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The role of DNA methylation of breast cancer-infiltrating immune cells has not been fully
explored. We conducted a cohort-based retrospective study analyzing the genome-wide
immune-related DNA methylation of 1057 breast cancer patients from the TCGA cohort
and GSE72308 cohort. Based on patients’ overall survival (OS), a prognostic risk score
system using 18 immune-related methylation genes (IRMGs) was established and further
validated in an independent cohort. Kaplan–Meier analysis showed a clear separation of
OS between the low- and high-risk groups. Patients in the low-risk group had a higher
immune score and stromal score compared with the high-risk group. Moreover, the
characteristics based on 18-IRMGs signature were related to the tumor immune
microenvironment and affected the abundance of tumor-infiltrating immune cells.
Consistently, the 18-IRMGs signatures showed similar influences on immune modulation
and survival in another external validation cohort (GSE72308). In conclusion, the proposed
18-IRMGs signature could be a potential marker for breast cancer prognostication.

Keywords: DNA methylation, IRMGs, immune infiltration, prognosis, breast cancer
Abbreviations: IRMGs, immune-related methylation genes; OS, overall survival; ROC, receiver operating characteristic; ICB,
immune checkpoint blockade; CNS, central nervous system (CNS); TCGA, The Cancer Genome Atlas; GEO, Gene Expression
Omnibus; IRGs, immune-related genes; LASSO, least absolute shrinkage and selection operator; CIBERSORT, Cell-type
Identification By Estimating Relative Subsets Of RNA Transcripts; AUC, area under the curve; TIME, tumor immune
microenvironment; GO, Geneontology; GSEA, Gene Set Enrichment Analysis; Her2, human epidermal growth factor
receptor 2.
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INTRODUCTION

The biological behavior and clinical outcome of breast cancer are
highly heterogeneous (1, 2). The molecular properties of breast
cancer cells have been extensively studied to identify subgroups
of patients having different treatment responses and prognosis
for targeted therapy based on biomarkers (3–5). However, the
tumor microenvironment is a complex mixture of malignant and
non-malignant cells including immune cells which can affect the
behavior and clinical outcomes of breast cancer. Up to date, the
classification of the tumor microenvironment and its impact on
prognosis are still poorly understood.

Immune cells from the microenvironment of breast cancer
play an important role in determining tumor progression. Single-
cell RNA sequencing of breast cancer has confirmed that there is
a complex mixture of immune T cell subtypes in tumors (6, 7).
Besides, a large number of transcriptomics analyses have been
used to explore the immune microenvironment of breast cancer,
which indicated that patients with different expression of genes
involving multiple immune cells had different survival rates (8–
11). Most of the previous research methods to decipher the
characteristics of tumor immune microenvironment infiltration
were based on the transcriptome (8, 9). DNA methylation, RNA
and protein levels can be used as prognostic markers (12). But
these markers have their own advantages and disadvantages. For
example, DNA methylation and RNA sequencing results can be
obtained by high-throughput chip or sequencing (13), which is
more efficient and economical. However, high-throughput
protein detection is time-consuming and expensive, and has
not been widely used. However, few studies have explored the
impact of immune cell infiltration on cancer from the perspective
of DNA methylation patterns.

DNAmethylation has established its role as themain epigenetic
driving force in cancer progression and development (14–19).
However, its contribution to defining the characteristics of the
tumor microenvironment is still poorly understood. It has recently
been shown that DNA hypomethylation promotes immune escape
in corresponding tumors (15, 20, 21). Furthermore, DNA
methylation patterns that predict the response of non-small cell
lung cancer to immune checkpoint blockade (ICB) treatment have
been revealed (22). DNA methylation patterns are also closely
related to cell lineage and high levels of DNA methylation are
often detected in blood and skin lineage. Finally, DNAmethylation
is associated with cellular and cell-free DNA derived from
peripheral blood cells (23–25), and has been introduced as a
complementary method for classifying the central nervous system
(CNS) tumors (26). However, DNA methylation has not been
widely used to determine the immune environment that occurs in
the microenvironment of breast cancer.

