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Abstract

RNA splicing is the process during which introns are excised and exons are spliced. The precise 

recognition of splicing signals is critical to this process and mutations affecting splicing comprise 

a considerable proportion of genetic disease etiology. Analysis of RNA samples from the patient is 

the most straightforward and reliable method to detect splicing defects. However, currently the 

technical limitation prohibits its use in routine clinical practice. In silico tools that predict potential 

consequences of splicing mutations may be useful in daily diagnostic activities. In this review, we 

provide medical geneticists with some basic insights into some of the most popular in silico tools 

for splicing defect prediction, from the viewpoint of end-users. Bioinformaticians in relevant areas 

who are working on huge datasets may also benefit from this review. Specifically, we focus on 

those tools whose primary goal is to predict the impact of mutations within the 5′ and 3′ splicing 

consensus regions: the algorithms used by different tools as well as their major advantages and 

disadvantages are briefly introduced; the formats of their input and output are summarized; and 

the interpretation, evaluation, and prospection are also discussed.
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1. Introduction to pre-mRNA splicing and mutations affecting splicing

Sixty years ago, the milestone discovery of the double-helix structure of the DNA molecule 

opened a door for scientists to uncover the secret of life. For long periods after this 

discovery it was widely accepted that similar to prokaryotes, the genetic information 

manifested by proteins in eukaryotes was also carried by continuous DNA sequences. This 

specious assumption was proven wrong by a comparison between an mRNA sequence of 

adenovirus and the DNA from which it was transcribed, leading to the discovery of split 
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genes and RNA splicing.1,2 Generally speaking, DNA sequences coding for proteins (exons) 

are interrupted by non-coding sequences (introns); both exons and introns are transcribed to 

pre-mRNAs; before they are translated to proteins, introns are excised and discrete exons are 

spliced, resulting in mature mRNAs (Figure 1). Based on this new discovery, the molecular 

basis of RNA splicing was gradually revealed.

The completion and regulation of splicing leans on the complicated biochemical reactions 

between the nucleotide sequences (cis-acting elements) and different proteins binding to 

them (trans-acting elements). Cis-acting elements contain the 5′ splice site (junction 

between an exon and an intron), the 3′ splice site (junction between an intron and an exon), 

the branch point (tens of nucleotides upstream of the 3′ splice site), exonic splicing 

enhancers (ESEs), intronic splicing enhancers (ISEs), exonic splicing silencers (ESSs), and 

intronic splicing silencers (ISSs). Trans-acting elements include the spliceosome that is 

made up of five small nuclear ribonucleoproteins (snRNPs) and more than 150 proteins, SR 

proteins, hnRNPs, and the regulatory complex (Figure 1). During this process, the key step 

is to localize the exon-intron boundaries by capturing the splicing signals embedded in the 

pre-mRNA sequence by the spliceosome. Extensive comparisons of sequences at different 

exon-intron boundaries suggested not only the presence of almost invariant GT-AG sites 

(the first and last two sites of an intron, respectively) but also weaker conservation in the 

vicinity of these boundaries, named 5′ and 3′ splicing consensus sequences, respectively, 

which function as key splicing signals.3 However, the so-called consensus sequence does 

not yet have a consensus definition. For example, one study used more than 1,400 5′ and 3′ 

splice sites from a variety of organisms to derive the consensus sequence from positions −3 

to +6 at the 5′ splice site and from positions −14 to +1 at the 3′ splice site,4 while another 

study used an alignment of conserved sequences from 1,683 human introns yielded the 5′ 

consensus sequence from positions −3 to +8 and the 3′ consensus sequence from positions 

−12 to +2.5 Throughout the paper, we will loosely refer to the ‘splicing consensus region’ as 

a few to tens of nucleotides in the vicinity of a 5′ or 3′ splice site.

