk level [56,62]. As a result
the human reinforcement learning literature is more concerned
about measures of objective performance rather than subjective
preference.
B
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