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Abstract

In the era of metagenomics and diagnostics sequencing, the importance of protein comparison methods of boosted
performance cannot be overstated. Here we present PSimScan (Protein Similarity Scanner), a flexible open source protein
similarity search tool which provides a significant gain in speed compared to BLASTP at the price of controlled sensitivity
loss. The PSimScan algorithm introduces a number of novel performance optimization methods that can be further used by
the community to improve the speed and lower hardware requirements of bioinformatics software. The optimization starts
at the lookup table construction, then the initial lookup table–based hits are passed through a pipeline of filtering and
aggregation routines of increasing computational complexity. The first step in this pipeline is a novel algorithm that builds
and selects ‘similarity zones’ aggregated from neighboring matches on small arrays of adjacent diagonals. PSimScan
performs 5 to 100 times faster than the standard NCBI BLASTP, depending on chosen parameters, and runs on commodity
hardware. Its sensitivity and selectivity at the slowest settings are comparable to the NCBI BLASTP’s and decrease with the
increase of speed, yet stay at the levels reasonable for many tasks. PSimScan is most advantageous when used on large
collections of query sequences. Comparing the entire proteome of Streptocuccus pneumoniae (2,042 proteins) to the NCBI’s
non-redundant protein database of 16,971,855 records takes 6.5 hours on a moderately powerful PC, while the same task
with the NCBI BLASTP takes over 66 hours. We describe innovations in the PSimScan algorithm in considerable detail to
encourage bioinformaticians to improve on the tool and to use the innovations in their own software development.
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Introduction

Sequence comparison is clearly the most ubiquitous task in

bioinformatics. Standard tools for protein similarity search were

established relatively early and did not change much over two

decades. The growing demand for the analysis of ever growing

datasets was satisfied by massive parallelization of public services,

based mostly on NCBI BLASTP [1,2], AB-Blast (formerly WU-

Blast) [3] and FASTA [4–6] variations. This approach, however,

posed certain difficulties for commercial sequencing projects, since

building adequate private computing facilities was typically out of

their scope, and caused recurrent emergence of commercial

solutions based on specially tailored hardware, such as ones by

CompuGen (compugen.com), TimeLogic (timelogic.com), Paracel

(paracel.com, acquired and revived by Striking Development), and

CLCbio (clcbio.com). In the past, hardware-accelerated solutions

typically provided an advantage for a few years, after which they

gradually retired due to being overgrown by the rapid perfor-

mance progress of generic consumer platforms, so eventually pure

software designs of search tools were brought back to competitive

speed.

It is remarkable that, while quite an intense effort was aimed

at the increase of search sensitivity (which led to the invention

of many new tools and even concepts [2,7–13]), for many years

only a small number of studies were dedicated to the

improvement of speed of the generic search [14–17]. In many

cases, such works addressed particular problems and were

actually not applicable to most generic search tasks [18–20]. In

a sense, we could observe an ‘evolutionary conservation’ of early

designs of similarity search methods, where the algorithm and

even the implementation details stayed the same, while

adaptation of the method to the changing requirements is done

at a higher level by providing specific wrappers, pre- and post-

processors [21–23], caching and reprocessing older search

results [24], or running many instances of a tool in parallel

[25]. Alternative homology detection methods [26–29] have also

been developed, but they do not yet provide a real alternative

to the classic alignment-based techniques.

In recent years, the emergence of Next Generation sequencing

by 454, Complete Genomics, Illumina, Pacific Biosciences, Life

Technologies (Ion Torrent), Applied Biosystems (SOLiDTM) and

Helicos BioSciences (tSMSTM) spurred significant progress in the

near-exact nucleotide sequence matching [30]. The advancement

in sequencing technology provided previously unforeseen volumes

of raw data [31,32], including massive amounts of novel genome

and metagenome sequences. Analysis of this data depends on the

availability of quick and reliable methods of protein sequence

similarity search, especially for tasks like ORF identification,
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primary annotation and functional prediction. With the growth of

annotated sequence corpus, a two-pass strategy for these tasks

becomes reasonable. In the first pass, close relatives of the proteins

will be identified by a quick and relatively insensitive method.

Then a more sensitive and slow search will be used only on the

sequences lacking good hits. Rapid increase in the annotated

protein diversity leads to reduction in the number of proteins

analyzed during the second pass, making this strategy more

efficient. To implement such strategy, a software tool capable of

quick detection of strong similarities (possibly at a cost of reduced

sensitivity) is required.

Recently, a few fast DNA similarity search tools were

extended to allow for protein search. Those tools implement

different speed enhancement algorithms. USEARCH [33]

utilizes pre-sorting of the subject database using a similarity

likelihood estimate based on the frequency of common k-tuples,

where primary selection and sorting of candidates is based on

the number of exactly matching k-tuples. Protein BLAT [18]

allows for a single substitution in the matching k-tuple. Its

suggested best usage scenario requires accumulation of multiple

exact or near-exact k-tuple matches on a group of adjacent

diagonals. RAPSearch [34,35] uses a reduced alphabet which

codes amino acid residues of similar properties with the same

symbols. However, in our opinion, a generic fast protein

similarity search tool suitable both for fragments and full-length

proteins, while taking advantage of traditional gapped weight-

matrix-based alignment scoring, is still missing.

Here we present a novel BLAST-like similarity search method

that leads to a significant gain in performance compared to NCBI

BLASTP, while maintaining reasonable sensitivity. We have

implemented both nucleic acid and protein similarity search tools,

which are available as parts of our QSimScan (Quick Similarity

Scanner) software suite (available at SciDM.org). Due to

optimization reasons, algorithm details for these variants signifi-

cantly differ. In this article, we discuss the algorithm and its

implementation for protein similarity search, and provide details

on speed, sensitivity and selectivity depending on the search

parameters and in comparison to SSEARCH, NCBI BLAST,

USEARCH, BLAT and RAPSearch as a representative selection

of tools utilizing different algorithmic approaches and also most

commonly used for protein sequence search by the scientific

community.

The PSimScan algorithm was developed for similarity-based

annotation of massive volumes of genomic and metagenomic data,

and optimized for a quick search of relatively strong similarities.

When used for these tasks, it operates 5–100 times faster than

NCBI BLASTP (which is still most commonly used for those tasks),

and in a certain zone of parametric space delivers better recall to

error ratios than any of the aforementioned fast protein similarity

search tools. With parameter settings outside of the optimal zone,

PSimScan can still be used for other tasks, such as weak remote

homology detection or search for near-exact matches.