Here, we identified DNA methylation markers, establishing
an 18 immune-related methylation genes (IRMGs) signature,
which could reflect multiple tumor-related immune cell
subpopulations and divided the tumors into two clusters with
different clinical and molecular characteristics, which were then
validated in an independent dataset. This proposed signature
could effectively predict the immune activity of the breast cancer
microenvironment and the clinical prognosis of the patients.
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MATERIALS AND METHODS

Study Population
Breast cancer datasets from The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) were downloaded and the
workflow is illustrated in Figure 1. GSE72308 contained a set of
data obtained from methylation array analysis, which has been
used to evaluate the characteristics of immune response based
on DNA methylation in breast cancer and other cancers (27).
Only patients who met the following criteria were selected:
(1) confirmed pathological diagnosis of invasive breast cancer;
(2) available DNA methylation and overall survival (OS) data.
Patients without active follow-up and transcriptomic data in the
TCGA were excluded. In this study, molecular subtypes classified
based on immunohistochemical detection in TCGA and
GSE72308 were used for analysis. The number of patients in
different molecular subtypes in TCGA are: Basal (n=193), HER
(n=282), LumA (n=581), LumB (n=219), Normal (n=143).The
number of patients in different molecular subtypes in GSE72308
are: Basal (n=65), HER2 (n=56), LumA (n=52), LumB
(n=63).This study was based on the analysis of the TCGA and
GSE72308 cohort, and was therefore deemed exempt from
institutional review board approval by The Sun Yat-sen
University Cancer Center, and informed consent was waived.
We conducted this study in accordance with the ethical
standards of the World Medical Association Declaration
of Helsinki.

Data Acquisition and Generation
of Immune Methylation Profiles
First,wedownloadeda list of immune-relatedgenes (Supplementary
List 1) from the Immunology Database and Analysis Portal
(ImmPort, https://www.immport.org). A total of 1826 immune-
related genes for subsequent analysis. Subsequently, we
downloaded the methylation data of breast cancer patients from
the TCGA andGSE72308 databases. The TCGAmethylation profile
wasobtained fromtheXenadatabase (https://xenabrowser.net/).The
GSE72308methylation profile was obtained from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). Finally, the DNA methylation
sites of the aforementioned immune-related genes (1812 genes
downloaded from ImmPort) were screened in the TCGA and
GSE72308 methylation profile. The DNA methylation sites of these
immune-related genes are defined as IRMGs.

Besides, the expression profiles of the TCGA cohort were
downloaded from the TCGA data portal (https://portal.gdc.cancer.
gov/repository). Then we extracted the DNA methylation
quantitative index b values [bvalue=methylation signal/
(methylation signal + non-methylation signal)]of these genes and
the corresponding RNA expression profiles. Subsequently, the
correlation between DNA methylation level and RNA expression
level was analyzed one by one.

The ensemble IDs were mapped to gene symbols according to
the annotation of Homo_sapiens.GRCh38.91.chr.gtf from the
ENSEMBLE website. The “limma” package in R was used for
gene expression normalization using the scale method (28). The
average RNA expression was calculated for duplicates, and genes
with low abundance were discarded.
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Development of the DNA Methylation-
Based Immune Profiling
The Univariate Cox regression was used to determine the immune-
related methylation genes (IRMGs) associated with OS. The Least
Absolute Shrinkage and SelectionOperator (LASSO) Cox regression
model was further applied to determine the key features and
corresponding coefficients for the model construction (29). The
LASSO Cox regression was performed using the “glmnet” package
of the R software, and the ideal coefficient was estimated based
on the partial likelihood deviation with ten-fold cross-validation
(30). The optimal log l was -4.37. To quantify the comprehensive
impact of immune methylation status, a new score was calculated
based on the features selected by the LASSO model.

