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Risk aversion in the adjustment of 
speed-accuracy tradeoff depending 
on time constraints
Ryoji Onagawa1,4, Masahiro Shinya2, Keiji Ota3,4,5 & Kazutoshi Kudo   1,6

Humans are often required to make decisions under time constraints and to adjust speed-accuracy 
tradeoff (SAT) based on time constraints. Previous studies have investigated how humans adjust SAT 
depending on the time discount rate of expected gain. Although the expected gain of actions can be 
determined by both gain and probability, only situations where gain decreases over time have been 
tested. Considering the effect of risk on decision-making, the difference in time discount factors may 
modulate the response strategies for SAT, since temporal changes in variance of possible outcomes 
differ when gain or probability decreases over time. Here, we investigated the response strategies for 
SAT under different time discount factors. Participants were required to select one of the two options 
with different initial values in situations where the expected gain of options declined over time by a 
linear decrease in gain or probability. Comparison of response strategies between conditions revealed 
that response times in the gain condition were longer than those in the probability condition, possibly 
due to risk-aversion. These findings indicate the existence of common rules underpinning sensorimotor 
and economic decision-making.

From insects to rodents to primates, many species often face the dilemma of speed-accuracy tradeoff (SAT)1. SAT 
is evident in the relationship between movement speed and movement variability2–4 or between decision speed 
and decision accuracy1,5–7. For choice behavior in particular, the Hick–Hyman law8,9 describes the fundamental 
human property whereby response times for making decisions become longer as the number of options increases, 
since having more options requires more time to accumulate information.

When making decisions under time constraints, it is necessary to consider the competing demands of speed 
and accuracy depending on one’s own SAT and the given time constraints. A typical example of this would be 
decision-making in basketball, soccer, rugby, and American football. In many ball games, players are required to 
select how they move under very severe time constraints10, sometimes less than 1 second. Under such situations, 
collecting more information about a given state is beneficial but comes at the cost of sacrificing time. Therefore, 
if the value of allocating time to collect information is higher (e.g., defender’s pressing is loose), taking a longer 
time to make a decision may produce better outcomes than rushing to make a decision. In contrast, if the value 
of allocating time is less (e.g., defender’s pressing is severe), making a decision more rapidly may lead to better 
outcomes. Therefore, optimizing time allocation is indispensable for maximizing performance.

Previous studies have investigated how SAT is adjusted under situations in which the gains of options grad-
ually decreased over time7,11. Theoretically, the expected gain of an option is determined by both gain and prob-
ability of success; thus, situations where probability changes over time should also be considered. For instance, 
in basketball, it has been reported that the shot success rate was decreased with an increase in the time required 
to take the shot12. Similarly, in several sports, the expected gain in possible action is affected by probability. It 
remains unclear how people adjust SAT depending on time constraints when the success probability of options 
decreases with increasing time spent on making decisions. Further, it remains unknown whether the adjustment 
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of SAT according to a given time constraint varies between situations in which either gain or probability decrease 
over time.

Humans frequently show bias regarding the optimal choice to maximize expected rewards due to their atti-
tudes towards outcome variance (i.e., risk) in economic and motor decision tasks13–18. Most individuals prefer 
certainty in economic decisions13,14 but tend to take risks in motor decisions15–18. Thus, both the expected gain 
and variance of possible outcomes are significant factors that influence decision-making.

In this study, time changes in the variance of possible outcomes differed depending on whether the time 
discount factor was gain or probability. Therefore, even though the time change of the expected gain was equal 
between time-discounted factors, the difference in variability of possible outcomes may have promoted different 
strategies depending on risk preference. Here, we investigated how humans adopted their own SAT according to 
differences in time-discount factors.

In our task (Fig. 1A), participants (N = 12) were required to select one of two choice stimuli presented on the 
left- or right-side on a screen. These stimuli (Option 100 or Option 200) had different initial values (100 or 200 
points) at the presentation onset of the choice stimuli. The position of each stimulus was randomized across trials, 
so that the participants could not predict locations of either Option 100 or Option 200. The expected gain of the 
options gradually decreased over time and became 0 after a time interval (τ) from the stimulus onset (Fig. 1B). 
We manipulated either gain or probability to discount the options’ expected gain (Fig. 1B). In the gain-decrease 
conditions, the values were discounted as time passed. In the probability-decrease condition, the probability 
that a chosen option indicated success decreased over time. Gain and probability had the same influence on the 
expected gain of each option. The participants chose one of two options by pressing a button on a manipula-
tion pad. We set the time interval (τ) until gain/probability became 0 between the period from 500 to 1500 ms 
(Fig. 1C). The participants were instructed to maximize the average score in each experimental block.

