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The complement system is required to mount 
an appropriate innate immune response to path-
ogens. It acts by facilitating phagocytosis of 
immune complexes and apoptotic cells and by 
forming a membrane attack complex resulting 
in cell lysis (1). Particles and pathogens in serum 
initiate complement activation either through 
the classical pathway (CP), mannose-binding 
lectin (MBL) pathway, or alternative pathway 
(AP; reference 2). Central to complement acti-
vation are the convertases, enzyme complexes 
that cleave the substrates C3 and C5 into their 
biologically active fragments, C3a, C3b, C5a, and 
C5b. The C3bBb dimer and C3bC3bBb mul-
timers form the convertases of the AP and are 
required for amplifi cation of complement acti-
vated through any of the three pathways, whereas 
C4bC2a and C3bC4bC2a are convertases of the 
CP and MBL pathway.

To prevent unwanted complement activa-
tion, most mammalian cells are equipped with 
regulators that block complement amplifi cation 
on host self cells (3). In the absence of these in-
trinsic regulators, serum exposure results in the 
generation of complement split product that in 
turn facilitates infl ammation and tissue damage 
(4, 5). Noncellular surfaces that lack intrinsic 
complement regulators are therefore especially 
prone to complement attack and are fully de-
pendent on protection by soluble complement 
regulators in serum. Uncontrolled complement 
activation due to the lack of appropriate comple-
ment regulation has been associated with various 
chronic infl ammatory diseases. Dominant in this 
infl ammatory cascade are the complement split 
products C3a and C5a that function as chemo-
attractant and activators of neutrophils and in-
fl ammatory macrophages via the C3a and C5a 
receptors (6). Properdin, released from neutro-
phils, further amplifi es the infl ammatory cascade 
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through stabilization of the AP convertase (7). Complement 
activation has been shown to be an important component 
driving infl ammation in immune complex–mediated diseases, 
such as membranoproliferative glomerulonephritis, nephrotoxic 
nephritis, and arthritis (1, 8–11).

Mice that lack a functional AP through genetic deletion 
of factor B do not develop arthritis (12) but so far the eff ect of 
blocking the AP in established disease is unknown. Recently, we 
identifi ed complement receptor of the Ig superfamily (CRIg), 
a macrophage complement receptor required for pathogen clear-
ance (13). CRIg binds to C3b, the subunit of both CP and AP 
C5 convertases, and selectively inhibits the C3 and C5 con-
vertases of the AP in vitro by blocking its interaction with the 
substrates C3 and C5 (14). In the present study, we determined 
whether the ability to inhibit the AP is conserved in human 
and mouse CRIg and tested the effi  cacy of CRIg in two ex-
perimental models of arthritis, one in which mice were immu-
nized with bovine collagen type II (collagen-induced arthritis 
[CIA]) and another model in which antibodies to collagen type 
II were passively transferred (antibody-induced arthritis [AIA]). 
The results show that soluble CRIg acts as a potent suppres-
sor of established infl ammation in both experimental models, 
introducing a novel inhibitor of the AP of complement with 
promising therapeutic applications.