First, we obtained IRMGs significantly related to the prognosis of
TCGA andGSE72308 cohorts through the univariate cox regression
analysis of IRMGs on overall survival. Then, IRMGs with a proper
correlation between expression and DNA methylation level (r>0.2
and P<0.05) were selected and added to the LASSO cox regression
model for modeling to calculate the score and standardization
through the obtained coefficients using the following formula:

Sum =o
n

i=1
(IMRG� Coef i)Score = (Sum −Min)=Max

Tumor Microenvironment
and Function Analysis
The Cell-type Identification By Estimating Relative Subsets Of
RNA Transcripts (CIBERSORT) analysis was used to identify
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immune cell types. The expression matrix was uploaded using
the online analysis platform (https://cibersort.stanford.edu), and
the proportion of infiltrating immune cells was estimated by the
LM22 signature with 1000 permutations (31). Subsequently, the
criterion of P<0.05 was used to select qualified samples.
The xCell analysis was performed following its guidelines
(https://xcell.ucsf.edu) (32). Immune and stromal scores were
further estimated via the Estimation of Stromal and Immune
cells in MAlignant Tumor tissues using Expression data
(ESTIMATE) algorithm with the “estimate” package in R to
quantify the immune and stromal components (33). The MCP-
counter scores of immune-related active cells and fibroblasts
were evaluated using the “MCPcounter” package in R (34). The
cluster Profiler package of the R software was used for GO
analysis (35). According to previous research, the “fGSEA”
software package in R (version 4.0.1) was used to perform
GSEA analysis to explore pathway enrichment between the
low- and high-risk groups (36).

Statistical Analysis
The Univariate Cox regression was used to identify prognostically
relevant IRMGs with a cutoff value of P<0.05. Crucial signatures
involved in immune-related methylation clusters were identified
using the LASSO Cox regression model. The optimal cut-off value
for survival analysis was determinedusing the “survminer” package
in R, and the OS of different subgroups were compared using the
Kaplan-Meiermethodwith the log-rank test. For theKaplan-Meier
analysis, the cut-off values for the score-high and score-low groups
were based on the median score. The follow-up time was 6 years.
FIGURE 1 | The workflow of this study. A group of IRMGs related to the prognosis of breast cancer was identified in the TCGA and GSE72308 data cohort. Using
the LASSO Cox regression model, a new immune methylation cluster was constructed in the TCGA cohort, and its key role in breast cancer immune status and the
prognosis was validated in the GSE72308 cohort. IRMGs, immune-related methylation genes; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus;
LASSO, least absolute shrinkage and selection operator; KM, Kaplan-Meier.
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Time-dependent receiver operator characteristic (ROC) analyses
were performed using the “timeROC” package in R (34).
Spearman’s correlation test was used for Score-related analysis.
All statistical analyses were performed using the R software
(Version 4.0.1). A P value of <0.05 was considered statistically
significant, and all P values were two-tailed.
RESULTS

DNA Methylation-Based Immune Profiling
of Breast Cancer
To explore the pattern of immune infiltration based on DNA
methylation in breast cancer, we first compiled the TCGA
methylation profile and GSE72308 methylation profile (Figure 1)
to identify the corresponding IRMGs. A population of 769 and 288
patients from the TCGA and GSE72308 were included in this study.
The IRMGs data from the TCGA and GSE72308 were subjected to
univariate Cox proportional hazard regression analysis, of which a
total of 226 IRMGs (Supplementary List 2) were found
significantly related to the OS of breast cancer patients (P<0.05)
in both cohorts and were identified as candidate markers
(Figures 2A–C). Subsequently, 61 IRMGs (Supplementary List 3)
were significantly correlated with corresponding mRNA expression
(|r|>0.2, P<0.05) and were selected for the prognosis prediction
model. Based on these, the LASSO Cox regression model was used
Frontiers in Immunology | www.frontiersin.org 4
to construct a prognostic model for the OS stratification of the
patients from the TCGA data set (N=769). First, we determined the
penalty value [log(lambda)=-4.37] according to the lowest point of
the Figure 2E curve, and drew a vertical line at the position of
log(Lambda)=-4.37 in Figure 2D. Each curve in Figure 2D
represented a variable, and the curve that intersected with vertical
line at the position of log(Lambda)=-4.37 was the final included in
the model. The ordinate corresponding to the variable was the
regression coefficient of the variable. In the regression equation, the
regression coefficient represented the contribution of the variable.