In this task, since the participants could not predict location of each option, choosing the larger initial value 
option (i.e., Option 200) resulted in required more time than did choosing either option as early as possible with-
out searching options, in accordance with the Hick–Hyman law8,9. The former and latter response strategies cor-
respond to choice and simple reactions, respectively. If there were no time constraints (i.e., the expected gain did 
not decrease over time), choice reaction was the best solution as a matter of course. However, when the expected 
gain was discounted over time, taking more time to make a decision would lead to a less expected outcome. If the 
time interval until gain/probability became 0 was extremely short, selecting either option by guesswork would 
lead to a higher expected outcome.

We had three hypotheses. If the participants were not sensitive to the variance (risk) of possible outcomes 
and only considered the expected outcomes (i.e., risk-neutral), the response time would be the same between 
two conditions because the time changes in expected outcomes were controlled to be equal. If the participants 
avoided variance in possible outcomes and aimed for less variable outcomes (i.e., risk-averse), response times 
would shift to reduce the variance (i.e., a longer response time would be observed in the gain-decrease condi-
tion and a shorter response time would be observed in the probability-decrease condition). If the participants 
sought variance in possible outcomes and aimed for a highly variable outcome (i.e., risk-seeking), response times 
would also shift to increase the variance (i.e., a shorter response time would be observed in the gain-decrease 
condition and a longer response time would be observed in the probability-decrease condition). We investigated 
whether response strategies under time constraints differed between the gain-decrease and probability-decrease 
conditions.

Results
We first estimated how the expected outcomes and variance (i.e., risk) of possible outcomes changed according to 
response time. For this, we estimated participants’ SAT: the relationship between response time and probability 
of selecting the larger initial value option (Option 200) P200. We calculated response frequency for selecting 
Option 100 and Option 200 (gray and black bars in Fig. 2B) binned in eight equal intervals (50 ms) within 100 to 
500 ms and then calculated the probability of choosing Option 200 in each bin (black circles in Fig. 2B). One-way 
repeated measures ANOVA for P200, using response time as an independent variable, revealed that there were 
significant main effects (F[7, 70] = 58.148, p

2η  = 0.853, p < 0.001). Post-hoc paired t-tests with Bonferroni correc-
tion revealed that there were significant differences between four earlier response time (100–150, 150–200, 200–
250, and 250–300 ms) and four later response time (300–350, 350–400, 400–450, and 450–500 ms) (ps < 0.01, ** 
in Fig. 2A). These results indicated that the participants selected Option 200 more frequently as their response 
times increased (Fig. 2A) (individual data in Supplementary Fig. 1). We next estimated participants’ own SAT 
(black line in Fig. 2B) by fitting a generalized linear model with modified Probit link function19 to the response 
probability data (black circles).

Using the fitted curve between P200 and response times, we estimated the time change of expected outcome in 
both the gain-decrease condition and probability-decrease condition (Fig. 2C) (individual data in Supplementary 
Fig. 2). The expected outcome corresponding to response time was determined by expected gain which decreased 
over time and P200 which increased over time. There were similar time-change patterns of expected outcomes 
among the participants (Supplementary Fig. 1). Because the time discount of gain and probability was the same 
(Fig. 1B), the time change of expected outcomes was also the same between both conditions (difference between 
red and blue lines in Fig. 2C).

Next, we estimated time changes in the variance of possible outcomes; namely, how possible outcomes varied 
from expected outcomes (Fig. 2D). In the gain-decrease condition, the variance of possible outcomes decreased 
over time because participants could search for time-discounted Option 200 by increasing time spent. In the 
probability-decrease condition, P200 increased whereas the probability of the selected option being successful 
decreased over time. Therefore, the variance of possible outcomes increased and subsequently reached 0. The 
features of temporal-change patterns in the variance of possible outcomes for each condition were robust for 
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all participants (Fig. 2D) (individual data in Supplementary Fig. 3). If participants avoided variance of possi-
ble outcomes (i.e., risk-averse behavior), they would respond slowly in the gain-decrease condition and would 
respond quickly in the probability-decrease condition because this strategy would reduce the variance of possible 
outcomes.

Figure 3A illustrates the mean response time corresponding to the time interval until gain/probability became 
0 in both the gain-decrease and probability-decrease conditions. Paired t-test for mean-response time (including 
all responses in the main session) between conditions revealed that there was a significant difference between 
conditions (t[10] = 5.0735, dz = 1.53, p < 0.001). Two-way repeated measures ANOVA using task condition and 

