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A B S T R A C T

Cryptosporidium is an opportunistic parasite that has been reported in>30 avian hosts worldwide, however, there
is no information regarding Cryptosporidium spp. in poultry in Bangladesh. Accordingly, we investigated the pre-
valence of Cryptosporidium spp. in poultry at open live bird markets in Bangladesh. A total of 197 samples were
randomly collected from poultry at open live bird markets in Bangladesh and screened for the detection of
Cryptosporidium. Initial microscopic examination revealed Cryptosporidium spp. was observed in 19.8% (39/197) of
the poultry specimens. Subsequent nested PCR targeting the 18S rRNA gene revealed that 15.7% (31/197) of the
samples were Cryptosporidium positive. Of these 31 samples, 17 were Cryptosporidium baileyi (8.7%), 12 were
Cryptosporidium meleagridis (6.0%), and 2 were Cryptosporidium parvum (1.0%). Nucleotide sequence analysis of the
GP60 gene of the C. meleagridis revealed that two subtypes (IIIbA21G1R1 and IIIbA23G1R1), which were found in
broiler, native and sonali chickens and a pigeon, matched those previously reported in humans and poultry. We
identified two novel subtypes (IIIbA21G2R1 and IIIbA20G2R1) in sonali chickens, a broiler chicken and a layer
chicken. We also amplified the GP60 gene of C. parvum and found two subtypes (IIaA11G2R1 and IIaA13G2R1) in
a sonali and a broiler chicken that were previously reported in calf. These findings suggest that poultry can be a
source of cryptosporidial infections for humans and animals in Bangladesh. This is the first molecular investigation
of Cryptosporidium genotypes and subtypes in poultry at open live bird markets in Bangladesh.

1. Introduction

Cryptosporidiosis is a protozoan disease widely found in wild, do-
mestic, and captive birds from several parts of the world [36]. Cryptos-
poridium has been recorded in>30 avian species worldwide, including
chickens, turkeys, ducks, geese, quails, pheasants, and peacocks [31]. So
far, infections in birds are mainly caused by four species: C. baileyi, C.
galli, C. meleagridis, and C. avium [29]. Cryptosporidium is transmitted
through the fecal-oral route by environmentally resistant oocysts that are
shed in the feces, contaminating soil and water, and thus providing
multiple pathways into the food chain [32]. C. meleagridis is the only
Cryptosporidium species known to infect both birds and mammals [5].
Therefore, humans can acquire cryptosporidiosis either by consumption
of water and food contaminated with oocysts or direct contact with

infected people or animals [49]. In 2010, C. baileyi was reported to be the
dominant Cryptosporidium species found in all age groups of chickens
[44], and in 2017, C. parvum was the most frequently observed species
identified in poultry in Germany [14]. Cross-species transmission of C.
meleagridis between birds and humans has been reported in Peru [43,45].
Cryptosporidium meleagridis is considered the third most common species
of this genus emerging in humans [47]. Cryptosporidium-infected do-
mestic pigeons have been reported in some regions of the world, such as
in Thailand [19], China [23], and Brazil [30]. The markets where poultry
is purchased are crowded with people, and it is possible for Cryptospor-
idium to spread to the surrounding environment due to close contact with
other species of birds or mammals in the markets [4].

The poultry industry of Bangladesh is a promising sector for eco-
nomic growth. In Bangladesh, documented studies of cryptosporidiosis
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in animals and poultry are limited. Moreover, no studies examining
protozoan infections have been done in the open live bird markets of
Bangladesh. A few studies of Cryptosporidium related to human disease
have been done in Bangladesh, including reports of C. parvum and C.
meleagridis in children in Bangladesh [15,20]. C. meleagridis was the
predominant species in rural areas, whereas in urban areas C. melea-
gridis was the second most frequently identified species in Bangladesh
after C. parvum [37].