18 IRMGs were selected according to the method of partial
likelihood deviance, and the corresponding coefficients were
generated with the best logl of -4.37. Supplementary List 4
shows the positions of these 18 IRMGs in the corresponding
genes. The hazard ratio model consisting of 18 methylation sites
(cg06735472, cg20862496, cg02172616, cg09108314, cg09369954,
cg03779097, cg27460943, cg16633817, cg19901994, cg16265078,
cg10942339, cg03240473, cg19266578, cg00668559, cg12697789,
cg14993712, cg25562664, cg00743540) was selected as the best
prognostic model for predicting OS (Figures 2D, E). The genes
corresponding to these 18 methylation sites were SLURP1
(cg240862496), IL17RD(cg00743540), NFKBIE(cg00668559),
OPRL1(cg19266578), NR3C2(cg27460943), ZC3HAV1L
(cg14993712), EED(cg02172616), TXLNA(cg09369954), FGF2
(cg09108314), EED(cg16265078), TLR3(cg12697789), FAM3B
(cg06735472), NR1I2(cg25562664), ROBO2(cg16633817),
A B

D E

C

FIGURE 2 | Identification of prognostic IRMGs in breast cancer. (A) Venn plot shows that the 61 IRMGs identified in the two cohorts were associated with mRNA
expression. (B, C) Bar graph showing the hazard ratio of IRMG in the TCGA cohort and GSE72308 cohort. The bars represent 95%CI. The Univariate Cox regression
was used for data analysis. (D, E) The LASSO Cox regression model was constructed from the 61 signature IRMGs, and the adjustment parameter (l) was calculated
based on the partial likelihood deviation with ten-fold cross-validation. The optimal log l value is -4.37, as shown by the vertical black line in the curve. According to
the best fit contour, an 18-IRMGs signature was determined. IRMGs, immune-related methylation genes; TCGA, The Cancer Genome Atlas; GEO, Gene Expression
Omnibus; LASSO, least absolute shrinkage and selection operator.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Yang et al. Immune-Related Methylation Clusters for BC
PTK2B(cg19901994), OPRL1(cg03779097), MICB (cg10942339)
and UMODL1(cg03240473). Figure 3 shows the correlation
coefficient and P value between the IRMGs selected by the
LASSO model and their corresponding mRNA expression.

Kaplan-Meier analysis further confirmed the prognostic value of
each of these 18 IRMGs (Supplemental Figure 1). Patients with
highermethylation levels of cg03240473, cg19266578, cg00668559,
cg12697789, cg14993712, cg25562664, and cg00743540 had poorer
prognosis, while patients with higher methylation levels of
cg06735472, cg20862496, cg02172616, cg09108314, cg09369954,
cg03779097, cg27460943, cg16633817, cg19901994, cg16265078,
cg10942339 had better prognosis; which was consistent with the
results of the LassoCox regression analysis. Themethylation values
of the 18 IRMGs in TCGA and the corresponding HR and 95%CI
are shown in Figures 4A, B. Among the 18 IRMGs, 11 IRMGs was
associated with improved prognosis while 7 with poor prognosis.