RESULTS AND DISCUSSION

Structure and function of CRIg is conserved in mouse 

and human

Previously, we have shown that the IgV domain of human 
CRIg binds to the β chain of C3b, resulting in inhibition 
of the AP of complement (14). Here, we present the crystal 
structure of murine CRIg at 1.0 Å resolution. Comparison 
of the human and mouse CRIg reveals that both proteins 
are very similar. They share 83% sequence homology within 
the IgV domain, and they superimpose with a root mean 
square deviation of 0.37 Å for 110 Cα atoms (Fig. 1 A, left 
and middle). To determine whether the structural require-
ments for C3b binding and complement inhibition are simi-
lar in human and mouse, we performed alanine substitution 
of residues M86 and D87 (mutant “A”) or residues H57 and 
Q59 (mutant “B”; Fig. 1 A, right). These residues form key 
contact points with the MG3 and MG6 domains of human 
C3b, respectively (14). Recombinant soluble versions of 
these mutant proteins, consisting of the extracellular domain 
of murine CRIg fused to the Fc portion of murine IgG1 
(CRIg(A)-Fc and CRIg(B)-Fc), showed a >100-fold loss 
of binding affi  nity to C3b when compared with wild-type 
protein (CRIg-Fc; not depicted). The mutant proteins were 
folded correctly as shown by similar circular dichroism pat-
terns (not depicted). We next determined if the loss in bind-
ing activity translates into a loss of functional activity, i.e., 
inhibition of the C3 and C5 convertases. Although CRIg-Fc 
inhibited C3 and C5 convertases of the AP in mouse serum, 
CRIg(A)-Fc, CRIg(B)-Fc, and the control-Fc proteins lost the 
ability to inhibit either the C3 or the C5 convertases (Fig. 1 B). 
The inhibition was selective for the convertases of the AP 

because CRIg-Fc did not inhibit CP activation in hemo-
lytic assays (Fig. 1 C and Fig. S1, which is available at http://
www.jem.org/cgi/content/full/jem.20070432/DC1). Col-
lectively, these results indicate that the structural requirements 
for binding to and inhibition of the AP convertases, as well 
as the selective inhibition of the AP, are conserved in human 
and mouse CRIg.

Figure 1. Structural requirements for CRIg-Fc inhibition of the 

AP C3 and C5 convertases in mouse serum. (A) Left: Overlay of human 

(white) and murine (yellow) CRIg IgV domains. Side chains of residues 

M86, D87 (red) and H57, and Q59 (blue) are indicated. Middle: Surface 

representation of murine CRIg crystal structure. Indicated in green are 

surface-exposed amino acid residues that are not conserved in human 

and murine CRIg. Right: Surface representation of muCRIg. Indicated are 

amino acid residues that are substituted by alanine. Red, M86 and D87 

(CRIg(A)); blue, H57 and Q59 (CRIg(B)). (B) CRIg-Fc, but not CRIg(A)-Fc, 

CRIg(B)-Fc, or control Fc-protein, inhibits the generation of C3a des Arg 

(left) and C5a des Arg (right) in zymosan-activated serum. Zymosan 

particles were incubated for 45 min at 37°C with 4% mouse serum in the 

presence of Mg2+ and EGTA. C3a des Arg and C5a des Arg were detec-

ted by ELISA and expressed as percentages of values in the absence of 

re combinant protein. Results are representative of four independent repeats. 

(C) Murine CRIg-Fc inhibits complement activation through the alternative, 

but not classical, pathways. Rabbit erythrocytes (left) or IgM-oponized 

sheep erythrocytes (right) were exposed to C1q-defi cient (left) or factor 

B–depleted (right) human serum in the presence of increasing concentra-

tions of CRIg-Fc or control-Fc protein. Values expressed as percent hemo-

lysis in the absence of inhibitors (mean ± SEM; n = 3).
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CRIg inhibits infl ammation in established arthritis

We next determined if CRIg-Fc can inhibit infl ammation 
in vivo caused by activation of the AP of complement. We 
used two models of arthritis in which an intact AP is required 
for initiation of the disease (12, 15–17). CRIg-Fc treatment 
after secondary immunization with collagen (day 24) sig-
nifi cantly (P < 0.01) reduced clinical scores, infl ammation, 
and bone loss compared with control-Fc–treated mice (Fig. 2, 
A and D). A recent study has implicated a role for CRIg in 
Th cell–dependent B cell responses (18). In the CIA stud-
ies, systemic muCRIg-Fc did not aff ect B cell responses 
(Fig. 2 B), indicating that CRIg-Fc acts on the innate, 
and not adaptive, arm of the immune response in this dis-
ease model. To test whether CRIg-Fc could inhibit already 
established infl ammation, mice were treated with wild-type 
or control CRIg proteins starting 42 d after primary immu-
nization. CRIg-Fc treatment signifi cantly (P < 0.0001) re-
duced clinical scores and inhibited infl ammation and bone 
loss compared with treatment with a control fusion protein 
(Fig. 2, C and D), indicating that the AP of complement is 
required for progression of joint infl ammation and bone de-
struction in CIA.