In Bangladesh, open live bird markets offer wholesale poultry.
Peoples gather to buy the poultry for consumption and sellers slaughter
and process the poultry under unhygienic conditions. The poultry ex-
crete droppings, which are not regularly cleaned up, creating a high risk
for transmission of Cryptosporidium infection from poultry to humans.
Therefore, the present study sought to determine the epidemiology of
Cryptosporidium spp. in poultry at open live bird markets in Bangladesh
and to molecularly characterize the Cryptosporidium spp. identified.

2. Materials and methods

2.1. Ethics statement

All samples were collected from live bird markets. Since samples
were collected after slaughter of the poultry, no permission regarding
laws on animal protection was required. We received permission from
the poultry sellers to collect the samples.

2.2. Sample collection

A total of 197 intestinal colon samples from different poultry species
including layer chickens (n = 12), broiler chickens (n = 80), sonali
chickens (n = 93), native chickens (n = 8) and pigeons (n = 4) were
obtained from 19 different live bird markets (LBM) in Dhaka, Bangladesh.
The age of the poultry ranged from one month to two years. Poultry were
kept together in cages for sale to customers. Fresh intestinal colon samples
were collected after the slaughter of every bird from a cage, taking care to
collect only the portion that did not have direct contact with the cage to
avoid contamination. All relevant data such as breed and age were recorded
for further analysis. Each sample was placed into an individual sterile
polystyrene tube, labelled, and transferred in an isothermal box to the la-
boratory where it was kept at 4 °C until DNA extraction.

2.3. Microscopic examinations

The samples were examined for Cryptosporidium oocysts by using the
sucrose flotation technique. Briefly, 1 g of colon contents from the sample
was suspended in 9 ml of saturated sucrose solution (Specific gravity 1.2) in
a tube and centrifuged at 1300g for 5 min. Then, sucrose solution was added
up to the 15-ml tube, which was then left at room temperature for 30 min.
Then, the tube was filled to create a meniscus by adding drops of solution
and putting a coverslip over the tube for 5–10 min. After that, the coverslip
was put on a glass slide and examined for oocysts under a light microscope
[9]. Thereafter, oocysts of Cryptosporidium-positive samples were transferred
from the surface of the suspension to a microscopic slide, air dried, and then
fixed for 3–5 min in absolute methanol before they were stained with
Ziehl–Neelsen carbol fuchsin for 20 min. After washing with tap water,
smears were decolorized with 5% acid alcohol for 20–30 s, washed again
with tap water and counterstained with 0.4% methylene blue for 2 min,
then rinsed again with tap water and air dried. After drying, the stained
smears were examined for oocysts under light microscope using an oil im-
mersion objective lens (×100) [50]. The remaining samples were kept at
4 °C until DNA extraction [7].

2.4. DNA extraction

DNA was extracted directly from samples by using the QIAamp
Stool Mini Kit (Qiagen GmbH, Hilden, Germany) according to the

manufacturer's instructions with minor modifications. Modifications
included the addition of 0.2 g of E-Z zirconia beads to 0.2 g of feces and
1.4 ml of lysis buffer [27]. Then, the mixture was heated at 95 °C for
10 min followed by vigorous shaking using the Biomedicals Fast Prep®
instrument (1620 r/min for 150 s) to facilitate oocyst rupture. Nucleic
acid was eluted in 100 μl of AE buffer to increase the quantity of DNA
recovered. After the DNA was extracted, it was stored at −20 °C.