For a certain gene, the final product of splicing may vary in different conditions as a result 

of alternative splicing that produces different protein sequences without deleterious effects 

on its functions. The consequence of alternative splicing can be the skipping of an exon 

(exon skipping), use of different 5′ or 3′ splice sites (alternative 5′ or 3′ splice sites, 

respectively), retaining one of the two exons but not both (mutually exclusive exons), or the 

retention of an intron (intron retention).6 Alternative splicing diversifies gene expression 

(e.g., in different tissues or in different developmental stages) and is very common in human 

genes. Mutations at splice sites may also modify patterns of splicing in a deleterious way. 

For instance, a mutated splice site may disrupt an authentic exon-intron boundary and thus 

change the binding site of the spliceosome, which results in an aberrant splicing. For 

example, a G to T substitution at position 1 in intron 25 of the DFNA1 gene can disrupt the 

canonical splice donor sequence and lead to a four-base insertion in the transcript, which 

further results in a frameshift and a premature termination that truncates 32 amino acids of 

the protein. This splicing mutation has been found to cause nonsyndromic deafness in 

humans.7 Another example is that, it has been well known that a C to T point mutation at 

position 6 in exon 7 of the SMN2 gene in individuals who already have deletions of the 
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SMN1 gene does not change the codon, but instead 80% of the time it inactivates an ESE 

and creates an ESS, leading to exon 7 skipping and a truncated protein and thus causes 

spinal muscular atrophy.8–10 In addition to disrupting the primary linear sequence at splice 

sites, mutations may also have impact on other aspects of splicing, e.g., modification of the 

secondary structure of the region which hinders the binding of trans-acting elements.11 

Besides the causal role as shown in the above examples, splicing mutations can also act as a 

modifier of disease susceptibility and severity, which has been extensively reviewed 

elsewhere.12 7

Mutations affecting RNA splicing are not negligible in the population. For example, the 

Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/index.php) collects 

known human mutations responsible for inherited diseases. As of its Professional Version 

2013.2, a total of 13,030 out of 141,161 (9.2%) disease-causing mutations have 

consequences for mRNA splicing. A widely cited paper estimated that among all human 

genetic diseases caused by point mutations, up to 15% are the result of splicing defects.13 

However, this estimate seems still conservative because mutations in coding regions are 

usually considered as missense, nonsense or silent which may have resulted in 

misclassification of splicing mutations and underestimation of the number of splicing 

mutations.6 Recently, Lim et al.14 and Sterne-Weiler et al.15 provided similar estimates of 

the proportion of variants within exons that affect splicing but were originally classified as 

missense (missense or nonsense by Sterne-Weiler et al.15) mutations in the HGMD using 

independent methods (22% and 25%, respectively). These statistics indicate that mutations 

affecting splicing comprise a considerable proportion of genetic disease etiology.

2. A problem of splicing mutation detection in medical genetics

Disease diagnosis and treatment owe a great deal to our understanding of disease etiology 

and relevant laboratory techniques. With the importance of mutations affecting splicing 

being unraveled, their potential role in genetic diseases is increasingly attracting the 

attention of medical geneticists in their clinical practice. Analysis of RNA from the patient is 

the most straightforward and reliable method to detect splicing defects. Some other widely 

used laboratory techniques include in vitro splicing assay and minigene splicing assay.16 

However, our current knowledge of splicing is yet to be implemented in clinical practice on 

a routine basis due to RNA sample availability (especially specific tissue samples) and 

limitations in the use of these laboratory techniques.16 Clinical genetic testing still relies 

largely on DNA extracted from blood samples. Moreover, searching for particular splicing 

variants responsible for particular diseases in the genome may be akin to looking for a 

needle in a haystack. Since laboratory testing for all splicing variants is expensive and time-

consuming, medical geneticists are seeking a more economical and quicker way of screening 

thousands of variants without losing much accuracy so that limited medical resource can be 

used to serve as many patients as possible. One alternative is to use in silico prediction tools 

to filter out those variants with little odds of being deleterious and thus to narrow down the 

search to fewer candidate variants for further experimental validation. After decades of 

efforts, a number of in silico prediction tools have been developed to assess the effect of 