To further determine if CRIg inhibits the eff ector arm 
of immune complex–mediated infl ammation, a cocktail of 

anti-collagen antibodies were transferred to mice, bypassing 
B and T cell–mediated immune responses (19). CRIg-Fc re-
duced clinical scores and infl ammation in this model (Fig. 3, 
A and B), confi rming that CRIg acts independently of T and 
B cell activity and that the AP is required for initiation of 
disease in AIA (12). The antiinfl ammatory eff ect of CRIg-Fc 
treatment was independent of the presence of endogenously 
expressed CRIg, as clinical scores in CRIg–wild-type and 
-knockout mice, injected with the anti-collagen antibodies, 
were similar (Fig. S2 A, available at http://www.jem.org/
cgi/content/full/jem.20070432/DC1). Moreover, CRIg-Fc 
did not infl uence the levels of anti-collagen antibodies in 
the circulation (Fig. S2 B), indicating that CRIg-Fc did not 
interfere with macrophage-mediated clearance of circulat-
ing anti-collagen antibodies or antibody complexes. Finally, 
the inhibitory eff ect was not due to Fc receptor–mediated 
eff ector functions because treatment of mice with a CRIg-
Fc fusion protein containing two mutations within the Fc 
 eff ector domain (D265A and N297A) was equally eff ective 
 compared with wild-type Fc protein in inhibiting clinical signs of 
arthritis (Fig. S2 C). Thus, CRIg-Fc inhibits immune complex–
induced infl ammation through the interaction of murine CRIg 
extracellular domain with C3b, a central component of the 
complement convertases.

Figure 2. CRIg-Fc inhibits CIA in mice. (A) Clinical scores of mice 

treated with CRIg-Fc or control-Fc starting 24 d after primary immuniza-

tion with bovine collagen type II. (B) Anti-collagen antibody titers at day 

70 are similar in mice treated with CRIg-Fc and control-Fc fusion proteins. 

(C) CRIg-Fc treatment inhibits established infl ammation. Mice were 

treated with CRIg-Fc or control-Fc fusion proteins starting on day 42 

after primary immunization. (D) CRIg-Fc signifi cantly reduces infl amma-

tion (arrow in top left, histology scores in top right) and conserved joint 

cortical bone volume (JCBV) in the metatarsal-phalangeal and metacarpo-

phalangeal joints (bottom) compared with mice treated with control-Fc. 

micro-ct renderings show representative mouse hind paws from both 

groups (bottom left). Histology and micro-ct were performed 70 (treat-

ment (Rx) starting on day 24) or 84 (treatment (Rx) starting on day 42) d 

after primary immunization. Red arrows in A and C indicate start of 

treatment. Data are expressed as mean ± SEM; n = 15. *, P < 0.01; 

**, P < 0.0001, CRIg-Fc versus control-Fc. Bar, 100 μm.
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Because cytokines play an important role in infl ammation 
associated with arthritis (20, 21), we determined whether CRIg 
treatment aff ects cytokine production in the joint. CRIg-Fc did 
not aff ect cytokine responses shortly after LPS priming (day 3, 
2 h after LPS treatment), but reduced local IL-1β and IL-6 
levels that refl ected the degree of joint infl ammation at later 
time points (Fig. 3 C).

To test if CRIg-Fc can inhibit established infl ammation, 
we initiated treatment 5 d after antibody transfer. Treatment 
with CRIg-Fc in established disease signifi cantly (P < 0.001) 
reduced clinical scores and joint infl ammation (Fig. 3 D). In 
contrast, treatment with CRIg(B)-Fc, that has lost its ability to 
inhibit the AP of complement, was not effi  cacious. Similarly, 
treatment of established disease with TNFRII-Fc fusion protein 
did not reduce clinical scores or infl ammation. Thus, while 
TNF-α is required for induction of disease in this arthritis 

model, the AP of complement is required for maintaining 
infl ammation in the joint.