The risk score of the TCGA training cohort was calculated using
the coefficients obtained by the above-mentioned LASSO
algorithm. The risk score distribution of the 18 immune
methylation markers in the TCGA training cohort is shown in
Figure 4C. The risk scores of different molecular subtypes were
significantly different, with HER2 positive scores being the highest,
followed by the basal-like subtype and luminal B subtype. The risk
score of these three subtypes was significantly higher than that of
luminal A (Figure 4D). However, there was no significant
correlation between the risk score and tumor size, lymph node
metastasis, TNM stage, and age. The distribution of risk scores
based on different survival time and survival status (alive or dead) is
shown inFigure4E. Fromthis,we canobserve that thepatientswho
died (red dots) aremore distributed in the high-risk group. Second,
patients in the low-risk group had a longer survival time.
Frontiers in Immunology | www.frontiersin.org 5
The 18-IRMGs Signature Was Significantly
Associated With Molecular Characteristics
and Immune Features
We first analyzed the enriched pathways of the 18-IRMGs
signature through biological function enrichment analysis. The
results showed that genes were significantly enriched in immune-
related pathways of GO categories (Figure 5A), including humoral
immune response, immunoglobulin production, T cell receptor
complex, and immunoglobulin complex. Furthermore, Gene Set
Enrichment Analysis (GSEA) analysis revealed 12 important
pathways related to the 18-IRMGs signature, including adaptive
immune response, T cell receptor complex, immunoglobulin
complex, antigen binding, B cell receptor signaling pathway,
lymphocyte-mediated immunity, neutrophil-mediated immunity,
and more (Figure 5B). To study the effect of the 18-IRMGs
signature on the immune microenvironment of breast cancer, we
evaluated the immune score and stromal score between the high-
and low-risk groups. The results showed a significant difference in
immune score and stromal score between the high-risk and low-
risk groups (Figures 5C, D). The immune score and stromal score
of the low-risk group were significantly higher than that of the
high-risk group (P<0.05).

Further, the ratio of 22 immune cell types between the two
subgroups was analyzed. We first used the CIBERSORT algorithm
to estimate the proportion of immune cells in the TCGA cohort
(Figure 5E), and found that the low-risk group had a higher
percentage of anti-tumor immune cells, including gamma delta
(gd) T cells (P<0.05), CD4+ memory T cells (P<0.01), mast cells
(P<0.01), and resting dendritic cells (P<0.01). In addition,
patients in the high-risk group showed a higher proportion of
immunosuppressive cells, such as M0 macrophages. Although we
FIGURE 3 | The correlation between IRMGs identified in the LASSO model using the TCGA cohort and their corresponding mRNA expression levels.
June 2021 | Volume 12 | Article 704557
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observed that the level of activated dendritic cells in the high-risk
group was higher than that in the low-risk group, the absolute level
in both groups was very low, even far lower than other types of
immune cells. The effect of such a low level of activated dendritic
cells may be almost negligible. Then, the MCP-counter algorithm
was used to estimate the proportion of immune cells in the TCGA
cohort (Figure5F).Consistentwith the above results, patients in the
low-risk group also demonstrated a higher percentage of anti-
tumor immune cells, including T cells, CD8+ T cells, cytotoxic T
cells, B lineage,myeloiddendritic cells, andneutrophils. Inaddition,
the risk score was negatively correlated with the mRNA expression
Frontiers in Immunology | www.frontiersin.org 6
of immune checkpoints CD27, CD40, ENTPD1, PDCD1, CD274,
HAVCR2, CD33, CD4, TBX21, CD8B, and PRF1, but positively
correlated with the expression of NOS2 (Figure 5G). We also
observed that the risk score was mainly negatively correlated with
the expression of immune checkpoints related to T cells.
Prognostic Value of the
18-IRMGs Signature
The development of convenient tools for early diagnosis and
treatment guidance of diseases remains a critical clinical issue.
A B