DNA sequence variations on splicing. Even so, medical geneticists may be uncertain as to 

which of the many prediction tools to choose when they have their patients’ DNA sequences 
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in hand. Most of the tools were initially designed and developed primarily for research 

purposes, making them much less useful in clinical practice. Therefore, in this review we try 

to provide medical geneticists with some basic insights into some of the most popular in 

silico tools for splicing defect prediction. Although currently available prediction tools can 

cover almost all cis-acting elements, e.g., ESEfinder, a program that identifies putative ESEs 

responsive to SR proteins,17 has successfully predicted the loss of a putative ESE motif in 

the SMN2 gene in the previous example,10 we restrict our review to those with the primary 

goal of predicting the impact of mutations within the 5′ and 3′ consensus regions for the 

following reasons: (1) the consensus regions are the prominent cis-acting elements; (2) they 

have been understood and modeled much better than other elements; and (3) prediction tools 

for mutations within consensus regions are better developed with more potential to be 

utilized in medical genetics. We focus on the application aspect of these tools and use a 

user-oriented way to organize the logic of the text. This review may also be useful for 

bioinformaticians in relevant areas who are working on huge datasets such as whole genome 

sequencing data. We anticipate that the information presented here will produce an intuitive 

picture of current progress in this field, from which readers may benefit when using these 

tools in their daily practice.

3. Overview of in silico prediction tools for 5′ and 3′ splice site mutation

The main purpose for using splice site prediction tools has shifted from the identification of 

possible exon-intron boundaries before the Human Genome Project (HGP) was completed in 

2003 to the prediction of the transcriptional impact of mutations at known splice sites and 

their vicinity regions in the post-HGP era. This transition reflects the need to understand 

human variation on splicing and its effect on human diseases, which is of most interest for 

medical geneticists. From the viewpoint of end-users, the first interface presented when 

most of the tools are opened will be the input page, which asks the user to type or load the 

data they want to predict. Most tools require the input of one or more sequences with or 

without specifying exon-intron boundaries. In the former condition users need to fix the 

length of the sequence while in the latter condition the computer program automatically 

searches for potential splice sites through the whole length of the input sequence. The shared 

feature of both formats is to provide the tool with a sequence around the splice site (either 

manually or automatically by the program), indicating that the prediction of a given 

mutation relies only on the sequence context itself, regardless of which tool is chosen. In 

fact, the major differences among tools are the consensus sequences they used for the 

comparison with the input sequences, the statistical models applied to this comparison, and 

the training methods implemented in machine learning approaches, which will be introduced 

later in this section. Although a number of in silico tools have been developed, the ideas 

behind them are not so diverse. Tools with the same backbone mainly differ in the extent to 

which the local sequence context is taken into account. Oftentimes a new tool was 

introduced when certain components of the algorithm it stemmed from were improved. 

Although medical geneticists usually have more concern about the application aspect of 

these tools, which will be discussed later, a brief description of the principles is helpful for 

their understanding in the advantages and disadvantages of different tools.
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The basic Position Weight Matrix (PWM) model proposed by Shapiro and Senapathy4 is to 

score and rank a sequence using appropriate weights for each nucleotide position based on 

the information from its aligned consensus sequence (Table 1), and it was used by the web 

interface Splice-Site Analyzer Tool (http://ibis.tau.ac.il/ssat/SpliceSiteFrame.htm). The 

PWM model is simple, easy to understand, and widely used for representing different 

patterns of sequences, however it is overly-simplified as it assumes independency (or no 

correlation) among all positions. That is, a PWM score of a sequence is the summation of 

position-specific scores for each of its bases (A, T, C and G), and change of one score at a 

position has no impact on calculating the score at other positions. SpliceView (http://

zeus2.itb.cnr.it/~webgene/wwwspliceview.html) improved the PWM model by considering 

mutual dependency between nucleotides in different positions.18 A more general 

probabilistic model called the Maximal Dependence Decomposition (MDD) model, which is 

a decision tree method, captures potential strong dependencies between signal positions 

(adjacent and non-adjacent) by dividing the dataset into subsets based on pairwise 

dependency between positions and modeling each subset separately.19 The MDD model was 

incorporated in the computer program GENSCAN (http://genes.mit.edu/GENSCAN.html). 