Figure 1.  Experimental setup. (A) Task sequences of the gain and probability-decrease conditions. At the 
beginning of the task, time interval until gain/probability decreased to 0 (τ ms) was presented at the center 
of the screen. The participants initialized a trial by pressing a button. After a random fore-period, two choice 
stimuli and a time bar (the purple bar) were presented. The number presented on the stimuli showed the initial 
values (100 or 200). Expected gain of each option decreased linearly over time from the initial values to zero 
points by decreasing gain or probability. The time bar showed the gain/probability at that time. Participants 
pressed one of two buttons corresponding to the two choice stimuli at any time. The color of the selected stimuli 
turned to red, after which time-discounted score [e.g., 60 points (200 points × 0.3) in panel A] and gain (e.g., 
30% in panel A) were presented as feedback in the gain-decrease condition. Score (e.g., 0 or 200 points in panel 
A), probability (e.g., 30% in panel A), and a blue line within the range of the time bar were presented in the 
probability-decrease condition. The position of the blue line was determined by a uniform random number. 
Participants obtained scores only when this line fell within the purple area. (B) Gain/probability/expected 
gain function. The upper, middle, and lower panels show gain function, probability function, and expected 
gain function of each option in both conditions, respectively. When τ was the same value, the expected gain 
depending on time was equivalent between two conditions. (C) Trial sequences of τ. We used two sequences of 
τ and changed the sequence between conditions. In the training session, participants performed 20 trials under 
three levels of time pressure (τ = 500, 1000, 1500 ms). In the main session, τ ascended or descended across trials 
from 500 to 1500 ms [step size of τ change was approximately 34.5 (~1000/29) ms]. The order of trial sequences 
of τ and condition (gain or probability) were counterbalanced among participants.
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Figure 2.  Three steps to estimate time changes in variance of possible outcomes. (A) Relationship between 
response time and probability of selecting Option 200. The black circles indicate the mean of the probability 
of each participant selecting Option 200 (P200) and the black bars indicate between-participant SD of P200. 
The asterisks above a line indicates that the difference between P200 for the corresponding response times was 
significant (paired t-test with Bonferroni correction). These results indicated that the speed-accuracy tradeoff 
was confirmed for this task. (B) Histogram of response times for selecting Option 100 (gray) and Option 200 
(black). The probability of selecting Option 200 (P200) is plotted as a function of the response time binned 
in eight equal intervals (50 ms) from 100 to 500 ms. The response time include both the gain-decrease and 
probability-decrease condition. The black curve shows the model fit using modified logistic regression and 
indicates the relationship between the response time and P200 (i.e., participant’s own speed-accuracy tradeoff). 
The histogram shows the distribution of the response time across equal intervals (50 ms). The figures obtained 
from each participant are shown in Supplementary Fig. 1. (C) Time changes in the expected outcomes in the 
gain-decrease (red) and probability-decrease (blue) conditions. The shaded gray area indicates the variance 
of possible outcomes. These were based on data from an individual participant. The expected outcomes (EO) 
depending on time were estimated using participants’ speed-accuracy tradeoff (A). Since the expected gain of 
each option at each time point was equivalent between both conditions, the expected outcome depending on 
time was the same between conditions. (D) Time changes in variance of possible outcomes. The blue and red 
lines show the time changes in variance (risk) of possible outcomes for each participant in gain-decrease and 
probability-decrease conditions, respectively. In the gain-decrease condition, when participants selected Option 
200, variance became small. In the probability-decrease condition, variance became large when participants 
selected Option 200, since the probability of obtaining no reward or obtaining 200 points simultaneously 
increased.
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Figure 3.  Different response strategy patterns between the gain-decrease and probability-decrease conditions. 
(A) Comparison of mean response times between gain-decrease and probability-decrease condition. The red 
and blue thick solid lines indicate the mean of the mean response times of each participant corresponding 
to time constraint τ in the gain-decrease and probability-decrease conditions, respectively. The shaded areas 
indicate between-participant SD of the mean response times. The thin lines indicate the mean response times 
for each participant. There was a significant difference between the gain and probability-decrease conditions, 
and between the mean response times among time constraints. Participants adjusted speed-accuracy tradeoff 
corresponding to time constraints and task conditions. (B) Histogram of response times corresponding to time 
constraints. The left and right panels included the data for all participants in the gain and probability-decrease 
condition, respectively. The upper panels is viewed from (azimuth, elevation) = (10, 20), and the lower panels 
is viewed from (azimuth, elevation) = (0, 90), where, the azimuth is a polar angle in the x (RT)-y (τ) plane with 
positive angles indicating counterclockwise rotation of the viewpoint from -y axis, and the elevation is an angle 
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time interval until gain/probability became 0 as independent variables revealed significant main effects of task 
condition (F[1, 29] = 27.206, p

2η  = 0.73, p < 0.001) and time interval until gain/probability became 0 (F[29, 
290] = 16.461, ηp

2 = 0.62, p < 0.001). There was no significant interaction (F[29, 290] = 1.205, p
2η  = 0.11, 

p > 0.05). These results suggested that response times became shorter under severe time constraints, and that 
response time in the gain-decrease condition was longer than that in the probability-decrease condition.