In this article, we will describe the PSimScan algorithm in detail

sufficient for the open source community to improve on the tool

and to reuse parts of the algorithm in modern bioinformatics

software development to improve its performance and lower the

hardware requirements. We will provide performance evaluation

of our tool at different sets of parameters and compared to

SSEARCH, BLAT, BLASTP, USEARCH and RAPSearch,

however, detailed comparative evaluation of fast protein similarity

search tools and their usage recommendations fall beyond the

scope of this work.

Algorithm Design

To gain maximum speed, similarity detection in PSimScan is

organized as a pipeline of hit accumulators and filters connected in

the order of increasing computational complexity. Initial hits are

detected similarly to classic Pearson and Lipman’s reverse

dictionary lookup [36]. Each subsequent step in the pipeline

reduces the number of passed hits by either aggregating the

neighboring ones or by dropping the weak ones, allowing to defer

more accurate (and relatively heavy) computations to the later

stages in the pipeline, when the majority of weak hit candidates are

already sorted out.

First, we accumulate initial hits into ‘similarity zones’ aggregat-

ed from the neighboring matches on adjacent diagonals. We

estimate similarity scores of such zones from the composition and

placement of the initial hits. The similarity zones grow and merge

as more initial hits are processed. After all initial hits have been

seen, we detect and merge high-scoring zones which are properly

arranged for a good alignment. Next, we compute optimal

alignments on the merged zones and calculate statistical values for

the high scoring ones. A pair of sequences may produce more than

one alignment; these can optionally be filtered or merged into

larger ‘super-alignments’.

Each stage of the algorithm is optimized for speed: in every case

possible we are using direct addressing; all dynamic memory

allocations are excluded by using an arena memory management

pattern; moving objects in memory (including sorting) is avoided

where possible.

The outline of the PSimScan algorithm is presented on Fig. 1.

Lookup Table Construction
The Lookup Table is a structure that associates each possible k-

tuple with a list of locations in the query sequences where

sufficiently similar k-tuples occur. The sufficient similarity is

defined by scoring possibly similar k-tuples against those present in

the query sequences using an amino acid substitution score matrix

Figure 1. Block-scheme for PSimScan algorithm. Similarity
detection in PSimScan is organized as a pipeline of hit accumulators
and filters connected in the order of increasing computational
complexity.
doi:10.1371/journal.pone.0058505.g001
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[37–40]. By default, BLOSUM62 is used; a different matrix may

be specified as a search parameter. The similarity level is

computed as the ratio of k-tuple-to-query match score to k-tuple’s

self-match score. Only those locations on the query sequences

where this ratio is above a certain ‘diversification threshold’ (a

search parameter) are stored in the Lookup Table.

In the current implementation of PSimScan, we consider only

ungapped matches of k-tuples to query sequences. Our testing

showed that gapped matches add only a minute gain in sensitivity,

but increase both computational and algorithmic complexity, thus

increasing the search time.

In PSimScan, we build a lookup table on a set of query

sequences prior to the actual search. This table is later used to

retrieve locations of exact and inexact matches of k-tuples found in

the subject sequences.

Fig. 2 represents an outline of the Lookup Table construction.

For each of the possible 20k k-tuples, we record the locations in

query sequences where ‘similar enough’ k-tuples are found. In a

straightforward implementation, each of the possible 20k k-tuples

would be weighted for a similarity score against every k-tuple

occurring in the query set, and the locations of those with

sufficiently high similarities would be recorded. For the k-tuple

size = 5, there are 3,200,000 (205) possible variations; with a set of

4,000 query sequences of an average size of 300 amino acid

residues (reasonable numbers for a single bacterial proteome) this

translates into almost 4 trillion tuple-to-tuple comparisons. To

reduce the amount of calculation and the time required for the

lookup table construction, we use the following optimization. First,

we record locations of all k-tuples present in the query sequences.

Then, for each k-tuple occurring in the query set, we compute a

list of k-tuples that match it with a sufficient score (the method of

computing sufficient similarities will be described below). Then we

update lists of locations of all these sufficiently similar k-tuples with

the locations of the original k-tuple. Along with locations, we store

the match scores between the original k-tuple and the sufficiently

similar one. For the exact matches, this is a self-match score of the

original k-tuple. These scores are used later at the search stage to

estimate the strength of similarity zones composed from constit-

uent k-tuple matches.

For computing k-tuples that are sufficiently similar to a given

one, we use a recurrent procedure of tuple diversification. We assume

that in the substitution matrix, a self-match score for any amino

acid residue is the highest (this holds true for all NCBI-supplied

matrices). First, we compute self-match scores for all prefixes and

suffixes of a given k-tuple (T), and a score threshold S for the k-

tuple, where S = (self match score)*(diversification threshold).

Then we use a representation of all possible k-tuples as a 20-way

k-level trie [41]. We recursively traverse this trie depth-first,

computing the match score at each node. This score is defined

as a sum of the score for the k-tuple prefix already seen (at prior

recursion levels), the score of the substitution at the current

position, and the score of the self-matching suffix of the original k-

tuple. Once this score drops below S, we skip the entire sub-

branch originating from that node. This is safe to do: according to

our assumption that a self-match always scores the highest, no

suffix can yield a match score greater than the self-matching one.

When the recursion reaches its terminal leaves while the score

stays above S, the k-tuple corresponding to that leaf is considered

‘sufficiently similar’ to the original and gets processed accordingly

(see below). Such recursion traverses down the tree of all possible

k-tuples, but the branches leading to a change beyond the

diversification threshold are immediately terminated. This proce-

dure efficiently enumerates all variants of k-tuples that are

sufficiently similar to the original one.

To avoid dynamic resizing of k-tuple location lists (a costly

procedure), the Lookup Table is computed in two passes over the

set of query sequences. Beforehand, we allocate an array of

TUPLE_INFO structures with the size equal to the number of all

Figure 2. Block-scheme for dictionary construction. Location of
every character tuple of the size K in the query sequences is recorded in
a directly addressable Lookup Table, where a binary-converted tuple by
itself serves as an index. Each entry in the table is a pointer to an array
of locations.
doi:10.1371/journal.pone.0058505.g002
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possible k-tuples (Ak, where A is the alphabet size, 20 for the

amino acid residues, and k is the k-tuple size). Each TU-

PLE_INFO structure holds a counter for the k-tuple occurrences,

a pointer to the list of k-tuple locations, and an array of k-tuple’s

partial (suffix) scores. A binary-converted k-tuple serves as an

index into this array, so that the TUPLE_INFO structure

associated with a given k-tuple is obtained in a constant time by

direct addressing.