Pertea et al.20 further enhanced the MDD model by adding Markov models (MM) which 

capture additional dependencies among adjacent positions. The source code for this method, 

called GeneSplicer, is downloadable at http://ccb.jhu.edu/software/genesplicer/.

In the previous examples, the features used for distinguishing true splice sites from decoy 

ones are selected by hand, e.g., using appropriate weights in the PWM model, which might 

not be optimized and introduce bias. To overcome this problem, machine learning 

techniques such as artificial neural networks (NN), have been applied to the classification of 

splice sites. By training on the true positive and true negative datasets, an NN automatically 

optimizes a criterion (e.g., a hyperplane) that separates the two classes. For instance, 

NetGene2 (http://www.cbs.dtu.dk/services/NetGene2/) was developed using an NN in which 

the threshold is also controlled by the exon signal,21 and NNSplice (http://www.fruitfly.org/

seq_tools/splice.html) was trained only on examples with consensus splice sites and it also 

accounts for strong correlations in neighboring positions.22 The support vector machine 

(SVM) is another type of machine learning technique. SplicePort (http://

spliceport.cbcb.umd.edu/) used the Feature Generation Algorithm (FGA) that automatically 

identifies sequence-based features important for sequence classification as input for the 

SVM.23 Although the machine learning approach is highly automatic, the drawback is as 

obvious as its advantage, which is over-fitting. If a classifier fits the training data ‘too well’, 

e.g., too many parameters relative to the number of examples, the generalizability will likely 

be poor. That means, when using an over-fitted NN or SVM to predict unknown splice sites, 

the optimized criterion might not be appropriate any longer. One of the common ways to 

minimize over-fitting is to use Bayesian models. One attempt by Brendel et al.24 used three 

variables for splice site prediction, and the model was implemented by the web server 

SplicePredictor (http://bioservices.usd.edu/splicepredictor/).

To date the most unbiased approximation for modeling short sequence motifs is to use the 

Maximum Entropy Distribution (MED). Compared with other methods, the only assumption 

of MED is the consistency with the features of the empirical distribution estimated from 

available data.25 MED also considers dependencies between both non-adjacent and adjacent 
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positions. Rather than a single model, MED is a framework with much flexibility for 

generating different models by simply changing the sets of constraints. The approach has 

been utilized by the tool MaxEntScan (http://genes.mit.edu/burgelab/maxent/

Xmaxentscan_scoreseq.html). Users can either use the default models or build their own. 

The model has been successfully applied to the prediction of splicing mutations in the ATM 

gene responsible for the neurological disorder ataxia-telangiectasia, in which three 

apparently nonsense, missense, or silent exonic mutations were correctly interpreted as 

disrupting normal splice sites and creating new ones by using MED that had been confirmed 

by cDNA analysis.26 MaxEntScan can also output results using other algorithms such as the 

PWM, MDD, and MM models for easy comparison.

In addition to the approaches described above, various other methods used for splicing 

defect prediction have been proposed. Examples with user-friendly web interfaces include 

HBond (http://www.uni-duesseldorf.de/rna/html/hbond_score.php): hydrogen bond model 

describing the interaction of U1 snRNA and its binding sites;27 Automated Splice Site 

Analyses (ASSA, http://splice.uwo.ca/, free registration required): information theory-based 

models by which changes in the affinity of potential splice and regulatory sites caused by 

mutation are calculated;28 CRYP-SKIP (http://cryp-skip.img.cas.cz/): multiple logistic 

regression model which distinguishes exons that are skipped and that activate cryptic splice 

sites as a result of splicing mutations;29 and Spliceman (http://

fairbrother.biomed.brown.edu/spliceman/index.cgi): prediction of how likely distant 

mutations around annotated splice sites disrupt splicing by clustering hexamers into distinct 

groups based on positional distributions.30

Some tools also incorporate multiple algorithms for the sake of user convenience. Human 