Figure 3B,C illustrate the histogram of response times in the gain-decrease and probability-decrease condi-
tions, respectively. Although both histograms have bimodal peaks, a faster peak appeared more frequently in the 
probability-decrease condition. Because the response histogram did not differ among time intervals until gain/
probability became 0 (Fig. 3B), we pooled the response time data among time constraints (Fig. 3C). Similarly, the 
response time distribution had a bimodal property, indicating that participants used discrete response patterns 
(earlier response patterns appeared as a simple reaction, and later response patterns appeared as a choice reac-
tion). The bimodal property in the response time distribution can be explained by the phase transition model20 
assuming that two responses transfer between guess mode (simple reaction) and stimulus-controlled mode 
(choice reaction).

To further investigate how participants weighted their responses for simple and choice reactions in both con-
ditions, we estimated the mean reaction time and standard deviation corresponding to simple and choice reac-
tions as the ability of each reaction pattern for each participant using Gaussian mixture model (GMM) fitting. 
Our model assumption was that participants had the same ability for performing simple and choice reactions in 
both conditions since sensory input and motor output were the same between conditions (see Methods). We fitted 
GMM to the response time data including both the gain and probability-decrease conditions in each participant 
(Fig. 4A). GMM with two distributions has six free parameters ( , , , , ,s c s c s cϖ ϖ μ μ σ σ ), where ϖ is a weighting 
parameter, μ is the mean of Gaussian distribution, and σ is the standard deviation of Gaussian distribution. The 
subscript s indicates a simple reaction for each parameter, and the subscript c indicates a choice reaction for each 
parameter. The fitted parameters for each participant are described in Supplementary Table 1. The estimated 
mean and standard deviation in the simple and choice reactions (μ μ σ σ, , ,s c s c) were considered to reflect reac-
tion ability in SAT. For given these four parameters, we again fit GMM which had two free parameters (ϖ ϖ,s c) 
to the data in the gain and probability-decrease condition separately. Therefore, we obtained weighting parame-
ters for the simple reaction ( _s gainϖ , ϖ _s prob) and choice reaction (1 _s gainϖ− , 1 _s probϖ− ) in the gain and 
probability-decrease conditions, respectively (Fig. 4B). The weighting of simple reaction in the gain-decrease 
condition was less than that in the probability-decrease condition (Fig. 4B,D), indicating that participants 
adopted the simple reaction less frequently in the gain-decrease condition.

To assess whether participants used the simple reaction optimally, we estimated the optimal ratio for using the 
simple reaction (ϖ _s opt) based on Bayesian decision theory21–23. To estimate the expected outcomes for each reac-
tion pattern, we used three factors: the estimated parameters reflecting the ability of the simple and choice reac-
tion patterns (μs, μc, σs, σc), the probability of selecting the larger initial value in each reaction pattern (if 
participants used the simple reaction, the probability of selecting Option 200 would indicate a 50% chance, and if 
participants used the choice reaction, the probability of selecting Option 200 would be approximately 100%), and 
the expected outcome corresponding to response times according to time intervals until gain/probability became 
0. We then calculated the expected outcomes for both the simple and choice reaction patterns for a given time 
interval (Fig. 4C). When time constraints were severe, the expected outcomes for the simple reaction pattern was 
higher than that for the choice reaction pattern. In contrast, when time constraints were not severe, the expected 
outcomes for the choice reaction pattern were higher. We defined a time constant in which the expected outcomes 
were equal for both reaction patterns (yellow diamond in Fig. 4C). When the time interval for given a trial was 
less than this time constraint, using the simple reaction pattern was better to maximize expected outcomes. We 
defined the optimal weighting ratio for using the simple reaction pattern ϖ _s opt as the ratio of expected outcomes 
for the simple reaction pattern being better than that for the choice reaction pattern between τ = 500 ms and 
τ = 1500 (red region in Fig. 4C).

Friedman test was performed to compare the estimated weighting of simple reaction in the gain-decrease 
condition _s gainϖ , probability-decrease condition ϖ _s prob, and optimal weighting ratio ϖ _s opt. We observed a 
significant main effect of condition (χ2[2 ]= 13.63, W = 0.62, p < 0.001; Fig. 4D). Post-hoc Wilcoxon signed-rank 
test revealed that the weighting of simple reaction in the gain-decrease condition was significantly lower than that 
in the probability-decrease condition (Z = −2.85, p < 0.05, Bonferroni correction) and the optimal weighting 
ratio (Z = −2.93, p < 0.05, Bonferroni correction). There was no significant difference between the weighting of 
simple reaction in the probability-decrease condition and optimal weighting ratio (Z = −0.44, p > 0.05, 
Bonferroni correction). Additionally, the direction of bias was highly consistent among participants (Fig. 4E). 
These results indicate that participants less frequently used the simple reaction compared to the optimal ratio 
when gain decreased over time.