CRIg-Fc inhibits antibody-induced complement activation 

in the joint

We next determined if CRIg inhibited immune complex–
induced infl ammation through selective inhibition of the AP 
of complement. Anti-collagen antibodies in complex with col-
lagen activate both the AP and CP of complement in mouse 
serum (22). CRIg-Fc inhibited C3 activation generated by the 
AP of complement (Fig. 4 A), but not C3 activation resulting 
from combined classical and MBL pathways (not depicted). 
Next to inhibiting complement activation induced by these 
immune complexes, CRIg-Fc signifi cantly (P < 0.0001) in-
hibited complement activation in serum from arthritic mice 
(Fig. 4 B). As expected, control-Fc or CRIg(A)-Fc did not 

Figure 3. CRIg-Fc inhibits infl ammation and bone deformation 

after transfer of anti-collagen antibodies. (A) CRIg-Fc signifi cantly 

reduces clinical scores in a model of anti-collagen antibody–induced 

arthritis. A cocktail of arthritogenic antibodies (2 mg/mouse) was injected 

intravenously on day 0. Mice were treated daily with 4 mg/kg CRIg-Fc, 

TNFRII-Fc, or control-Fc proteins starting the day before antibody injection. 

CRIg-Fc-treatment (B, top panel and graph) reduces infiltration of 

infl ammatory cells, predominantly neutrophils (see insets), present in the 

tarsal joint of the hindlimb of a control-Fc–treated mouse (B, bottom left 

panel and graph). (C) CRIg-Fc does not affect cytokines produced during 

the LPS induction phase of the arthritis, but it reduces IL-1β and IL-6 in 

parallel with reduced infl ammation. (D) CRIg-Fc, but not CRIg(B)-Fc or 

TNFRII-Fc, reduces clinical scores and infl ammation when treatment starts 

during established infl ammation. CRIg-Fc, CRIg(B)-Fc, or TNFRII-Fc were 

given 5 d after antibody injection. Arrows in A and D indicate treatment 

start. Data are expressed as mean ± SEM of n = 5. Bar, 100 μm. *, P < 

0.05; **, P < 0.01; ***, P < 0.001, CRIg-Fc or TNFRII-Fc versus control-Fc. 

Bars: B, 100 μm; D, 200 μm.
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inhibit C3 deposition (Fig. 4 A) or anaphylatoxin generation 
(Fig. 4 B) after exposure of immune complexes to mouse serum. 
The reduced inhibitory activity of CRIg-Fc for C3 compared 
with C5 convertase activity in whole serum is likely due to 
the lower binding affi  nity of CRIg-Fc for the monomeric 
subunit of the C3 convertase (23) as compared with CRIg-Fc 
affi  nity for the dimeric C3b2 subunit of the C5 convertase 
(Fig. S3, available at http://www.jem.org/cgi/content/full/
jem.20070432/DC1). In addition to its complement inhibitory 
activity in mouse serum, CRIg inhibited complement activa-
tion locally in the joint as shown by the near absence of ar-
ticular C3 fragments (Fig. 4 C) and a signifi cant reduction in 

the C3 activation product, C3a Des arg (Fig. 4 D). Consistent 
with CRIg’s selective inhibition of complement activation, anti-
collagen antibodies were present in the joint of both CRIg-Fc– 
and control-Fc–treated mice. CRIg-Fc protein colocalized with 
C3 fragments in the joint (Fig. 4 E), indicating that systemi-
cally delivered protein localizes to the sites of complement C3 
activation. Thus, CRIg inhibits antibody-induced AP comple-
ment activation in the joint resulting in a signifi cant reduction 
in infl ammation. These results indicate that the inhibitory ef-
fect of CRIg-Fc in vivo was fully dependent on its binding to, 
and inhibition of, the AP convertases.