C D

E

FIGURE 4 | (A) Distribution of methylation levels of the 18-IRMGs signature in the TCGA cohort; (B) Multivariate Cox regression analysis results of the 18-IRMGs
signature corresponding to OS in the TCGA cohort. (C) Distribution of risk scores in the TCGA cohort; (D) Comparison of risk scores of different molecular subtypes
in the TCGA cohort (****: p<=0.0001, ns: p>0.05); (E) The distribution of patients in different risk scores according to survival status and survival time. IRMGs,
immune-related methylation genes; OS, overall survival; TCGA, The Cancer Genome Atlas; Her2, human epidermal growth factor receptor 2.
June 2021 | Volume 12 | Article 704557
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To further clarify the prognostic and prognostic value of the
18-IRMGs signature in breast cancer, ROC analysis, and the
Kaplan-Meier method were used to assess the prognosis in
the TCGA cohort.

First, the overall survival of patients with different risk scores
was compared. In the TCGA cohort, patients in the low-risk
group had a better OS than those in the high-risk group
(Figure 6A). A time-related ROC analysis was performed and
the area under the curve (AUC) was calculated at different time
points based on the availability of data (Figures 6B–D). The
results suggested that the corresponding AUCs of the ROC
analysis for 1-, 3-, and 5-year follow-up in the TCGA cohort
were 0.788, 0.771, and 0.721, respectively (Figures 6B–D). This
indicated that the 18-IRMGs signature had good prognostic
value in both short-term and long-term follow-up.
Frontiers in Immunology | www.frontiersin.org 7
Validation of the 18-IRMGs Signature for
Breast Cancer Survival Prediction in an
Independent Cohort
The GSE72308 was used as the independent external validation
cohort (N=288). First, the methylation values of the 18 IRMGs
and risk score distribution of all the patients in the GSE72308
cohort are shown in Figures 7A, B. Consistent with the TCGA
cohort, in the GSE72308 cohort, it was also observed that the
HER2 positive subtype had the highest risk score, followed by
basal-like subtypes and luminal B subtypes. The risk scores of
these three subtypes were significantly higher than the luminal A
subtype (Figure 7C). Similarly, high- or low-risk patients were
grouped according to the median risk score. The results showed
that the 18-IRMGs signature performed well, and compared with
the high-risk group, the OS of patients in the low-risk group was
A B

C D

F

G

E

FIGURE 5 | 18-IRMGs signature related immune characteristics and immune cells. (A) GO analysis of the group based on18-IRMGs signature. (B) GSEA is related
to immune-related signals based on the 18-IRMGs signature. (C, D) ESTIMATE immune score and stromal score between groups based on IMI (**: p<=0.01,
****: p<=0.0001). (E) Comparison of infiltrating immune cells (CIBERSORT) between the two risk groups. (F) Comparison of infiltrating immune cells (MCP counter)
between the two risk groups. (G) Correlation between risk scores and immune-related genes in the TCGA cohort. IRMGs, immune-related methylation genes;
GO, Geneontology; GSEA, Gene Set Enrichment Analysis; ESTIMATE, Estimation of Stromal and Immune cells in MAlignant Tumor tissues using Expression data;
CIBERSORT, Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts.
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significantly longer (P<0.05) (Figure 7H). The ROC curve over
time shows that the 18-IRMGs signature had good accuracy,
with 0.839 for 1 year-AUC, 0.712 for 3 years-AUC, and 0.723 for
5 years-AUC (Figures 7D–F). The distribution of risk scores of
breast cancer patients from the GSE72308 cohort based on
different survival time and survival status (alive or dead) was
also shown in Figure 7G.
DISCUSSION

In this study, we provided new insights into the heterogeneity
of the tumor immune microenvironment of breast cancer
and confirmed that the specific characteristics of immune
methylation have an important prognostic value. We analyzed
the relationship between DNA methylation and tumor
immunity of breast cancer through the IRGMs set, and identified
two immune methylation clusters significantly related to patient
survival, which was then validated in an independent cohort. These
demonstrated the relationship between immune methylation
characteristics and corresponding immune cell infiltration in the
tumor microenvironment and patient prognosis.