above the x-y plane. (C) Histogram of response time pooled among time constraints. Data for all participants 
were included. Black and gray histograms indicate the trials in which participants selected Option 200 and 
Option 100, respectively.
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Discussion
Previous studies have shown that humans adaptively change their movements and decision speed when the gain 
of options gradually decreases with time7,11. We focused on the differences in time-discount factors between 
gain and probability and investigated the use of response strategies under different time-discount factors. We 
hypothesized that the participants changed their response strategies between conditions taking into account 
risk-dependent human decision-making, since the variance of possible outcomes changed between condi-
tions (Fig. 2C,D). Indeed, we observed that participants more frequently used the choice reaction pattern in 
the gain-decrease condition than in the probability-decrease condition (Fig. 3B,C), which resulted in shorter 
reaction times in the probability-decrease condition (Fig. 3A). Longer reaction times reduced the variance of 
possible outcomes in the gain-decrease condition whereas shorter reaction times reduced the variance in the 
probability-decrease condition (Fig. 3C). Therefore, reaction time was biased toward risk-aversion. Furthermore, 
participants’ frequency of simple reaction patterns in the gain-decrease condition was less than the optimal fre-
quency for maximizing expected outcomes (Fig. 4D).

In our study, participants were required to select either smaller (100) or larger (200) initial value options 
under time constraints. They could freely decide when to pick an option under the gain/probability of the option 
decreasing as time passed (Fig. 1). Although they could use any strategy for how much time they spent from 
stimulus onset, we observed that response times were bimodally distributed (Fig. 3C). This property indicated 
that participants adopted two discrete response strategies, and they seemed to adapt to the degree of time pressure 
by switching between two response patterns. Under the framework of the Hick–Hyman theory8,9, response time 
increases as the number of stimulus–response alternatives increases. Thus, the earlier and later response patterns 

Figure 4.  Evaluation of the optimality of response-strategy selection. (A) Gaussian mixture model (GMM) 
fitting. The gray histogram indicates the response time distribution of an individual participant (including all 
response data). The orange and green shaded areas show two components of Gaussian distribution estimated by 
GMM. The orange and green components indicate a simple reaction pattern and choice reaction pattern, 
respectively. The figures for each participant are shown in Supplementary Fig. 5. (B) GMM for each condition. 
The upper and lower panels show response time distribution in the gain and probability-decrease conditions, 
respectively (based on data from the same participant depicted in Fig. 4B). The orange and green shaded areas 
indicate the components of Gaussian distributions determined by the ratio of simple reaction pattern in each 
condition (ϖ −s gain or ϖ −s prob) which was fitted to observed data. The figures for each participant are shown in 
Supplementary Fig. 6. (C) Estimation of optimal weighting of the simple reaction sϖ . The orange and green lines 
indicate the expected gain of simple and choice reaction patterns corresponding to τ, respectively. The yellow 
diamond shows the point of indifference between response patterns, indicating the optimal switching point. The 
figures for each participant are shown in Supplementary Fig. 7. (D) Comparison of weighting of the simple 
reaction. The bars show mean ϖs in each condition and mean optimal ϖs among participants. The thin gray lines 
indicate individual data. There were significant differences in the weighting of simple reaction patterns in the 
gain-decrease condition _s gainϖ  compared to that in the probability-decrease condition. (E) Comparison 
between weighting of the simple reaction between conditions. The purple circles indicate individual data. The 
bias of response-strategy selection was highly consistent among participants.
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corresponded to the simple and choice reactions, respectively. These results indicated that response-strategy 
selection can be interpreted as an issue of selection between two response patterns (simple or choice reaction), 
rather than the selection between continuous and infinite response strategies. Notably, the simple reaction was 
to select either Option 100 or Option 200 as soon as possible after the trial started, leading to a low time discount 
rate but approximately 50:50 chance for selecting Option 200. The choice reaction was to select Option 200 after 
by sacrificing time-discounting, leading to a high time discount and high probability of selecting Option 200 
(approximately 100% chance).

Since the expected outcomes were equivalent between conditions (Fig. 2C), the weighting ratio should have 
been equal between conditions if participants took only the expected outcomes into account. However, the 
weighting ratio of the simple reaction in the gain-decrease condition was less than that in the probability-decrease 
condition (Fig. 4D). These results indicated that participants considered the variance of possible outcomes, and 
this distortion reflected their risk-aversion. This tendency is inconsistent with previous studies reporting that 
humans tend to be risk-seeking in sensorimotor tasks15–18. These studies only manipulated gain to control the 
expected gain. However, by comparing the conditions manipulating probability or gain, we confirmed risk-averse 
tendency in sensorimotor decision tasks.