This study presents CRIg as the fi rst complement recep-
tor that, in its soluble form, selectively inhibits the AP in vi-
tro and in vivo. Its mode of inhibition is diff erent from that 
of other native complement inhibitors. CRIg does not have 
decay or cofactor activity, but instead competes with binding 
of C5 to the convertases of the AP, but not CP (14). Because 
CRIg does not infl uence complement activation through the 
CP and MBL pathway it leaves part of the complement-
mediated host defense system intact. Although the extra-
cellular domain of CRIg inhibits complement activation, we 
have not found evidence that the membrane-bound form of 
the molecule acts as an intrinsic inhibitor of complement ac-
tivation. It is however likely that CRIg acts as an AP regulator 
of convertases bound to the macrophage cell surface during 
clearance of serum-opsonized particles (13). Further studies, 
in which the complement inhibitory function of CRIg is un-
coupled from its role as a phagocytic receptor, are necessary 
to clarify the role of macrophage-expressed CRIg in comple-
ment regulation.

Collectively, CRIg’s ability to inhibit complement acti-
vation is well conserved in human and mouse and a soluble 
version provides a novel tool to study the eff ect of therapeutic 
intervention of the AP of complement in preclinical models 
of disease. Furthermore, the recently presented structure of 
CRIg in complex with C3b off ers the opportunity for rational 
design of CRIg proteins with enhanced inhibitory effi  cacy. 
Collectively, CRIg presents a promising new therapeutic to 
target diseases in which the AP of complement plays a promi-
nent role, including rheumatoid arthritis, anti-phospholipid syn-
drome, intestinal and renal ischemia-reperfusion injury, type II 
membranoproliferative glomerulonephritis, and age-related 
macular degeneration (8, 24).

MATERIALS AND METHODS
Generation of recombinant protein. Murine CRIg-Fc was generated 

as described elsewhere (13). Mutants in the extracellular domain of CRIg 

and mutations in the Fc eff ector domain of the molecule were introduced 

with the Quick-Change Mutagenesis kit (Stratagene) as described elsewhere 

(14). Circular dichroism spectra from the mutant proteins (CRIg(A)-Fc and 

CRIg(B)-Fc) were obtained as described previously (14). TNFRII-Fc was 

generated by fusing the extracellular domain of TNFRII with the Fc por-

tion of murine IgG1. Surface plasmon resonance analysis was performed as 

described previously (13).

Zymosan assay for C3 and C5 convertase. Fc-fusion proteins were 

diluted in GVB+/EGTA (0.1% gelatin/veronal buff er [BioWhittaker]/15 

mM EGTA/24 mM MgCl2) and mixed with 4% fresh BALB/c serum and 

Figure 4. CRIg-Fc inhibits AP complement activation induced by 

anti-collagen antibodies in vitro and in vivo. (A) CRIg-Fc inhibits the 

alternative pathway of complement induced by immune complexes in 

mouse serum. Collagen-coated microtitre plates were incubated with 

anti-collagen antibodies, and the wells were incubated with 10% mouse 

serum. Binding of C3 fragments to the microtitre plates was determined 

by ELISA. The experiment was repeated three times with similar results. 

(B) CRIg-Fc, but not CRIg(A)-Fc and control-Fc protein, inhibits C3a and C5a 

production in mouse serum. Serum obtained from CRIg-Fc–, CRIg(A)-Fc–, 

and control-Fc–treated mice was incubated at 37°C for 45 min, and the 

levels of C3a des Arg and C5a des Arg were measured by ELISA. (C) Sys-

temic treatment with CRIg-Fc, but not control-Fc, reduces the presence of 

C3 fragments (green fl uorescence), but not anti-collagen antibody (red 

fl uorescence) on the cartilage surface in the metatarsal-phalangeal joints 

14 d after antibody injection. (D) CRIg inhibits the production of C3a 

des Arg in the joints. Joints obtained at various time points after anti-

body injection were homogenized, and C3a des Arg was measured by ELISA. 

(E) CRIg-Fc and C3 fragments colocalize to the cartilage surface in the joints. 