Some recent studies have suggested that there are abnormal
methylation events in breast tumors, and specific DNA
methylation patterns may be closely related to breast cancer
immune microenvironment, molecular subtypes, and recurrence.
Dedeurwaerder et al. (37) conducted DNAmethylation analysis on
Frontiers in Immunology | www.frontiersin.org 8
248 breast tissues and found that DNA methylation analysis can
reflect the cell type composition of the tumor microenvironment,
especially the T lymphocyte infiltration of the tumor. What they
found also strongly proved that DNAmethylation can indeed help
better understand the complex relationship between tumor cells
and the immune microenvironment. Holm et al. (38) used an
array-based methylation assay to analyze the methylation status of
807 cancer-related genes in 189 fresh frozen primary breast tumors
and 4 normal breast tissue samples. They found that basal-like,
luminal A and luminal B subtypes of breast cancer have specific
methylation characteristics, suggesting that methylation may play
an important role in the development of breast cancer.
Kamalakaran et al. (39) found that the DNA methylation
pattern in luminal breast cancer is different from non-luminal
subtypes, and the DNAmethylation pattern can be independent of
other clinical variables to identify the risk of recurrence.

Based on the TCGA data set of 769 breast cancer samples that
met the inclusion criteria, the current study has identified
prognostic immune methylation features with potential clinical
applicability. The risk score obtained from the 18-IRMGs
signature effectively divided breast cancer patients into high-risk
and low-risk groups. In the TCGA cohort, the OS of the high-risk
group was shorter than that of the low-risk group (p<0.001) and
also demonstrated good prognostic performance (AUC of 1, 3,
and 5 years are 0.788, 0.771, and 0.721, respectively). Besides, the
results of the univariate Cox regression (Figure 4B) and Kaplan-
Meier (Supplementary Figure 1) for 18 individual immune
A B

C

D

FIGURE 6 | The potential indicator value of 18-IRMGs signature in the prognosis of TCGA breast cancer. (A) Kaplan-Meier plot of OS between the two risk groups
in the TCGA cohort. The log-rank test was used for data analysis. (B–D) Time-dependent ROC analysis (1, 3, and 5 years) based on 18-IRMGs signature in breast
cancer patients in the TCGA cohort. IRMGs, immune-related methylation genes; OS, overall survival; ROC, receiver operating characteristic; TCGA, The Cancer
Genome Atlas; AUC, area under the curve.
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methylation sites showed that each immunemethylation site could
also distinguish high-risk and low-risk patients. This indicated
that a single immune methylation site may play a role in
prognostic prediction, and the combination of 18 methylation
sites provided better prognostication ability. Based on our existing
knowledge, the prognostic value of related multiple immune
methylation signatures in breast cancer has not been reported.
Therefore, this study provides new insights on the combination of
epigenetic biomarkers helping to improve the risk stratification
and survival prediction of breast cancer patients.
Frontiers in Immunology | www.frontiersin.org 9
Considering that ideal prognostic markers can also effectively
stratify risk in other independent cohorts, we used the GSE72308
cohort to further evaluate the practicality of the 18-IRMGs
signature. It performed well in distinguishing the low-risk
and high-risk groups of the GEO cohort, and the prediction
accuracy of the GSE72308 cohort was consistent with the TCGA
cohort (1-year-AUC=0.839, 3-years-AUC =0.712, and 5-
years-AUC=0.723).