2.5. Nested PCR analysis of the 18S rRNA and GP60 genes

For the primary PCR, a PCR product of 1325 bp was first amplified
using the primers (Table S1). The amplification was performed in a 25-
μl volume with 2μl of each DNA sample in 12.5μl of 2 × PCR buffer,
5μl of deoxynucleotide triphosphates (2mM each), 0.25μl of each
primer (50μM), 4.5μl of double distilled water, and 0.5μl of KOD- Fx
Neo amplification enzyme (1units/μl) (ToYoBo Co., Ltd., Osaka,
Japan). Then, for the nested-PCR (nPCR), 2 μl of the primary PCR
product was used with appropriate primers to amplify a ~ 830-bp
fragment of the Cryptosporidium 18S rRNA gene as described previously
[48]. The PCR reaction consisted of an initial heating at 94°C for 2min,
and 35cycles of 98°C for 10s, 55°C for 60s, and 68°C for 30 s (primary
PCR) or 98°C for 10s, 60°C for 30s, and 68°C for 1 min 30 s (nested
PCR). The 60-kDa glycoprotein (GP60; ~830 bp; [2,11,24]) was also
amplified in positive samples on the basis of the results for the 18S
rRNA. For subtyping of C. meleagridis, nPCR with a specific set of pri-
mers was performed to amplify a 1100-bp and a 900-bp fragment of the
GP60 gene [38]. For subtyping of C. parvum, nPCR with a specific set of
primers was performed to amplify an 850-bp and an 800-bp fragment of
the GP60 gene [8]. Primary PCR was carried out in a total volume of
25 μl with 2μl of each DNA sample in 12.5μl of 2 × PCR buffer, 5μl of
deoxynucleotide triphosphates (2mM each), 0.25μl of each primer
(50μM), 4.5μl of nuclease-free water, and 0.5μl of KOD- Fx Neo am-
plification enzyme (1units/μl). For the nested PCR, 2 μl of the primary
PCR product was used. The PCR and cycling conditions were unique to
the primary and nPCR and consisted of an initial denaturation at 94°C
for 2min, and 35cycles of 98°C for 10s, 50°C for 30s, and 68°C for 60 s.
As positive and negative controls, C. parvum genomic DNA and ultra-
pure water, respectively, were used instead of sample DNA. Known
positive standards were used during each PCR run. Optimization of PCR
was achieved and different temperature and PCR run conditions were
followed as described previously by other investigators who have used
similar primer sets [8] to identify and characterize Cryptosporidium. The
amplified fragments were electrophoresed in 1.5% agarose, stained
with GelRed® (Biotium), and visualized on an UV transilluminator by
electrophoresis in the QIAxcel Advanced system (Qiagen, Valencia,
California).

2.6. Sequencing

PCR products were purified from 1.5% agarose gel by using
NucleoSpin® gel and a PCR clean-up kit (MACHEREY-NAGEL,
Germany). Amplicons of 18S rRNA and GP60 genes were directly se-
quenced in both directions with the primers used for the secondary PCR
by the ABI 3100 Genetic Analyzer and the BigDye Terminator
v3.1 Cycle Sequencing Kit. DNA sequences were assembled with
Codoncode Aligner version 7.1.1 software (CodonCode Corporation).
The consensus sequences were assembled with homologous sequences
published in GenBank using Clustal W [42] and BioEdit Sequence
Alignment Editor [12]. The acquired sequences were submitted to a
BLAST search (http://blast.ncbi.nlm.nih.gov/Blast.cgi) to initially de-
fine the species/genotypes and to confirm the high similarity and
homology with other known sequences of Cryptosporidium spp. in
GenBank. All sequences were multiple-aligned and analyzed by Bioedit
and MEGA 7.0 software (http://www.mbio.ncsu.edu/BioEdit/bioedit.
html and http://www.megasoftware.net/). Phylogenetic trees were
generated using Maximum Likelihood (ML) analysis based on the
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T92 + I model [40] for 18S rRNA gene in MEGA7 [21] using Plasmo-
dium falciparum as an out-group. Phylogenetic trees were also generated
using ML analysis based on the Tamura-Nei model [41] for the GP60
genes of the Cryptosporidium subtypes in MEGA7 [21]. To assess the
reliability of this tree, bootstrap analysis was done with 1000 replicates.

2.7. Nucleotide sequence accession number

The partial 18S rRNA nucleotide sequences and GP60 sequences
obtained in this study have been deposited in the GenBank database
under accession numbers (MN133966 - MN133996 and MN192414 -
MN192426).