At the first pass over the query sequences, we count the exact

matches for every k-tuple in the Lookup Table (every possible k-

tuple). The tuple’s counters of occurrences are zeroed at the

beginning. From each of the query sequences, we extract k-tuples

one by one, starting at the position 0 and ending at (query length –

tuple size), each time moving by one residue. For each extracted k-

tuple, we increment the occurrence counter in its corresponding

TUPLE_INFO structure. After the exact occurrences are counted,

we diversify (as described above) each k-tuple that actually occurs in

the query sequences (and thus has a non-zero occurrence counter).

The diversification yields all k-tuples that are sufficiently similar to

the original one. Then we add the number of occurrences of the

original k-tuple to the counters of every ‘sufficiently similar’ k-

tuple. Thus, at the end of the first pass, we have the count of the

exact and close match locations for every k-tuple in the query set.

Next, we sum up all these location counters and allocate a memory

array sufficient to hold all these locations. The locations are held in

the TUPLE_ENTRY structures (see below), so for the total N of

locations we allocate an array of N TUPLE_ENTRYs. It is worth

noting that since every location in the query sequences is recorded,

N is always equal to (sum of the query lengths)–(k-tuple

size)*(number of the queries). Then for each k-tuple, in its

corresponding TUPLE_INFO structure, we record a pointer to

the area within this array that will hold its locations. Such areas

are spaced to allow holding exactly the counted (number of

occurrences) TUPLE_ENTRY structures for each tuple.

Then we perform the second pass over the query set, now

recording locations of the exact matches. At the end of the second

pass, we diversify actually occurring tuples again, now physically

copying locations of the matching tuples to the lists of locations for

the sufficiently similar ones. We perform diversification again,

because saving results of the first one would have caused more

overhead then time saving. After the second pass is complete, we

have a fully populated Lookup Table that operates in the following

way: for each given tuple, its corresponding TUPLE_INFO

structure is directly addressed in the tuple_info array at the offset

Figure 3. Main elements of the Search Space. ‘Similarity Matrix’ is a rectangular table with columns corresponding to positions in the query
sequences and rows corresponding to positions in the ‘current’ subject sequence. Subject sequence database is processed record by record: k-tuples
starting from every position are looked up in the Lookup Table, and locations of tuple matches (primary hits) are recorded. Neighboring primary hits
form ‘Similarity Zones’, rectangular areas of Similarity Matrix oriented along the diagonals. Each new hit either joins an existing Similarity Zone that
appears close by, or forms a new one. If such a hit appears close to more than one existing Zone, the two zones are merged. Similarity Zones are
represented in PSimScan as BAND structures. Once a Similarity Zone’s score passes a detection threshold, it gets listed in the ‘Hits Array’.
doi:10.1371/journal.pone.0058505.g003
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equal to binary representation of that tuple. This structure holds a

pointer to an array of tuple locations/match scores and an

occurrence counter, which is equal to the size of the array. The

array consists of TUPLE_ENTRY structures, each containing the

query sequence index, the offset of the k-tuple in that query

sequence and the array of suffix match scores (first suffix equals to

the entire tuple match). The locations in the array are not ordered;

the array contains blocks of exact locations of sufficiently similar

tuples. The similarity search algorithm (see below) does not assume

any particular order.

Initial match detection and weighting. The Similarity

Matrix is a rectangular table with columns corresponding to

positions in the query sequences, and rows corresponding to

positions in the current subject sequence (Fig. 3). Each diagonal on

the Similarity Matrix is represented by the DIAGONAL_ENTRY

structure, which stores an offset of the last match on the diagonal,

a score obtained by merging the last match with the diagonal’s

similarity zone, a reference to the similarity zone, and an index of the

subject sequence; the use of the latter will be described below.

DIAGONAL_ENTRY structures are stored in the ‘diagonals’

array, where ‘diagonals’ offset in the Similarity Matrix serves as an

index for the corresponding DIAGONAL_ENTRY structures.

Similarity zones are rectangular areas on the Similarity Matrix,

oriented along the diagonals and growing to include matches

located in close proximity to each other. It cannot cross-sequence

boundaries (see Fig. 3). Similarity zone is represented by a BAND

structure, which contains bounding coordinates, maximal cumu-

lative match score achieved on this zone, and a query sequence

index for this zone, used for tracking query sequence boundary

crosses. Also, the BAND structure contains a ‘skip’ flag and a hit

index (explained below).

Subject sequence database is processed record by record. For

each subject sequence, a k-tuple that starts from every position is

looked up in the Lookup Table (see above), and locations of its

occurrences in the query sequences are retrieved. For every match

we compute the offset of the diagonal where it lays. The

corresponding DIAGONAL_ENTRY structure gets updated with

the match location. The score of the associated similarity zone (see

below) gets updated for the new match: the match score (minus the

score of the prior k-tuple overlap) is added to the similarity zone

score, while the score of any gap between the current and the

closest prior match in the zone is subtracted.

The match score is a sum of weights (from a chosen substitution

weight matrix) for all pairs of residues in the matched k-tuples.

Match score calculation for sufficiently similar tuples is described

above in the Lookup Table Construction section. To save time, all

(full and partial) match scores between any k-tuples which are

considered similar are computed once during the Lookup Table

construction, and saved in the Lookup Table along with the k-

tuple locations. Using these pre-computed partial (suffix) match

scores allows performing zone score update for partially overlap-

ping matches fairly quickly, without accessing substitution weight

matrix for every matched residue pair.

An overview scheme of the search loop is presented on Fig. 4.

The total number of diagonals in the Similarity Matrix equals to

(sum of query sequence lengths)+(subject sequence length). The

lengths of the query sequences are known at the very start of a

search, while subjects can be arbitrary. To exclude dynamic

memory management overhead, we pre-allocate an array of

DIAGONAL_ENTRY structures for the pre-defined maximal

subject length, which is a search parameter (with default value of

50,000).

Similarity zone detection. On the accumulation stage,

multiple neighboring primary hits are aggregated into similarity

zones, thus reducing the number of items for processing. Such

zones, in turn, may merge into a smaller number of aggregates.

Only zones collecting critical cumulative scores of primary hits can

trigger further processing.

Each diagonal at any given time is associated with only one

similarity zone. The algorithm ensures that if a second distinct

similarity zone appears on the same diagonal, its detection starts

only after the previous similarity zone is completely processed: this

is implied by the ordered retrieval of the k-tuples from the subject

sequence.