The blockade of immune checkpoints such as PD-1, PD-L1,
and CTLA-4 has shown impressive results in a series of solid
A B C

D E F

G H

FIGURE 7 | Validation of the prognostic value of 18-IRMGs signature for OS in the GSE72308 cohort. (A) Distribution of methylation levels of 18 IRMGs in the
GSE72308 cohort; (B) Distribution of risk scores in the GSE72308 cohort; (C) Comparison of risk scores of different molecular subtypes in the GSE72308 cohort
(***: p<=0.001, ****: p<=0.0001); (D–F) Time-dependent ROC analysis (1, 3, and 5 years) based on 18-IRMGs signature in breast cancer patients in the GSE72308
cohort; (G) The distribution of patients of different risk scores according to survival status and survival time; (H) Kaplan-Meier plot of OS between the two risk groups
in the GSE72308 cohort. The log-rank test was used for data analysis. IRMGs, immune-related methylation genes; OS, overall survival; ROC, receiver operating
characteristic; AUC, area under the curve; Her2, human epidermal growth factor receptor 2.
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cancers (especially melanoma and non-small cell lung cancer).
Currently, there are many ongoing and planned trials of these
drugs in breast cancer. However, only a small percentage of
breast cancer patients respond to immune checkpoint blockade
(ICB) treatment, and the identification of ICB response
biomarkers and drug resistance modifiers is a key challenge.
DNA methylation plays a vital role in cell lineage regulation and
can be used as a specific molecular marker for immune response
measurement. The role of DNA methylation in the immune
response to cancer is becoming increasingly important and it is
currently considered to be closely related to the efficacy of
immunotherapy for melanoma and other tumors. Recently,
Duruisseaux M et al. (22) found that a microarray DNA
methylation signature could predict the efficacy of anti-PD-1
therapy in stage IV NSCLC patients. Similarly, Kim et al. also
found that methylation patterns could predict the clinical benefit
of immunotherapy in lung cancer (40). In the present study, our
proposed 18-IRMGs signature was found to be significantly
related to the prognosis of breast cancer patients.

Further analyses showed that the characteristics based
on 18-IRMGs signature were related to the tumor immune
microenvironment and affected the abundance of tumor-
infiltrating immune cells. The stromal cell score and the immune
score of the high-risk group were significantly lower than the low-
risk group. Further analysis showed that in the low-risk group, the
infiltration level of quiescent mast cells, CD4memory T cells, mast
cells, gamma delta T cells and resting dendritic cells was higher
than the high-risk group. In contrast, the infiltration level of
macrophages M0 cells in the high-risk group were higher than
those in the low-risk group.Althoughweobserved that the activated
dendritic cells in the high-risk group was higher than that in the
low-risk group, the absolute level in both groups was very low, even
far lower than other types of immune cells. The effect of such a low
level of activateddendritic cellsmaybe almost negligible. In general,
the significant difference in survival rate between the two groups
may be related to the difference in the immune microenvironment
of the two groups. This finding is consistent with the results of
previous studies, which showed that patients with low immune
scores had a worse survival than patients with high immune scores.

Undeniably, our research had several limitations. First, despite
the identification and validation of the 18-IRMGs signature,
additional prospective external verification is required in a
multicenter cohort to confirm the study findings. Second, it is
necessary to further study the regulatory mechanism of DNA
methylation in tumor immune microenvironment(TIME) to
reshape TIME and improve precision immunotherapy for breast
cancer. Third, there is no data on DNA methylation in breast
cancer patients receiving immunotherapy, so it is unclear whether
they could also be used as a marker for predicting ICB efficacy.
Fourth, this study mainly used two independent databases
(GSE72308 and TCGA data sets) to analyze the relationship
between IRMG and immune activity. The results of this study
have not been verified by extensive in vitro experiments. Fifth, we
did not find any significant correlation between TNM staging and
the 18-IRMGs signature, suggesting that the two are independent
of each other in judging prognosis.
Frontiers in Immunology | www.frontiersin.org 10
CONCLUSION

In summary, we identified and validated an 18-IRMGs signature
that was significantly associated with OS in independent cohorts.
The proposed 18-IRMGs signature demonstrated promising
accuracy in stratifying breast cancer patients based on their
survival differences and could be used as a guide to assess the
need for adjuvant therapy. In addition, the 18-IRMGs signature
was closely related to the tumor immune microenvironment and
may be used to select patients who respond to immunotherapy.
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