2.8. Statistical analyses

Data analysis was performed using Microsoft Office Excel 2010, and
results were considered to be statistically significant when P-values
were ≤ 0.05. Prevalence rates with 95% confidence intervals were
calculated by using Wilson (score) intervals [34] obtained in OpenEpi
software (http://www. openepi.com/Menu/OE_Menu.htm).

3. Results

3.1. Positive rates of Cryptosporidium spp. in poultry

Microscopic examinations revealed the presence of Cryptosporidium
oocysts in 19.8% (39 of the 197) poultry samples (Fig. 1). The modified
Ziehl-Neelsen method indicated that Cryptosporidium was present in
50% (2/4) of the pigeon samples, 20.4% (19/93) of the sonali chicken
samples, 18.8% (15/80) of the broiler chicken samples, 16.7% (2/12) of
the layer chicken samples and 12.5% (1/8) of the native chicken
samples. Not all microscope-positive samples were PCR-positive. The
positive rate for Cryptosporidium was 15.7% (31/197) by nested-PCR.
The highest rate (50%) of Cryptosporidium was found in pigeons both
microscopically and by PCR, whereas the lowest rate was found in the
native chicken samples (12.5%) by the microscopic method and in
broiler chickens (11.3%) by nPCR (Table 1).

3.2. Detection of Cryptosporidium species in poultry

C. baileyi, C. meleagridis, and C. parvum were identified through se-
quencing; however, C. baileyi was the most predominant species. Of the
31 positive samples, 17 were for C. baileyi (8.7%), 12 for C. meleagridis
(6.0%), and 2 for C. parvum (1.0%). Cryptosporidium baileyi was detected
in 11.9% (11/93) of sonalis, 5% (4/80) of broilers, 8.4% (1/12) of layers,
and 25% (1/4) of pigeons. Cryptosporidium meleagridis was also detected
in this study in 5.4% of sonalis, 5% of broilers, 8.4% of layers, 12.5% of

natives, and 25% of pigeons. Moreover, Cryptosporidium parvum was
identified in 1% of sonali and 1.3% of broiler (Table 2). Significant
statistical differences were not found in relation to the different species of
poultry and the relationship between age and infection (Table S2).

3.3. Prevalence of Cryptosporidium spp. in different live bird markets
(LBM)

Cryptosporidium spp. were found in most of the live bird markets in
different areas of Dhaka, Bangladesh. The prevalence of Cryptosporidium
spp. was high among chickens (10%–40%) and pigeons (50%) in
Mirpur areas where LBM 4, 10, 12, and 13 were located and where C.
baileyi, C. meleagridis, and C. parvum were detected. However, we found
no Cryptosporidium in the areas of Kollyanpur, Mirpur new society,
where LBM 6 and 11 were located (Table S3).

3.4. Sequence and phylogenetic analyses

All PCR-positive specimens were successfully sequenced and analysis
of the nucleotide sequences of the 18S rRNA genes revealed the presence
of three Cryptosporidium species: C. baileyi, C. meleagridis, and C. parvum.
Direct sequencing of the 18S rRNA gene amplicons identified C. baileyi
(8.7%; 17/197), C. meleagridis (6.0%; 12/197), and C. parvum (1.0%; 2/
197). The sequences from C. baileyi, C. meleagridis, and C. parvum had
100% genetic similarity with sequences previously published in GenBank
(JX548294, KT151550, KU744845, MK311146 HQ917077, KY448456,
KY352486, MH062745, MF671870, MK491508 and LC270282).