Figure 4. Block-scheme for the inner search loop. For each
subject sequence, k-tuples starting from every position are looked up,
and the match locations are recorded. The offset of the diagonal where
the match appears is computed, and the associated diagonal control
structure is updated with the location and the score of the match. On
the accumulation stage, multiple neighboring primary hits are
aggregated into Similarity Zones, reducing the number of items for
processing. Such zones, in turn, may merge into a smaller number of
larger aggregates.
doi:10.1371/journal.pone.0058505.g004
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When a primary match occurs on the diagonal, the corre-

sponding DIAGONAL_ENTRY structure can be found in one of

the following states: 1) unused; 2) used with an earlier subject

sequence; 3) used with a different query sequence and 4) already

used with the same query/subject sequence pair. The first two

cases occur when the first match for the present subject sequence is

detected on the diagonal. A new similarity zone enclosing this

match is then created, and a reference to this zone is recorded in

the DIAGONAL_ENTRY. The third case is treated similarly to

the first two. The DIAGONAL_ENTRY is re-used with a new

query sequence. It is safe, since the algorithm ensures that any

previously found high-scoring similarity zones intersecting this

diagonal had been already saved.

In the fourth case, a new match is found on the diagonal that

already intersects with some similarity zone on the same query/

subject pair. This new match can be a fair continuation of an

existing similarity zone, or it can reside too far apart. To

distinguish these possibilities, the extended zone score is estimated

by adding the original zone’s score to the new match’s score, and

subtracting a penalty for the gap. We used the affine gap penalty

calculation method with pre-defined gap initiation and extension

penalties (search parameters) [42]. When a new match overlaps a

similarity zone, the score is adjusted so that the overlapping

portion is not counted twice. If the score estimate is positive, the

similarity zone is extended to include the new match. If it drops

below zero, a new similarity zone is allocated for the diagonal and

initialized with the match score and location. In the former case,

the similarity zone previously attached to the diagonal also

remains ‘active’; with further processing it can potentially be

extended by more matches or merged with other zones.

After a match has been processed, the adjacent diagonals are

searched for similarity zones that can be merged with the current

one. No more than mxshift diagonals are looked up in both

directions (where mxshift is a search parameter). For each possible

merge a score is estimated. Those that score positively get merged;

all involved diagonal control structures are updated to refer to the

resulting zone. After two zones merge, one of them expands to

include the area previously covered by both similarity zones, and

another is marked ‘obsolete’ by raising the ‘skip’ flag. This flag is

also used later when processing high scoring zones.

In order to avoid the overhead of dynamic memory manage-

ment, we pre-allocate an array of BAND structures, reasonably

large to be enough for practical purposes. By default, we allocate 2

million BANDs; this number can be changed at the compiling

time. We keep a counter of used similarity zones, which serves as

an index of the first BAND structure yet unused. This counter is

zeroed at the beginning of each subject sequence processing.

When a new similarity zone needs to be initiated, the BAND

structure at this index is taken, the ‘skip’ flag in it gets reset, and

the counter is incremented (also, the hit index of the similarity

zone is set to a sentinel value; the use of hit index is discussed

below). If the counter reaches its pre-allocated limit, no further

zones are recorded, and the program issues a warning.

Similarity zone processing. Once an updated similarity

zone score passes a detection threshold, it gets recorded in the

‘hits’ array. After an entire subject sequence is processed, all such

zones will be referenced in the hits array, even if their scores have

later dropped. Each element of the hits array is an index of the

high scoring BANDs. The same method as for the BANDs array is

used to avoid dynamic re-allocation of the hits array: a reasonably

large number of hit elements are pre-allocated and the ‘fill’

counter is used as an index of first unused element. At the

beginning of subject sequence processing, this counter is zeroed.

Whenever a similarity zone passes the score threshold, it is checked

for being already referenced in the hits array: for already

referenced zones the ‘hit index’ holds a non-sentinel value. If it

is not yet referenced, the index of this zone in the BANDs array is

recorded in the ‘fill counter’ element of the hits array, the fill counter

value is recorded as the zone’s hit index, and the fill counter gets

incremented by one. In the rare cases when the hits array is

exhausted, the hits accumulation stops and the program issues a

warning.

After all k-tuples from the subject sequence are processed, the

hits array is used to enumerate similarity zones with high scores.

Some of these zones could be already merged into larger ones;

such zones have their ‘skip’ flag set, and they are ignored. The

remaining high-scoring zones are regularly built around narrow

diagonal bundles, limited by the extent of lateral search for

adjacent zones to merge (mxshift parameter). The complexity of our

similarity zone detection algorithm grows linearly with the number

of adjacent diagonals being checked; therefore, checking more

than a few (2–5) is impractical. In order to bring together zones

separated by longer gaps, we perform a single linkage clustering on

the entire set of valid zones, using pairs of ‘compatible’ zones as

links. The zones are considered compatible if the sum of their

scores, adjusted for the non-overlapping fractions, is larger than

the gap penalty computed on a minimal distance (in diagonals)

between these zones. The clusters are computed using a very

efficient original transitive closure algorithm (please see the source

code for details). Then the contents of each cluster are merged into

the first zone in that cluster; the remaining zones are marked

obsolete.

The boundaries of each resulting composite similarity zone

mark out a diagonal band on the similarity matrix, which contains all

primary k-tuple matches (Fig. 3). Complete similarity zones are

extended in all directions by a certain user-defined factor, and then

processed using a ‘banded’ optimal alignment method based on

Needleman-Wunch algorithm [43]. Obtained optimal alignments

are passed on to the subsequent processing stages. While

performing alignment, the Smith-Waterman scores [44] are

computed.

Filtering and post-processing. A number of optional

similarity filters are available. The most trivial one is the alignment

score filter allowing for sorting out similarities which score below a

certain threshold. The filter is applied after the accurate Smith-

Waterman scores are computed, therefore this stage of filtering is

more reliable than the ones used at any of the previous steps.

The long repeat filter detects when multiple similarities between a

pair of sequences are caused by repeats in one or the both of them.

It would drop all such similarities from the results, except for the

best scoring ones.

The remote batch merger is capable of merging remote similarity

zones separated by non-similar zones or long gaps. By nature of

the PSimScan algorithm, it detects only compact similarity zones,

so if there are two pairs of similar domains separated by a long

non-similar zone, PSimScan will report two short similarities. In

certain cases it is convenient to report such cases as one similarity,

even though it contains either a gap that would yield too big an

affine penalty or a non-similar zone where the true Smith-

Waterman score would drop to zero. The remote batch merger

uses a dynamic programming-based algorithm in order to find the

best arrangement for the aligned segments.