Joints were obtained from mice 1 d after treatment with CRIg-Fc on day 5 

after antibody injection. Data are expressed as mean ± SEM. *, P < 0.05; 

**, P < 0.01; ***, P < 0.0001, CRIg-Fc versus control-Fc and CRIg(A)-Fc. 

Bar, 100 μm. A.U., arbritary units.
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0.1 mg/ml activated zymosan in a fi nal volume of 100 μl for 45 min at 37°C 

with shaking, and the reaction stopped with 900 μl GVB containing 50 mM 

EDTA. Zymosan was pelleted, and the supernatants were used for mouse 

C3a and C5a ELISAs.

Hemolytic assays for C3 and C5 convertase. Hemolysis assays for the 

AP and CP were performed as described previously (14). AP and CP he-

molytic assays using assembled components were performed essentially as 

described previously (25). IgM-coated sheep erythrocytes were obtained 

from Comptech.

Arthritis models. All animals were held under sterile pathogen-free con-

ditions, and animal experiments were approved by the Institutional Animal 

Care and Use Committee of Genentech. CIA was achieved by immuniza-

tion of 8–11-wk-old DBA/1J mice (The Jackson Laboratory) with bovine 

type II collagen as described previously (26). Mice were treated three times 

per week with 4 mg/kg protein when dosing was initiated on day 24, or 

three times per week with 12 mg/kg when dosing was initiated on day 

42 after primary immunization. Antibody-induced, or passive, arthritis was 

performed by injection with an arthritogenic monoclonal antibody mix-

ture (Chemicon) in 6-wk-old BALB/c mice (The Jackson Laboratory) as 

described previously (27). In brief, 2 mg anti-collagen type II antibodies 

was injected intravenously in mice, followed 3 d later by intraperitoneal 

injection with 25 μg LPS. Mice were treated daily with 4 mg/kg CRIg-Fc, 

TNFRII-Fc, or control-Fc (a monoclonal antibody to gp-120, IgG1 iso-

type). All dosing regiments (CIA and AIA) maintained the levels of CRIg-

Fc and TNFRII-Fc between 50 and 100 μg/ml of serum. Clinical scoring 

was performed by trained personnel blinded to the nature of the treatment 

as described previously (26). For treatment of mice with already established 

disease, mice from the initial immunized cohort with an average clinical 

score of 6 were randomly assigned to the various treatment groups. His-

tologic evaluation of arthritis severity was performed on formalin-fi xed, 

decalcifi ed forelimb and hindlimb joints. Joints were scored for severity 

of infl ammation by a pathologist blinded to the treatment using a scale of 

0–5 for each paw according to Joosten et al. (28), except that synovial, 

bone, and cartilage changes were considered in aggregate when determin-

ing scores. X-ray micro-computed tomography (micro-ct) was performed 

ex vivo as described previously (26). Micro-ct estimates of joint cortical 

bone volume were obtained from the metatarsal-phalangeal and metacar-

pophalangeal joints.

Immunohistochemistry. Frozen sections from metatarsal-phalangeal joints 

were prepared as described elsewhere (29). Immunohistochemistry of joint 

sections was performed using an FITC-conjugated polyclonal Fab fragment 

to mouse C3 (Cappel) and an Alexa Fluor 594–conjugated goat anti–mouse 

monoclonal antibody to IgG2a (Jackson ImmunoResearch Laboratories). 

CRIg was detected using a primary rat anti–mouse monoclonal antibody 

(clone 14G6; reference 13), followed by an Alexa Fluor 594–conjugated goat 

anti–rat polyclonal antibody (Jackson ImmunoResearch Laboratories).