Markowitz’s risk-return model24, known as Modern portfolio theory, suggests that the value U(x) of an invest-
ment x is modeled as a trade-off between the expected outcomes (mean return) E(x) and the variability of the 
outcomes (risk) Var(x), such that θ= −U x E x Var x( ) ( ) ( )25. θ expresses the decision maker’s risk attitude: 
risk-neutral decision-makers are only sensitive to the expected outcomes (i.e., θ = 0) whereas risk-averse individ-
uals discount outcome variability (i.e., θ > 0), and risk-seekers consider it a bonus (i.e., θ < 0). In this regard, the 
patterned deviation of response strategies suggests that participants in this study discounted the variance of pos-
sible outcomes (i.e., θ > 0) since the shift of response strategy between conditions was in the direction of variance 
reduction.

Different views of human decision-making include prospect theory13 and cumulative prospect theory26. These 
theories quantify risk-seeking or risk-averse behavior through distortions in the value function and probabil-
ity weighting function18. In these theories, outcomes values depend on a reference point27, and humans exhibit 
higher sensitivity to loss than to gain, relative to their reference point. If participants avoided losses in the 
probability-decrease condition, they would prefer the simple reaction because the choice reaction increased the 
probability of rewarding no points. If they also avoided losses in the gain-decrease condition, they would prefer 
the choice reaction because the simple reaction increased the probability of lower outcomes by selecting Option 
100. Therefore, the valuation of possible plans was considered to obey common rules to those of loss-aversion in 
economic decisions.

In the gain-decrease condition, the weighting of the simple reaction was significantly smaller than the optimal 
weighting, indicating that participants less frequently used the simple reaction. In contrast, the weighting ratio 
for the simple reaction in the probability-decrease condition was not significantly different from the optimal ratio. 
These results suggest that humans sub-optimally over-searched for a higher initial value option (i.e., Option 200) 
in the gain-decrease condition.

One of the difficulties when investigating sensorimotor decision-making is that the estimation of one’s own 
ability (for example, SAT in the current study) is involved in the evaluation of possible plans, which differs from 
economic decision-making. The perception of the sensory consequences of one’s actions is more biased toward 
success relative to the perception of observed actions28, and motor variance represented by an agent is underes-
timated relative to actual variance29,30. Therefore, it is possible that misestimating one’s own SAT led to deviation 
from the optimal selection of response strategy. However, because the same sensory input and motor output were 
required in both conditions, participants would have equally misestimated their own SAT in each condition. 
Therefore, misestimation of SAT is unlikely to fully explain the observed differences in response strategies.

The experimental setting of the two equivalent conditions allowed us to directly examine the effects of dis-
torted utility function on sensorimotor decision-making because the equivalent setting excluded the effects of 
distorted probability estimation in one’s own ability of SAT. Therefore, when investigating decision-making pro-
cesses in sensorimotor control, manipulating gain and/or probability would be an effective way to control the 
expected gain of options.

This study investigated how time discount factors (gain and probability) that determined the expected gain of 
options affected the selection of response strategies. We observed that participants took longer to respond when 
the gain decreased over time compared to when the probability decreased. Participants frequently adopted the 
choice reaction strategy in the gain-decrease condition, whereas they adopted either the simple or choice reaction 
in the probability-decrease condition. This strategy shift could be interpreted as risk aversion, which is inconsist-
ent with the evidence of risk-seeking behavior reported in many studies of sensorimotor decision-making which 
only manipulated the gain factor. Therefore, we suggest adding the probability factor in future studies to investi-
gate human decision-making strategies in motor tasks.

Methods
Participants.  Twelve healthy right-handed adults (nine males, three females; mean age: 24.3 ± 1.8 years) 
were recruited. The participants were unaware of the purpose of the experiment. This study was approved by the 
Ethics Committee of the Graduate School of Arts and Sciences, the University of Tokyo. The approved guidelines 
were adhered to for all experimental procedures. Informed consent was provided by each participant before the 
experiments in written format.

Experimental task and procedures.  Participants sat in a quiet, dim room. Their head was positioned on 
a chin rest with an adjustable forehead rest 45 cm in front of a monitor (ASUS, VG248QE, 24 inches, 1920 × 1080 

https://doi.org/10.1038/s41598-019-48052-0


9Scientific Reports |         (2019) 9:11732  | https://doi.org/10.1038/s41598-019-48052-0

www.nature.com/scientificreportswww.nature.com/scientificreports/

pixels, vertical refresh rate 100 Hz) that was used to present stimuli. The participants held a manipulation pad 
(Microsoft, 7MN-00005). All stimuli were controlled using Psychophysics toolbox31–33 in MATLAB.