After local alignments are built and remote similarity zones are

merged, the Karlin-Altschul statistics [45] are computed on the

merged alignments, yielding standard E-value scores, to assess and

compare qualities of found similarities. We used the ‘ariadna’

library from WTCHG [46] for an accurate estimate of the gapped

alignment score. The E-values produced with it match those

PSimScan: Very Fast Protein Similarity Search
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computed by the SSEARCH [4] tool. It is also worth noting that

while those E-values are very similar to the ones reported by

USEARCH [33], they differ from those reported by NCBI

BLAST. For a detailed assessment of the quality of different E-

value computing methods see Brenner et al [47].

To summarize, instead of building alignments along individual

diagonals as traditional BLAST-like algorithms do, PSimScan

grows similarity zones across arrays of diagonals, consecutively

filtering out diagonals with no hits, low-scoring similarity zones

and hit arrays, allowing for a higher computational efficiency.

Methods

The algorithm described above is used as a core of PSimScan,

an open source software package for protein similarity search

available under GPL license. The software is implemented in

ANSI-compliant C++ compatible with GCC compilers version 3

and higher and Microsoft compilers version 12 and higher. The

Makefiles for Gnu environment are available. PSimScan has been

tested on Linux-32 and Linux-64 systems and on Windows XP

and Vista. The source code and Makefiles are available at

code.google.com/qsimscan.

Input and Output Formats
PSimScan takes FASTA-formatted sequence files as input and

writes results to flat files. Similarities can be reported in one of the

following formats:

N PSIMSCAN TEXT, similar to NCBI BLAST TEXT, which

shows alignments and verbose information on the hits. The

format details and the amount of the output data can be

controlled by user defined parameters;

N TABULAR/EXTENDED TABULAR, one tab delimited line

per similarity;

N NCBI m8/m9.

Control Parameters
The application is controlled via command line or configuration

file. A complete list of parameters, their default values and

explanations, can be obtained by running the software in ‘help’

mode, with the ‘-h’ command line switch. Each entry in the

configuration file corresponds to a command line option; the

command line takes precedence over the configuration file.

The most important parameters are:

–ksize: k-tuple (dictionary word) size

–approx: tuple diversification level as a fraction of the original

k-tuple’s self-match score

–kthresh: similarity zone detection threshold, a minimal zone

score triggering further processing

–omode: output format, from one of these: TEXT, TAB, TABX,

NCBI_M8, NCBI_M9

–rpq: number of results per query to keep and report.

Results

To assess performance characteristics of PSimScan, we used two

types of tests. First, we evaluated the quality of similarity detection

by PSimScan using the ‘golden set’ of similarity-independent

homologies, as described by Brenner et al [47]. Second, we have

compared the performance of the PSimScan to other industry

standard tools in a real-life scenario: a comparison of an entire

bacterial proteome to a standard protein database.

Test Arrangement
The following sequence sets were used:

PDB90 subset of the Astral SCOP database ver.1.75, containing

15545 sequences of the total length of 2683934 amino acid

residues, classified into 3901 unique folds.

Streptococcus pneumoniae R6 proteome, downloaded from NCBI

ftp site (at ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

Streptococcus_pneumoniae _R6/NC_003098.faa) in April 2012,

which contains 2,042 protein sequences with the total length of

588, 745 amino acid residues.

NCBI non-redundant protein database (‘‘nr’’) of 16,971,855

proteins, downloaded from NCBI ftp site (at ftp://ftp.ncbi.nih.

gov/blast/db/fasta/nr.gz) in April 2012, which contains

5,870,692,704 amino acid residues, of total size of 9.47 Gb,

SwissProt/Uniprot database of 534,695 proteins, downloaded

from NCBI ftp site (at ftp://ftp.ncbi.nih.gov/blast/db/fasta/

swissprot.gz) in April 2012, which contains 189,663,123 amino

acid residues, of total size of 254 Mb,

The BLOSUM62 [40] substitution weight matrix was used.

Testing was performed on the following computer system:

AMD Athlon(tm) II X2 215 (2700 MHz)-based desktop

computer with 8 GB DDR2 RAM (800 MHz) and NFS-mounted

disk storage (over a Gigabit Ethernet network), running Red Hat

Fedora 16 Linux OS (64-bit).

PSimScan executable was compiled locally from source code

(revision 49) using gcc++ compiler version 4.6.3 with optimization

level 2O2.

The comparison was done with SSEARCH version 36.3.5a

(locally compiled from source code), NCBI BLAST version 2.2.25

(64-bit binary), RAPSearch version 2.04 (64 bit, locally compiled

from source code), USEARCH version 5.1.221 (32-bit binary, the

only version available for free non-commercial use), and BLAT

version 34.12 (64-bit binary).

Sensitivity/selectivity assessment with PDB90

benchmark. We used the PDB-90 subset of Astral database

[48] as the test set. PDB90 contains sequences of solved protein

structures that have been manually classified into superfamilies

and folds. Each sequence from the database was used as a query to

search the database. We counted similarities between proteins of

the same fold as true positives, and similarities between proteins of

difference folds as false positives. Based on these counts and

following the protocol described by Brenner et.al. [47] we

computed EPQ (Errors Per Query) and Coverage (fraction of

total positives detected) values, and plotted them for the runs of

PSimScan at different parameters settings. For comparison, we

outlined in the same coordinates the coverage-vs.-error plots for

five most commonly used protein similarity search tools ran on the

same data (Fig. 5).

Our choice of those five tools was directed by the following

considerations: NCBI BLASTP [2] still appears to be the most

widely used tool for protein comparison, and to many researchers

it remains a de-facto standard against which all other tools are

evaluated. SSEARCH [4] can be seen as an ultimate tool to

compute edit-distance based similarities not compromised by hit

selection heuristics. USEARCH [33], while being closed-source

and distributed under a restrictive license, in recent years has

become an ubiquitously used tool due to its speed and accuracy.

BLAT [18] has been a tool of choice in many studies due to its

extreme speed. RapSEARCH [32] is an open-source tool designed

specifically to increase the sensitivity of protein search while

keeping it fast enough for analyzing transcriptomic and metage-
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nomic datasets. To get comparable graphs for all tools, we

recomputed E-values for each of detected similarities using

SSEARCH. Fig. 5 presents dependency of EPQ and Coverage

on kthresh and approx parameters of PSimScan. Fig. 6 presents

dependency of EPQ and coverage on PSimScan’s mxshift

parameter.