Microtitre assays. CRIg-Fc titers in the serum were determined with an 

ELISA using capture and detection monoclonal antibodies raised against the 

extracellular domain of murine CRIg (13). Anti-collagen antibody titers in 

the serum were determined in microtitre plates using bovine type II collagen 

(Chondrex) for antibody capture and biotinylated isotype-specifi c antibodies 

(Jackson ImmunoResearch Laboratories) SA-HRPO and TMB substrate 

(Kirkegaard and Perry Laboratories, Inc.) for detection. Complement activa-

tion induced by arthrogen antibodies was measured by adding 10 μg/ml of 

mouse anti-collagen antibodies to collagen-coated microtitre plates for 1 h, 

followed by washing three times with GVB (0.1% gelatin/veronal buff er; 

BioWhittaker). Fresh BALB/c serum (20% in either GVB++ [GVB/2 mM 

CaCl2/2 mM MgCl2] or GVB/EGTA [GVB/30 mM EGTA/48 mM 

MgCl2]) was added (10% fi nal serum concentration), mixed for 1 min, and 

incubated at 37°C for 45 min. Complement C3 binding was detected with 

a goat anti–mouse horseradish peroxidase–conjugated C3 antibody (Cappel) 

using TMB substrate. The reaction was stopped by adding H2SO4, and op-

tical density was read at 450 nm wavelength. Hemolysis assays specifi c for 

alternative and classical complement pathways were performed as described 

elsewhere (13, 14).

Cytokine and anaphylatoxin ELISAs. Mouse cytokine analysis was per-

formed as described elsewhere (21). Hind footpads were cut at the borderline 

of fur growth and frozen in liquid nitrogen. The volume of PBS used for homo-

genization was adjusted to 75 mg of tissue per ml of PBS. Supernatants were 

subjected to ELISA for murine IL-1α, TNF-α, and IL-6 (DuoSet; R&D 

Systems). C3a des Arg levels were quantifi ed with capture and detection anti-

bodies from BD Biosciences (Fig. 4 B) or with a mouse C3a des Arg ELISA kit 

(Bachem; Fig. 4 D). In Fig. 4 B, OD measurements were converted to arbi-

trary units using a standard curve generated with a stock solution of zymosan-

activated mouse serum (10 mg/ml incubated for 1 h at 37°C). C5a des Arg 

ELISAs were established using capture and detection antibodies purchased 

from BD Biosciences.

Crystallization, data collection, structure solution, and refi nement. 

A DNA fragment encoding residues 20–137 of murine CRIg was cloned 

into the NdeI/BamHI sites of the pET28b expression vector (Novagen). 

Expression and purifi cation were performed in the same manner as described 

for human CRIg (14). Crystals were grown at 19°C using the hanging drop 

vapor–diff usion method. 20 mg/ml of purifi ed mCRIg in 25 mM Tris, pH 7.5, 

and 100 mM NaCl was mixed with equal volumes of a reservoir solution 

containing 0.2 M potassium tartrate and 20% PEG 3350. Crystals formed 

after 3 d. For data collection, crystals were dipped briefl y into a solution-

containing reservoir with an addition of 20% glycerol, and then fl ash-frozen 

in liquid nitrogen. Data were collected at Advanced Lightg Source beamline 

5.0.2 and processed using HKL2000. Crystals of murine CRIg diff racted 

to 1.0 Å resolution belong to space group P212121, with cell parameters of 

a = 31.3, b = 50.7, and c = 62.8 Å. The structure was solved with crystals 

containing seleno-methionine–labeled protein using multiple anomalous 

dispersion and program auto-SHARP (30). Refi nement using Refmac and 

manual adjustments with program O resulted in a model with an Rcryst of 

13.1% and an Rfree of 15.1%.

Statistical testing. All p-values were calculated with an unpaired, two-

tailed Student’s t test assuming equal variance.

Online supplemental material. Fig. S1 shows that CRIg Fc inhibits AP 

C5 convertase initiated by assembly of a CP C5 convertase on IgM-coated 

sheep red blood cells. Fig. S2 shows clinical scores in CRIg wild-type and 

knockout mice after AIA, the infl uence of CRIg-Fc on antibody titers in 

serum, and the effi  cacy of CRIg-Fc with a mutation in the Fc domain. Fig. S3 

illustrates the kinetics of soluble C3b dimer (C3b2) and monomer (C3b) 

binding to CRIg-Fc. The online supplemental material is available at http://

www.jem.org/cgi/content/full/jem.20070432/DC1.
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