For each gain-decrease and probability-decrease condition, there were two sessions: training and main. The 
training session consisted of two sets of 30 trials. The main session consisted of four sets of 30 trials. In each set 
of the training session, participants performed the task under high time pressure (τ = 500 ms), moderate time 
pressure (τ = 1000 ms), and low time pressure (τ = 1500 ms) for 10 trials each. In each set of the main session, τ 
initialized at 500 ms and gradually increased, or initialized at 1500 ms and gradually decreased. Two sequences 
of τ were prepared (Fig. 1B). Participants performed the training and main sessions consecutively in each con-
dition. Participants performed 360 trials (180 trials [training session: 60, main session: 120] × 2 conditions 
[gain-decrease and probability-decrease condition]) in total. The order of conditions and sequence of τ were 
counterbalanced across participants.

Participants chose either one of two options which had different initial values (100 or 200 points) by manually 
pressing a button corresponding with the two options (Fig. 1A). The expected gain of each option decreased line-
arly from the initial values to zero points over time by decreasing gain or probability (Fig. 1C) in accordance with 
previous protocols7,11. In both conditions, the time interval until gain/probability became 0 τ was represented 
at the center of the monitor at the beginning of the task (Fig. 1A). Participants were instructed to maximize the 
average score in each set.

Gain-decrease condition.  After the presentation of the time interval for 2 sec, participants initialized a 
trial by pressing a button. After the random fore-period interval (1800–2200 ms), two circles representing initial 
values (100 or 200 points) and a purple bar were presented on the screen. As time passed, the size of the purple 
bar (the time bar) decreased continuously. Participants were informed that the resting purple bar indicated the 
gain (i.e., rate of acquired score). When the purple bar reached the leftmost point, the gain became 0. Participants 
pressed either one of two buttons corresponding with two options when they decided on the option. After their 
choice, the gain at that moment (for example, 30% in Fig. 1A) and time discounted score (for example, 60 points 
[200 points × 0.3] in Fig. 1A) were presented for 3 sec as performance feedback.

The gain function G(t, τ) and probability function P(t, τ) in the gain-decrease condition were determined by 
the following equations

τ τ
τ

τ
=
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



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G t

t t
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τ τ
τ

=
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



≤
>

where t was the response time when participants pressed a button, and τ was the time interval until gain/proba-
bility became 0.

Probability-decrease condition.  The trial sequence in the probability-decrease condition was the same as 
that in the gain-decrease condition except for the feedback. In the probability-decrease condition, the resting pur-
ple bar indicated how much probability remained. Participants could obtain the initial value (100 or 200 points) 
with the probability according to response time. After they selected an option, the score (0, 100, or 200 points) 
and probability (for example, 30% in Fig. 1A) were presented as performance feedback. A blue line was shown 
within the bar to determine the score. If the blue bar fell within the purple bar, participants earned the selected 
initial score (200 points in Fig. 1A). If the blue bar fell within the white bar, the score was 0 (Fig. 1A). The position 
of the blue line was unpredictable and determined randomly.

The gain function G(t, τ) and probability function P(t, τ) in the probability-decrease condition were deter-
mined by the following equations

G t t
t

( , ) 1, if
0, if (3)

τ τ
τ

=





≤
>

P t
t t

t
( , ) 1 , if

0, if (4)
τ τ

τ

τ
=








− ≤

>

where t was elapsed time from stimulus onset, and τ was the time that probability became zero from stimulus 
onset.

Data analysis.  In each trial, we recorded the response time (button press time − onset of stimulus), the 
selected initial value, score, and value of gain/probability. The data were collected at a sampling rate of 100 Hz. 
One participant adopted the same response strategy for all time intervals until gain/probability became 0. We 
excluded the data for this participant from the analysis because the selection of response strategy (simple or 
choice) could not be distinguished.
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Model assumptions.  Estimation of time changes in variance of possible outcomes.  To estimate the 
time-dependent variance (i.e., risk) of possible outcomes, we performed three processes. First, we estimated par-
ticipants’ speed-accuracy tradeoff (SAT) between the probability of choosing a larger initial value option P200 
and the response time. The mean response time binned in eight equal intervals within 100 to 500 ms and the 
corresponding P200 were calculated for each participant. We ran a maximum likelihood estimation to the relation-
ship between P200 and reaction time using a generalized linear model with a modified Probit link function. The 
modified Probit link function can be used to estimate a rescaled lower asymptote C and an upper asymptote D in 
a two alternative forced choice task. In an ideal two alternatives forced choice task, the percentage correct varies 
from 50% to 100% such that C = 0.5 and D = 1.0. C and D are incorporated into probit analysis by assuming the 
cumulative normal function (F) in which the probability changes from 0 to 1.0. Using Abbott’s formula to obtain 
a percentage selecting Option 200 (P200), whose limits are C and D:

P t C D C F t( ) ( ) ( , ) (5)p p200 μ σ= + − |

where t is time. F t( , )p pμ σ|  is the cumulative normal function. μp is the mean and σp is the standard deviation for 
the cumulative normal function. P200(t) satisfies the constraint that = −P t P t( ) 1 ( )200 100 . Next, we calculated time 
changes of the expected outcomes. Using “glmfit” function in Matlab, we estimated the two free parameters (μp, 
σp) describing the relationship between P200 and reaction time.