Presented results demonstrate that in selected parametric sub-

space (for kthresh $18, especially for higher approx values)

PSimScan shows better coverage-to-error rates than any of the

evaluated standard tools. At kthresh = 26 and approx = 0.8 PSimScan

reliably detects only relatively strong similarities: its coverage

matches coverage by other tools at E-values below ,1e–18. The

error rate at these settings is 20 times lower than the error rate of

RAPSearch for similarities with E-value below 1e–20, and about 2

times lower then error rates of BLAST, USEARCH or

SSEARCH.

One can argue that the selectivity and sensitivity of the tools

might be different when calculated on a balanced selection of

sequences from different protein families rather than on the entire

PDB90, where certain families are largely overweighed. We

recreated Fig. 5 based on a subset of PDB90 with balanced

representation of protein families. The resulting Fig. S1 (see

Supplementary data) did not show any substantial difference from

Fig. 5.

Figure 5. Selectivity and Sensitivity of PSimScan at different parameters versus other similarity search tools. All of the proteins in the
PDB90 database were compared with each other using PSimScan, SSEARCH, BLAST, USEARCH, RAPSearch and BLAT. PSimScan was tested at different
combinations of kthresh (similarity zone detection threshold) and approx (tuple diversification level) parameters. For SSEARCH, BLAST, USEARCH,
RAPSearch and BLAT, the Coverage vs Error graphs were plotted as described by Brenner et al [47]. Similarities between proteins of the same SCOP
fold were treated as true positives, while similarities between proteins of different folds – as false positives (errors). The Coverage is the ratio between
the number of true positives and the total number of protein pairs, where both members belong to the same fold. The EPQ is the ratio between the
number of detected false positives and the number of queries. The Coverage-vs.-Error graph contains points in the Coverage/EPQ plane which
correspond to the sets of similarities with E-values below a given cut-off (some dots on the graphs are labeled with E-values). To get comparable
graphs for different tools, we re-computed the E-values for all detected similarities with SSEARCH, and used those E-values for the graph construction.
We ran PSimScan at all combinations of 6 different kthresh values (shown in legend) and 7 different approx values. For each run, total coverage and
EPQ were computed and plotted. On each curve corresponding to a particular kthresh, the triangles mark the following approx values, left to right:
1.0, 0.95, 0.9, 0.85, 0.8, 0.76, 0.72.
doi:10.1371/journal.pone.0058505.g005

PSimScan: Very Fast Protein Similarity Search

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e58505



In our performance evaluation, we used E-values calculated by

SSEARCH instead of those reported by the individual tools, for

the following reason: SSEARCH is using a well-known standard

algorithm of E-value calculation, whereas each tool calculates E-

values differently, which makes the result of comparison unreli-

able. In the Supplementary data, we provide an alternative

diagram for performance comparison which lists found and missed

similarities by E-value, where E-values were calculated within the

tools (Fig. S2). One notion that USEARCH did not find any

similarities with E-values between 1e–60–1e–80 (which most

probably means that these were classified differently) evidently

proves that this alternative comparison method would be

questionable at best.

Performance assessment with bacterial proteome vs. nr

and uniprot benchmarks. While the ‘golden set’ benchmark

described above allows to assess the quality of the results and find

optimal parameters, it is not suitable for testing the computing

time. The subject set in this test is so small that most of the run

time is spent on the data pre-processing rather than the actual

similarity search. In real-life usage scenarios, the subject databases

are much larger. To perform the search speed testing, we used a

comparison of the entire bacterial proteome of S. pneumoniae to

standard protein databases: NCBI nr and UniProt/SwissProt.

Along with PSimScan, we used NCBI BLAST, RAPSearch,

USEARCH and BLAT for such testing. Out of these, only NCBI

BLAST, PSimScan and RAPSearch were capable of processing

NCBI ‘‘nr’’ database as the subject set on our test PC; both

USEARCH and BLAT have run out of memory. However, all

tools were capable of processing SwissProt/UniProt database

which we have chosen for a more detailed comparison.

For the testing with the NCBI ‘‘nr’’ database, we used default

values for all parameters, except for the PSimScan parameter ‘–

rpq’ (maximal results per query), which was set to 8000; the same

value was used for ‘-v’ parameters of NCBI BLAST and

RAPSearch. The results of this testing are presented in Table 1:

Figure 6. Selectivity and Sensitivity of PSimScan at different maximum diagonal shift values. Please see Fig. 5 for explanation of
coordinate axes and method used. The dependency of Coverage and EPQ on the maximum diagonal shift taken at 4 different combinations of
approx/kthresh values is shown. The dots on graphs are labeled with the values of mxshift parameter.
doi:10.1371/journal.pone.0058505.g006
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A comparison of PSimScan compute time to those of

RAPSearch, USEARCH, and BLAT with SwissProt/UniProt

database as the subject set is shown on Fig. 7. For this test,

PSimScan is shown twice, at default parameters (PSimScan1) and

at approx (k-tuple diversification) 0.79 and kthresh (zone detection

threshold) 14 (PSimScan2).

Dependency of compute time on the tuple diversification

(approx) and zone detection threshold is shown on Fig. 8, and

dependency on the number of adjusted diagonals looked up for a

similarity zone expansion/merge is shown on Fig. 9.

Conclusions
The above analysis demonstrates the flexibility of PSimScan

which can be tuned to a particular task, from rapid detection of

strong hits to a slow search for remote homologies. It also shows

that PSimScan is best suited for the search of moderately strong

similarities at E-values below 1e–30, where it outperforms BLAST

(and SSEARCH) in speed and all described tools in coverage to

errors ratio. The shown graphs also allow for choosing reasonable

parameter settings for different usage scenarios. Tuple diversifica-

tion (approx parameter) has the most impact on all performance

characteristics (speed, sensitivity and selectivity). The maximum

diagonal shift (mxshift parameter) increases sensitivity only up to the

value of 3–4; above that, it just slows the execution. A lower zone

detection threshold (kthresh parameter) can be used to increase the

chance of finding longer and weaker similarities, and in general

significantly correlates with specificity. The impact of the zone

detection threshold (kthresh) on the execution time is steady but not

very prominent.

Table 1. Performance testing against NCBI nr database.