ML analysis of 18S rRNA gene sequences revealed three distinct
clusters among the isolates of cryptosporidia from poultry in the present
study. Seventeen isolates clustered with C. baileyi, sharing 100% se-
quence identity with accession numbers (MN133967-MN133971, MN-
133976- MN133977, MN133980, MN133981, MN133983, MN133986,
MN133987, MN133989- MN133991, MN133993 and MN133995). Two
isolates clustered with C. parvum sharing 100% sequence identity with
accession numbers (MN133979 and MN133984). The remaining 12
isolates belonged to C. meleagridis, sharing 100% sequence identity with
accession numbers (MN133966, MN133972- MN133975, MN133978,
MN133982, MN133985, MN133988, MN133992, MN133994 and
MN133996) (Fig. 2). All 12 C. meleagridis-positive specimens generated
the expected GP60 PCR product. However, only 11 of the 12 isolates
were successfully sequenced. Nucleotide sequence analysis of the GP60
gene revealed that all of the subtypes belonged to the most common
subtype, the IIIb family of C. meleagridis. We detected two novel sub-
types, IIIbA21G2R1, in sonali chickens (n = 4) and a broiler chicken
(n = 1) and IIIbA20G2R1, in a layer chicken (n = 1), that had a dif-
ferent nucleotide sequence within the trinucleotide repeat region. We
also identified two other subtypes (IIIbA21G1R1 and IIIbA23G1R1)
found in broiler chickens (n = 2), a native chicken (n = 1), a sonali
chicken (n = 1) and a pigeon (n = 1). The GP60 gene of C. parvum was
also amplified by specific sets of primers to reveal two subtypes
(IIaA11G2R1 and IIaA13G2R1) identified in a sonali chicken (n = 1)
and a broiler chicken (n = 1) that were previously reported in calf
(Fig. 3). Therefore, these subtypes were named based on the established
GP60 nomenclature [38,39].

Fig. 1. Microscopic observation of Cryptosporidium oocysts. Oocysts were ob-
served by using the Ziehl-Neelsen staining method under a microscope.

Table 1
Positive rates of Cryptosporidium species in poultry.

Poultry spp. No. sample No. microscopy
positive (%)

No. nested PCR
positive (%)

Chicken (sonalis) 93 19 (20.4) 17 (18.3)
Chicken (Broilers) 80 15 (18.8) 9 (11.3)
Chicken (layers) 12 2 (16.7) 2 (16.7)
Chicken (natives) 8 1 (12.5) 1 (12.5)
Pigeon 4 2 (50) 2 (50)
Total 197 39 (19.8) 31 (15.7)
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4. Discussion

Few studies have genotyped and subtyped Cryptosporidium in poultry
around the globe. This study represents, 19.7% of Cryptosporidium pre-
valence in different breeds of poultry based on microscopic results. In
contrast, a report mentioned high frequency (about 37%) of
Cryptosporidium in broiler flocks in Morocco by using microscopy [18];

however, in China, lower Cryptosporidium infection rates of 3.4% in broi-
lers and 10.6% in layer chickens were identified from fecal samples by
using bright-field microscopy [44]. Furthermore, only 0.5% of chickens at
poultry slaughterhouses in Iran were reported to be Cryptosporidium-po-
sitive [13]. The quantity of oocysts was not evaluated in this study.
However, in a positive sample, the sensitivity of the primer that we used,
there should be at least 101 oocysts found under microscope [17].

Table 2
Detection of Cryptosporidium spp. in poultry.

Poultry spp. No. samples No. positive (%) Total positive (%) 95% CIa

C. baileyi C. meleagridis C. parvum

Chicken (sonalis) 93 11 (11.9) 5 (5.4) 1 (1) 17 (18.3) 11.8–27.4
Chicken (broilers) 80 4 (5) 4 (5) 1 (1.3) 9 (11.3) 6.03–20.02
Chicken (layers) 12 1 (8.4) 1 (8.4) 0 (0) 2 (16.7) 4.7–44.8
Chicken (natives) 8 0 (0) 1 (12.5) 0 (0) 1 (12.5) 2.3–47.1
Pigeons 4 1 (25) 1 (25) 0 (0) 2 (50) 15–85
Total 197 17 (8.7) 12 (6.0) 2 (1.0) 31 (15.7) 11.4–21.5

a Confidence interval.