Second, we estimated the expected outcome depending on time EO(t, τ) using SAT as below:

τ τ τ τ τ= − × × × + × × ×EO t P t G t P t P t G t P t( , ) (1 ( )) 100 ( , ) ( , ) ( ) 200 ( , ) ( , ), (6)200 200

where G(t, τ) is the gain function and P(t, τ) is the probability function. The first and second terms are the 
expected outcomes for Option 100 and Option 200, respectively. The expected outcome function is illustrated in 
Fig. 2C (thick lines). Of note, the expected outcome depending on time EO(t, τ) was the same between the gain 
and probability-decrease conditions. Finally, we calculated the variance of possible outcomes depending on time 
V(t, τ) in two conditions as follows:
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The standard deviation of the possible outcomes in each condition is illustrated in Fig. 2D.

Gaussian mixture model fitting to the response time distribution.  We used a Gaussian mixture model (GMM)34 to 
distinguish participants’ response patterns. We generated a histogram of the response times pooled for two con-
ditions (Fig. 4A). The histogram revealed a bimodal distribution for response times, indicating that participants 
adopted two response patterns: simple and choice reactions.

A GMM is a parametric probability density function representing the weighted sum of Gaussian distributions. 
Because the response time distribution was bimodal, we fitted the response time data to two components of 
Gaussian distributions as follows:

ϖ ϖ μ μ σ σ ϖ μ σ ϖ μ σ| = | + |p t g t g t( , , , , , ) ( , ) ( , ), (8)s c s c s c s s s c c c

where t is time, sϖ  and cϖ  are weighting parameters for simple reaction and choice reaction pattern, respectively. 
g t( , )s sμ σ|  and μ σ|g t( , )c c  are the components of Gaussian distribution with mean (μs, μc) and standard deviation 
(σs, σc) in simple reaction and choice reaction, respectively. The sum of two weights satisfies the constraint that 

1s cϖ ϖ+ = . We estimated six free parameters (ϖs, ϖc, μs, μc, σs, σc) for each participant’s response time distribu-
tion using fitgmdist function in Matlab.

Estimating the ratio of simple reaction.  To compare response patterns between conditions, the parameters (μs, μc, 
σs, σc) estimated in GMM fitting were fixed as the parameters showing participant’s own performance of simple 
and choice reaction patterns and used to estimate the weighting of simple reaction patterns in each condition 
(ϖ _s gain, _s probϖ ). We estimated ϖ _s gain and _s probϖ  which best captured the observed response time distribution 
in each condition using maximum likelihood estimation (mle function in Matlab).

Estimating expected outcomes of each response pattern.  To evaluate the optimality of the two reaction patterns 
corresponding to the level of time constraints, we calculated the expected outcomes of each reaction pattern. 
Expected outcomes of each reaction pattern are as follows:
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We then estimated τ*, that is, EO EO( ) ( ) 0s cτ τ− =  as the optimal switching point (yellow diamond in 
Fig. 4C). If a given time interval until gain/probability became 0 is shorter than τ*, the simple reaction becomes a 
better response strategy. If a given time interval is longer than τ*, choice reaction becomes better.

Statistical analysis.  We conducted a one-way (8 [response times binned in eight equal intervals within 100 
to 500 ms]) repeated-measures ANOVA on P200 as an independent variable and post hoc paired t-tests with 
Bonferroni correction. Since an individual participant never responded within 100 to 150 ms, the missing value 
was complemented by mean P200 obtained from the others within the interval. We conducted a two-way (2 
[gain-decrease and probability-decrease condition] * 30 [time intervals until gain/probability becomes 0]) 
repeated-measures ANOVA on mean response time across four repetitions. We conducted a Friedman test to 
compare the estimated weighting of simple reaction pattern in the gain-decrease condition ϖ _s gain, 
probability-decrease condition _s probϖ , and optimal weighting ratio ϖ _s opt. Post hoc Wilcoxon signed-rank test 
with Bonferroni correction was performed. p < 0.05 was considered statistically significant. Cohen’s dz for paired 
t-test, A partial η2 for ANOVA, Kendall’s W for Friedman test, and Z for Wilcoxon signed-rank test were used to 
report effect sizes.

Data Availability
The data supporting the findings of this study are available from the corresponding authors upon request.
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