Splicing Finder (HSF, http://www.umd.be/HSF/) outputs splicing defect predictions based 

on the PWM and MED models as well as the predictions of branch points, ESEs, and 

ESSs.31 SROOGLE (http://sroogle.tau.ac.il/) is a comprehensive platform that combines 

nine different prediction algorithms to score four main splicing signals, in which 5′ and 3′ 

splice sites are predicted by both the PWM and MED models.32 Automatic Analysis of SNP 

sites (AASsites, http://genius.embnet.dkfz-heidelberg.de/menu/biounit/open-husar/) is a new 

analysis pipeline that predicts splicing pattern change caused by SNPs using outputs from 

five gene prediction programs.33

Information about the input and output of these tools is listed in Table 2. Unfortunately, at 

least one sequence is required as the input for almost all tools, thereby making the 

application of these tools in clinical practice much less convenient. One exception is ASSA 

which has the option not to input sequence information because ASSA can also localize the 

variant based on the user-provided gene name, mRNA accession number, or dbSNP rs 

number. This may be more useful for medical geneticists, as it is better to have a simple 

format of input that prevents their focus from being distracted by technical concerns. 

Another common drawback of these tools is their limitation on the length of the sequence 

being analyzed (Table 2).
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4. Interpretation, evaluation, and prospection

A simple, clear but informative interpretation of the output of prediction tools is extremely 

important for their application in clinical practice. Most tools output a score as a numerical 

measure of the strength of the splicing signal. Although the range varies, a higher score 

always indicates a higher degree of similarity to the consensus sequence or a higher 

probability or confidence of a site being a true splice site. A common misinterpretation of 

the score by end-users is to treat the score as a measure of the effect size. Since the score is a 

reflection of how likely the variant is deleterious, it is by no means appropriate to consider a 

variant with a lower score as more deleterious than that with a higher score. Furthermore, 

the score itself is meaningless because there is no recognized threshold distinguishing 

positive sites from negative ones. This might be partially due to the fact that other factors 

besides splicing signals have an impact on splicing. A common way to interpret the scores 

and facilitate the comparison between different methods is to use score variation by 

comparing the mutant score with the reference score.34,35 Users should use a criterion, 

usually a cutoff value, to determine whether the mutation is causing splicing defects. 

However, setting this value is usually arbitrary across different tools in different studies. 

Since the choice of the threshold might not be optimized, the apparently poor performance 

of a tool is probably due to human errors rather than the algorithm itself, and this will lead to 

the incomparability of different tools, thus impeding the development of interpretation 

guidelines.

Lack of interpretation guidelines for splicing defect prediction is also attributable to the 

small-scale nature of published studies (Table 3). As a recent example, Houdayer et al.35 

systematically evaluated several in silico prediction tools using 272 variants of unknown 

significance (VUS) in BRCA1 and BRCA2 genes. These VUSs were analyzed in vitro and in 

silico; the receiver operating characteristic (ROC) curve was used to identify the optimized 

cutoff value for each tool and to compare their predictive performance for variants in 5′ and 

3′ consensus regions (excluding GT-AG sites because all mutations at GT-AG sites affect 

splicing and were successfully predicted by all tools). They found that the combination of 

MaxEntScan with a 15% cutoff value and the PWM model with a 5% cutoff value led to an 

optimized sensitivity of 96% and specificity of 83%. Although the number of variants 

investigated is still relatively small and only from two genes, we consider it an encouraging 

step in the right direction. From this study more interesting findings other than the result 

itself are the opportunities it provides for improvement. (1) The currently available 

prediction tools perform perfectly for mutations at invariant GT-AT sites. The real difficulty 

is to predict their vicinity regions (consensus sequences) and more distant sites. (2) If the 

consensus sequence has a higher score, the prediction is more reliable. Ideally, a good 

algorithm should give the maximum score to the consensus sequence, but it relies on 

accurate and representative population sequence information to build consensus sequences. 