Cryptosporidium parvum

Cryptosporidium baileyi

Cryptosporidium meleagridis

99

85

98

74

59

82

81

97

92
50

85

Fig. 2. Phylogenetic tree based on partial sequences of the 18S rRNA genes for Cryptosporidium spp. A Phylogenetic tree was constructed without nucleotide gaps
using the Maximum Likelihood analysis with 1000 replicates based on the T92 + I model [40]. Species, host, region of identification, and GenBank accession number
are included. Newly obtained sequences are bolded. The Plasmodium falciparum sequence was used as an out-group. Only bootstrap values> 50% from 1000 pseudo-
replicates are shown. Evolutionary analyses were conducted in MEGA7 [21].
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In this study, the positive rates of Cryptosporidium obtained by using
molecular techniques were comparatively higher than those obtained
by other investigators, such as 7.03% found in Germany [14] and 10%
found in China [43,45], although the rate of 14.8% found in Brazil is
similar to our findings [6]. In general, molecular technique is more
sensitive than microscopy to detect infection. However, sometimes,
microscopy showed high detection rate. It might be due to presence of
PCR inhibitors in feces including bilirubin, bile salts, and complex
polysaccharides, and thus PCR can be inhibited [28].

In the present study, Cryptosporidium baileyi was detected in sonali,
broiler, and layer chickens and also in pigeons. These findings are
supported by the work of Baroudi et al., [3], who reported a similar
prevalence (5.5%; 5/90) in broiler chickens in Algeria using molecular
techniques. Moreover, similar findings have been reported in Germany
in broilers (5.7%; 9/158) and layers (8.3%; 1/12) [14]. Broiler chickens
might act as sources of infection due to shedding of oocysts and may be
responsible for transmission and infection [35]. Cryptosporidium baileyi
is considered the most common avian species of Cryptosporidium
worldwide and has a wide host range [29,33]. In the present study, C.
baileyi was the predominant species and was identified in all groups of

chickens, although C. meleagridis was also observed. C. baileyi was de-
tected in sonali, broiler, and layer chickens and in pigeons in this study,
whereas C. baileyi has been reported frequently in chickens and pigeons
worldwide [16,25]. Cryptosporidium meleagridis was also detected in
sonali, broiler, layer, and native chickens as well as in pigeons. Simi-
larly, C. meleagridis was previously reported in 3.2% of chickens [25],
9% of broilers in Algeria [22], 5.3% of broilers in China [43,45] and
10% of layer chickens in China [44]; however, some reports have
shown infection rates of C. meleagridis as high as 28.9% in chickens [3].
C. baileyi was found in all age groups of chickens, whereas, C. melea-
gridis was identified in 31 to 120-day-old layer chickens [44]. Both C.
baileyi and C. meleagridis were found in> 4 months of age of chicken
[25]. The breeds of poultry in this study has different life span and
genetic variation. We considered that young poultry were the risk group
since their immune system is not developed. However, in the present
study the infection of poultry was in adult group which might be due to
stress factors for meat and egg production in poultry [14].

We identified two novel subtypes of C. meleagridis (IIIbA21G2R1 and
IIIbA20G2R1) in sonali chickens, in one broiler chicken and in one layer
chicken. The remaining 2 subtypes, IIIbA21G1R1 and IIIbA23G1R1, were
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C meleagridis
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Fig. 3. Phylogenetic tree based on partial sequences of the GP60 genes for Cryptosporidium spp. Phylogenetic tree was constructed without nucleotide gaps using the
Maximum Likelihood analysis with 1000 replicates based on the Tamura-Nei model [41]. Subtypes, host, region of identification, and GenBank accession number are
included. Newly obtained sequences are bolded. C. meleagridis and C. parvum were subtyped in this study by use of reference sequences and observations. Only
bootstrap values> 50% from 1000 pseudo-replicates are shown. Evolutionary analyses were conducted in MEGA7 [21].
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identified in chickens and pigeons, consistent with previous reports in hu-
mans and birds [1,10,38]. The presence of C. meleagridis in poultry in live
bird markets in this study raises questions regarding potential zoonotic
transmission from poultry to humans. C. meleagridis is a public health
concern in that it has also been found in humans, associated with gastro-
intestinal symptoms in both immunocompetent and immunocompromised
individuals and mammals [5]. In Peru, two subtypes of C. meleagridis
identified from AIDS patients were shared by birds (chicken, pigeon, or
duck) in the same location [43,45]. The subtype IIIbA22G1R1 was detected
in people from Sweden who had traveled to India or Thailand prior to in-
fection [38]. These differences in prevalence might be related to the dif-
ferent breeds of poultry has different susceptibility and immunity due to
genetic variation, and the situation of location of LBM, and the improper
hygienic condition in poultry cages of LBM. Environmental factors and
differences in host species may also be responsible. Unhygienic conditions in
cages, overpopulation, and keeping different birds together have con-
tributed to the high infection rates of Cryptosporidium [4].
C. parvum also has zoonotic potential and is sporadically found in