Application Run time Speedup vs. BLAST

BLAST 66 hr 29 min 16

PSimScan 6 hr 25 min 10.16

RAPSearch 2 hr 37 min 32.36

RAPSearch (including pre-
processing)*

4 hr 04 min 16.36

*Required pre-processing took 1 hr 27 min and created a 29.6 Gb index file.
doi:10.1371/journal.pone.0058505.t001

Figure 7. Processing speed for different quick protein similarity search tools. All measurements were taken at default parameters but for
the ‘‘PSimScan2’’ series (approx: 0.79, kthresh: 14). Streptococcus pneumoniae R6 proteome was used as the query set, SwissProt/UniProt database – as
the subject set.
doi:10.1371/journal.pone.0058505.g007

Figure 8. PSimScan processing time dependence on tuple
diversification and similarity zone detection threshold. Strepto-
coccus pneumoniae R6 proteome was used as the query set, SwissProt/
Uniprot database – as the subject set. Measurements were taken at
mxshift = 4.
doi:10.1371/journal.pone.0058505.g008

Figure 9. PSimScan processing time dependence on maximum
diagonal shift. Streptococcus pneumoniae R6 proteome was used as
the query set, SwissProt/Uniprot database – as the subject set.
Measurements were taken at kthresh: 15 and approx: 0.75 and 0.85.
doi:10.1371/journal.pone.0058505.g009
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In the above tests, PSimScan does not detect some of the weak

similarities found by NCBI BLAST, because we used k-tuple size

of 5, and BLAST by default uses k-tuple size of 3. Penta-peptide

diversification at the levels above 0.7 cannot cover the difference in

the initial hit detection stringency. Thus, BLAST finds some of the

hits that just do not have matches long and strong enough to be

seen in the PSimScan lookup. At k-tuple size of 3, PSimScan

detects all BLAST similarities, however, PSimScan is not

optimized for such operations and runs significantly slower then

NCBI BLAST on short k-tuple sizes.

Availability and Future Directions
Reference implementation for PSimScan is open source

software available for download and usage under a GPL license

at http://qsimscan.googlecode.com/files/qsimscan.tar.gz.

Besides open source tools, the PSimScan algorithm is used in

several components of SciDM’s (scidm.org) EST processing

pipeline: repeat search tool, contamination screening tool and

massively parallel similarity matrix computing utility. They are

implemented as network services controlled through a CORBA-

based interface. The algorithm is also used in the Genome Designs

(genomedesigns.com) genome annotation pipeline.

Discussion

The Importance of Fine Control
Careful algorithm design and code optimization with respect to

the capabilities of the underlying computing system are equally

important for saving computing and research time. However, it is

even more important to choose the right method (and right

parameters) for each particular task.

Computing similarities with high sensitivity takes much more

resources than computing with low sensitivity, when only strong

hits are detected. In many practical cases high-sensitivity search

makes sense only for a fraction of sequences, namely those lacking

strong similarities that would allow arranging them into families.

For those that do associate, the use of consensuses and conserved

motifs poses a much better utility for finding weak inter-family

relationships than a direct comparison of individual members.

Therefore, an optimal strategy would be using a fast, rough

comparison to assemble strong clusters, and then performing a

slow and sensitive search for affiliations of sequences which do not

easily associate. Incremental setups provide even more room for

decreasing the computing complexity, as the initial search can be

done against a relatively small set of ‘family representatives’.

It should be also noted that weak hits are usually hard to

interpret, especially in automatic pipelines. Alternative methods

based on motifs, statistical models or feature analyses are preferred

for sequences lacking strong hits.

To be useful within this iterative approach, similarity search

tools have to support a high degree of control over sensitivity-for-

speed trading. Standard similarity search software tools have

limited configurability. In PSimScan we aimed to overcome this

limitation, allowing users to choose modes of operation best

suitable for their particular tasks, from very fast and rough to more

sensitive but slower searches.

Query-based Lookup Table vs. Subject-based
For methods derived from the Pearson and Lipman search, the

lookup tables can be constructed for query sequences (NCBI

BLAST [2], Wublast [3,32]), subject databases (BLAT [18]), or

both. The usage of indexed subjects saves time otherwise spent on

sequential reading of database records from disk. If the target

architecture has enough fast-access memory to hold an index for

the entire subject database, time saving will be proportional to the

disk read time. When many searches are performed against a

standard subject database(s) like in the NCBI public service setup,

such indexing can provide a tremendous increase in speed.

Unfortunately, consumer-grade computer systems and even

standard high-performance servers typically do not have such

RAM capacity; hence the subject indexing incurs a considerable

overhead of custom setups like distributing search tasks across

multiple CPUs, each handling a portion of a database. For

searches against specific subsets, these subsets should be either

independently pre-indexed, or require a post-search result

filtering, which would result in unnecessary consumption of

CPU time.

On the other hand, query indexing requires a much simpler

memory management and allows to search against specific subsets

in a database by loading only desired subject sequences.

Additional time spent on the query set indexing is neglectful for

smaller tasks. For the bulky jobs like searching the entire NR

against itself, both indexing methods are equivalently heavy, since

the entire database gets tuple-indexed in either case.

The three popular tools for fast search mentioned above use

some form of subject indexing: USEARCH and BLAT construct

an array of word counts and a lookup table, respectively, on the

fly, while RAPSearch uses a pre-build suffix array-based index.

The implementation of USEARCH and BLAT makes it difficult

to run searches in large subject sets on conventional hardware:

8 Gb RAM appears to be insufficient for search against the NCBI

‘nr’, as well as in a typical metagenomic data set. Using these tools

for such databases requires special hardware or additional

configuration efforts. RAPSearch does not have such limitations;

however, it still requires pre-building of an index (which takes

time, though amortized in multiple searches) as well as additional

maintenance.

In our tool, we use query indexing to allow execution on the

low-end consumer-grade machines, and to provide users with

the flexibility of searching against desired subsets of databases

without the overhead of lookup table re-creation and mainte-

nance.

Direct Lookup Versus Tree-based Dictionary Search
The inner loop of PSimScan, similarly to other algorithms based

on the dictionary lookup, consists of reading the next tuple from

the subject sequence and searching for it in the dictionary. Since

the search is performed for every position in the sequence, the

timing of the entire search is proportional to the timing of an

individual search event. Thus, it is important that the search

events have constant-bound time. Natural arrangement of tuples

in a tree-based structure or in an ordered array would impose a

logarithmic search time. In order to keep the tuple search time

constant, we used direct addressing of the Lookup Table, where

binary representation of a tuple serves as an address (offset) in the

table. To reduce the overhead of multiple dynamic conversions,

the sequences are internally represented in a form that minimizes

operation of fragment-to-offset translation.