The high-throughput next generation sequencing technologies provide amazing tools to 

rapidly re-sequence the whole genome and transcriptome, thus a better definition of splicing 

consensus sequence is possible. (3) The guidelines proposed based on a single study might 

only apply to a specific dataset. The generalizability to other genes and populations is still 

unknown. As more and more whole genome and transcriptome sequences are available, real 
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large-scale splicing analyses are expected, which are not limited to certain genes in certain 

populations. Guidelines for splicing defect prediction based on more general data will be 

more reliable and generic. (4) From the epidemiological point of view, all existing 

evaluations are retrospective, which inevitably suffer from a series of selection biases. 

Though expensive and time-consuming, establishing large cohorts is still preferred to avoid 

the impact of these biases introduced in a retrospective study that cannot be fully controlled 

by any analytical method. For example, to associate a disease with its possible causal 

mutations, investigators often choose to retrospectively compare the nucleotide difference 

between the cases and the controls because the comparison can be accomplished quickly and 

economically. However, it might be more convincing to use a random cohort sequenced at 

baseline (exposure) and observe whether the disease emerges (outcome) prospectively to 

eliminate the impact of nonrandom selection of cases and controls. This can probably be 

achieved by using re-sequencing DNA samples collected at baseline from existing well-

established cohorts, such as the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) Consortium.36 Besides this, recently the National Institutes of 

Health funded a five-year research program that will explore the use of genomic sequencing 

in newborn screening.37 This provides the opportunity to establish new large cohorts from 

the very beginning of life and has the potential for studying germline mutations and 

Mendelian diseases, especially for those with early age of onset.

Besides a standard interpretation guideline, ease of use is another important concern for 

medical geneticists. As previously mentioned, almost all currently available web tools are 

not convenient to use in clinical practice. In addition, computational efficiency determines 

the waiting time of end-users and whether the tool has a local standalone version influences 

its usefulness when end-users encounter internet outage. A commercial software package 

called Alamut (Interactive Biosoftware, Rouen, France) integrates multiple reliable, 

regularly updated data sources and multiple prediction algorithms (for splicing signal 

detection, PWM, MaxEntScan, NNSplice, GeneSplicer, and HSF are included). By entering 

only the variant and specifying its coordinates, users can easily obtain all results at the same 

time without worrying about the sequence context. This should be the future of in silico 

prediction tools and it is expected that more and more such software with user-friendly 

interfaces will be developed and launched. For bioinformaticians who usually have large 

quantities of variants to annotate and predict, a tool that can conduct ‘batch’ analysis is 

preferable (e.g., NetGene2, GENSCAN, GeneSplicer, MaxEntScan, and SplicePredictor 

have this option). The high-throughput version of the Alamut software, Alamut-HT, can 

handle ×1000 variants using its server option (Windows and Linux) or standalone option 

(Linux only).

In summary, in silico tools for splicing defect prediction (especially for 5′ and 3′ splice sites) 

have potential value in disease diagnosis in view of the infeasibility of laboratory testing of 

large number of variants in daily clinical practice. There seems to be no simpler way other 

than relying on the currently available prediction algorithms until we have a more in-depth 

understanding of splicing mechanism. Reliable and straightforward interpretation guidelines 

for the results and an easy-to-use interface will accelerate the popularization of in silico 

tools among medical geneticists.
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Figure 1. 
Schematic illustration of pre-mRNA splicing. 5′ ss and 3′ ss are recognized by the 

spliceosome and the intron is excised and exons are spliced. The whole process is regulated 

by trans-acting elements such as SR proteins, hnRNPs, and the regulatory complex.
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Table 2

Summary of input, output, and interpretation of prediction scores for selected currently available in silico tools 

for 5′ and 3′ splice site prediction with user-friendly web interface.