birds [29]. In Germany, the most frequent species found in chickens and
turkeys was C. parvum [14], which raises the possibility that poultry
could act as a source of infection and mechanical vector for other
zoonotic Cryptosporidium, besides C. meleagridis. However, in our study,
the sanitary conditions were characterized as poor due to the lack of
periodic cage cleaning and overpopulation. Also, the presence of ru-
minants in LBMs, which could be infected with C. parvum, could have
caused the spread of oocysts in the surroundings, favoring ingestion by
poultry. In contrast, migratory birds would act as a source of trans-
mission, mechanical passage of oocysts, and contamination of the en-
vironment, even though they have low-level infections [26].

Avian species have been identified as the natural reservoir for C.
meleagridis, and zoonotic transmission has been described from do-
mesticated chickens to humans [35]. In urban areas of Bangladesh, C.
meleagridis was the second most frequently identified species occurring
in 13%, and also C. parvum was identified in 2% infecting children
without diarrhea. However, in rural areas, the predominant species was
C. meleagridis (90%) while C. parvum was much less prevalent (4%)
causing subclinical cryptosporidiosis [37]. C. meleagridis and C. parvum
have been identified in infants in Mirpur, Bangladesh. This might be
anthropozoonotic; transmitted from chickens kept in households [20].
Interestingly, our study also detected C. meleagridis and C. parvum in
LBMs in Mirpur areas. It is not possible to say whether the C. meleagridis
subtypes identified in this study are related to subtypes that have in-
fected humans due to lack of identified GP60 gene subtyping data of C.
meleagridis in humans in Bangladesh. The C. parvum subtype IIcA5G3R2
and subtype IImA7G1 were identified in children with diarrhea
aged<2 and 5 years, respectively, in Bangladesh. This subtype family
has not been identified in any animal thus far and is generally con-
sidered “anthroponotic” [15,20]. In the present study, we detected two
subtypes (IIaA11G2R1 and IIaA13G2R1) of C. parvum in broiler and
sonali chickens that were previously reported as calf subtypes [46]. In
the present study, Cryptosporidium was detected in pigeons; however, a
detection rate of 7% was found in pigeons in Brazil and 25% in pigeons
in Thailand [19,30]. Pigeons could be infected by contact with animals
or their owners could passively spread oocysts in the surroundings.
There is also a risk of the owners becoming infected due to contact with
oocysts discharged by the pigeons [30]. The presence of C. meleagridis
in domestic pigeons in China might lead to zoonotic transmission,
especially to their handlers and the environment due to mice spreading
the oocysts in water and food [23]. Market workers and customers were
handling poultry in the markets could contaminate water, feed, and/or
litter in poultry houses with oocysts of mammalian/human origin.

5. Conclusion

In conclusion, our research revealed that Cryptosporidium parasites
are common among the live bird markets in Bangladesh. It is, therefore

essential to pay attention to this pathogen. People and other animals
could be infected with C. meleagridis and C. parvum via potential zoo-
notic transmission from poultry carrying the pathogen. Therefore, it is
important to consider Cryptosporidium as a threat to public health as
well as the economy.
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