It must be pointed out that in cases when pre-processing of the

query sequences is possible, representing indexes as ordered lists of

actually occurring words (of fixed or variable length) creates an

opportunity for additional optimization through pre-sorting

batches of words derived from queries, and merge-walking query

and suffix ‘indices’ simultaneously. Using this approach for finding

inexact matches would be more complicated. We do not use it in

the current implementation of PSimScan, but may consider it in

future versions.
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Use of Similarity Zones Versus Hit Extension
Sequence alignment and Karlin-Altschul statistics are both

computationally-intense tasks. Delaying these to later processing

stages, where fewer candidates remain after filtering, saves

computing time. In PSimScan, the alignments are computed only

in the rectangular ‘similarity zones’ on the diagonal matrix, where

primary match concentration is significantly high. Detection of

such zones is much quicker than building alignments on all the

zone’s matches. This approach allows for skipping k-tuple matches

that do not belong to dense enough zones. It also provides an

advantage over diagonal-based score accumulation, since the latter

does not account for short gaps and therefore has more limited

sensitivity.

One of the aforementioned tools for quick protein similarity

search, BLAT, uses a similar approach, counting matches that

appear on neighboring diagonals. It first accumulates all matches,

then sorts them in the order of increasing diagonal index, and

afterwards uses a sliding window to count hits on the sorted array

of matches. This essentially defers similarity zone detection to the

time when all hits have been seen. In PSimScan we build similarity

zones dynamically, looking up the adjacent diagonals for each hit.

Thus, time is not spent on sorting, but on the diagonal lookup,

which is more efficient on the small neighborhoods of up to 3–4

adjacent diagonals.

Limiting the width of the diagonal lookup zone implies that

found similarity zones would not extend over long gaps. To

compensate for that, we merge zones that appear to be close

enough to form a good alignment. The procedure for such

merging is very efficient, with the run time proportional to the

number of properly ordered zone pairs, which is small for typical

similarities.

Use of Banded Alignment
Accurate alignment is preferable while calculating scores and

presenting results; however, classic alignment approaches depend

on computing rectangular traceback matrices, which is slow

(O(nm) bound) and space-consuming. It is also totally impractical

when longer sequences are compared, because of m*n space

requirements. Early detection of similarity zones makes it possible

to compute tracebacks on parts of the alignment space, assuming

that the likelihood of an alignment running out of such zone is low.

Such ‘banded’ alignment significantly saves both space and time,

in most cases reducing m*n complexity to a much lesser

zone_width*zone_length (zone_width is usually small).

Using Weighted k-tuples
As different k-tuples occur in sequences with different frequen-

cies, the importance of each particular match depends on the k-

tuple sequence: a match with an ubiquitous k-tuple is less

important than with a unique one. PSimScan can utilize a table

of relative statistical weights of different tuples computed via

external means by comparing frequencies of tuple occurrences in

real sequence databases. It seems natural to exploit relative

frequencies computed on sequence sets used in real similarity

searches, though it is impossible when the sets are small. Pre-

computing arrays of frequencies on the entire domains of

GenBank also proved to be helpful. Working with relative

frequencies clipped to pre-defined boundaries usually improves

search results.

The use of tuple frequencies gives a visible sensitivity burst for

extremely weak hits with no significant effect on strong matches. A

software tool for collecting tuple occurrence statistics is easy to

devise; it is also available by request from the authors of this

publication.

Post-processing of Zone Alignments
In many practical cases, for example, with multi-domain or

fusion proteins, a pair of sequences can carry several remote

segments of relatively strong similarities separated by extended

dissimilar zones. Popular tools, including BLAST, RAPSearch,

USEARCH, and BLAT, treat and report such similarities as

separate. In certain cases it is convenient to merge them into a

super-alignment using a globally optimal arrangement of segments

and gaps. PSimScan adds an optional post-processing stage for

such merges.

Another frequent case of multiple similarity segments appearing

in a sequence pair is when either (or both) of them contain repeats.

PSimScan provides an option to filter all similarities caused by

repeated segments, leaving only the strongest one. This filter

operates on any arrangement of repeats, and can be combined

with remote segment merger.

Conclusion
PSimScan utility provides users with an option to perform

similarity search significantly faster than using NCBI BLAST, with

no need to invest in computer infrastructure beyond a standard

PC. The underlying algorithm allows flexible speed-for-sensitivity

trading by altering search parameters. This is especially useful in

many practical cases where a fast detection of relatively strong

similarities is desirable.

We see PSimScan as especially useful in iterative high-

throughput systems, where the majority of strong similarities can

be detected very quickly, and then the remaining unclear

relationships have to be evaluated by slower but more sensitive

methods such as profile, position-specific matrix- or HMM-based

ones.

Supporting Information

Figure S1 Selectivity and Sensitivity of PSimScan at
different parameters versus other similarity search
tools, calculated on a normalized database. All proteins

from a subset of the PDB90 database with balanced representation

of protein families were compared with each other using

PSimScan, SSEARCH, BLAST, USEARCH, RAPSearch and

BLAT. PSimScan was tested at different combinations of kthresh

(similarity zone detection threshold) and approx (tuple diversifica-

tion level) parameters. For SSEARCH, BLAST, USEARCH,

RAPSearch and BLAT, the Coverage vs Error graphs were

plotted as described by Brenner et al [47]. Similarities between

proteins of the same SCOP fold were treated as true positives,

while similarities between proteins of different folds – as false

positives (errors). The Coverage is the ratio between the number of

true positives and the total number of protein pairs, where both

members belong to the same fold. The EPQ is the ratio between

the number of detected false positives and the number of queries.

The Coverage-vs.-Error graph contains points in Coverage/EPQ

plane which correspond to the sets of similarities with E-values

below a given cut-off (some dots on the graphs are labeled with E-

values). To get comparable graphs for different tools, we re-

computed the E-values for all detected similarities with

SSEARCH, and used those E-values for the graph construction.

We ran PSimScan at all combinations of 6 different kthresh values

(shown in legend) and 7 different approx values. For each run, total

coverage and EPQ were computed and plotted. On each curve

corresponding to a particular kthresh, the triangles mark the

following approx values, left to right: 1.0, 0.95, 0.9, 0.85, 0.8, 0.76,

0.72.

(TIF)
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Figure S2 Performance comparison for quick protein
similarity search tools calculated using the tools’ own
reporting functionality. All measurements were taken at

default parameters but for the ‘‘PSimScan2’’ series (‘approx’:

0.79, ‘kthresh’: 14). Streptococcus pneumoniae R6 proteome was used

as the query set, SwissProt/Uniprot database – as the subject set.

A. Found similarities by E-value (‘according to the tools’ own

reporting - here and below). B. % of missed similarities compared

to NCBI BLAST, by E-value.

(TIF)
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