Tool Input Output Interpretation

Splice-Site Analyzer Tool Single/multiple sequences (5′: 9 bp (−3~
+6); 3′: 15 bp (−14~+1)) S & S score (0~100)

Higher score implies a more 
similar ss sequence with the 
consensus sequence

NetGene2 Single sequence (200 bp < length < 
80,000 bp) Confidence score (0~1) Higher score implies a higher 

confidence of true site

NNSplice Single/multiple sequences Score (0~1) Higher score implies a more 
potential splice site

GENSCAN Single sequence ≤ 1 million bp Probability score (0~1) Higher score implies a higher 
probability of correct exon

SpliceView Single sequence ≤ 31000 bp S & S score (0~100)
Higher score implies a more 
similar ss sequence with the 
consensus sequence

HBond
Single/multiple 11 bp sequences (−3~+8) 
containing GT in +1/+2 or one genomic 
sequence

Hbond score
Higher score implies a stronger 
capability of forming H-bonds 
with U1 snRNA

MaxEntScan Single/multiple sequences (5′: 9 bp (−3~
+6); 3′: 23bp (−20~+3))

Maximum entropy score (log-
odds ratio)

Higher score implies a higher 
probability the sequence being a 
true splice site

SplicePredictor Single/multiple sequences *-value (3~15) determined by 
p, rho and gamma values

Higher value implies a more 
reliable of the predicted splice 
site

ASSA Mutation to be analyzed and the 
reference sequence Information contents Ri Color-coded by direction and 

type of change in Ri

SplicePort Single/multiple sequences ≤ 30,000 bp FGA score Higher score implies a more 
precise prediction of splice site

HSF Single sequence ≤ 5,000 bp S & S score (0~100) Higher score implies a more 
potential splice site

CRYP-SKIP

Single/multiple sequences ≤ 4,000 bp 
containing one exon in upper case and 
flanking intronic sequence ≥ 4 bp in 
lower case

Probability of cryptic ss 
activation (0~1)

Higher value implies a higher 
probability of cryptic ss 
activation as opposed to exon 
skipping

SROOGLE Target exon along with two flanking 
introns

Different scores with their 
percentile scores (0~1)

Higher percentile score implies a 
higher ranking of the ss within 
pre-calculated distributions

AASsites
Single sequence containing the SNP(s) 
and the Ensembl gene ID to which the 
SNP(s) belong(s)

Classification of the 
probability for a change in 
splicing

Probable, likely, or unlikely

Spliceman
Single/multiple sequences with one 
mutation and ≥ 5 bp in each side of the 
mutation

L1 distance and percentile rank
Higher percentile rank implies a 
higher likelihood the point 
mutation is to disrupt splicing

Genet Med. Author manuscript; available in PMC 2015 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Jian et al. Page 15

Table 3

Selected recent publications whose primary goal (or one of the goals) was to evaluate in silico tools for 

splicing defect prediction.

Number of variants Gene(s) Prediction tools evaluated YearReference

39 RB1 NNSplice, PWM, MaxEntScan, ASSA, ESEfinder, RESCUE-ESE* 200838

18 LDLR MaxEntScan, NNSplice, NetGene2 200939

29 BRCA1/BRCA2 NNSplice, NetGene2, PWM, ASSA, MaxEntScan, HSF 200940

623 Multiple GENSCAN, GeneSplicer, HSF, MaxEntScan, NNSplice, SplicePort, 
SplicePredictor, SpliceView, SROOGLE 201034

53 BRCA1/BRCA2 PWM, GeneSplicer, NNSplice, MaxEntScan, HSF 201141

272 BRCA1/BRCA2 NNSplice, PWM, MaxEntScan, ESEfinder, RESCUE- ESE, HSF 201235

24 BRCA1/BRCA2 PWM, MaxEntScan, NNSplice, GeneSplicer, HSF, NetGene2, SpliceView, 
SplicePredictor, ASSA 201342

*
ESEfinder and RESCUE-ESE are web tools that predict ESEs.

Genet Med. Author manuscript; available in PMC 2015 July 01.


