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ABSTRACT

Abnormal DNA ploidy, found in numerous cancers, is increasingly being recognized as a contributor in driving chromosomal
instability, genome evolution, and the heterogeneity that fuels cancer cell progression. Furthermore, it has been linked with
poor prognosis of cancer patients. While next-generation sequencing can be used to approximate tumor ploidy, it has a high
error rate for near-euploid states, a high cost and is time consuming, motivating alternative rapid quantification methods. We
introduce PloiViT, a transformer-based model for tumor ploidy quantification that outperforms traditional machine learning
models, enabling rapid and cost-effective quantification directly from pathology slides. We trained PloiViT on a dataset of fifteen
cancer types from The Cancer Genome Atlas and validated its performance in multiple independent cohorts. Additionally, we
explored the impact of self-supervised feature extraction on performance. PloiViT, using self-supervised features, achieved the
lowest prediction error in multiple independent cohorts, exhibiting better generalization capabilities. Our findings demonstrate
that PloiViT predicts higher ploidy values in aggressive cancer groups and patients with specific mutations, validating PloiViT
potential as complementary for ploidy assessment to next-generation sequencing data. To further promote its use, we release
our models as a user-friendly inference application and a Python package for easy adoption and use.

Introduction
Ploidy refers to the number of sets of chromosomes in a cell. Normal human cells have two sets (diploid). In contrast, cancer
cells often exhibit an abnormal number of chromosomes, referred to as aneuploidy (as result of insertion or deletion). Ploidy
can be estimated by measuring the amount of DNA in a cell, referred to as DNA ploidy value.1. This abnormal number of
chromosomes has been linked with more aggressive tumors, poorer prognosis, and a higher chance of metastasis in some cancer
types2–4.

Several techniques exist to quantify ploidy in biology. Traditional karyotyping allows direct visualization of chromosomes
but is labor-intensive, limited to a small number of cells and lacks sensitivity for smaller changes5. Next-Generation Sequencing
(NGS) excels in sensitivity for various genomic alterations, but comes with higher costs, complex data analysis6, and error-
prone ploidy quantification for near-euploid states. Two other techniques are mainly used nowadays to quantify ploidy from
tissue samples: flow cytometry7, 8 and image-based analysis using immunofluorescence (IF)9, 10. However, they both present
drawbacks. Flow cytometry is confounded by cell cycle state. For example if cells tend to spend longer in G2M for any reason
it will look like an increase in ploidy, when in fact only a shift in cell cycle state duration has happened. On the other hand,
with IF imaging, it can be difficult to obtain unstained tissue sections, and sampling errors may arise from manual counting in a
few histological regions.

During clinical practice, one of the main cancer diagnosis tools used by pathologists are tissue samples stained with
hematoxilyn & eosin (H&E). These tissue samples are routinely obtained and digitized as whole-slide images (WSI) (also
known as digital pathology slides) for visual examination11, 12. Thus, having a tool that quantifies ploidy from WSI samples
can result in a fast and cheap quantification tool that could be integrated into the clinical practice, without the requirement of
processing a tissue sample.

Machine learning (ML), particularly deep learning, has achieved remarkable results in digital pathology, enabling various
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cancer-related tasks13–18. Traditionally, models pre-trained on natural images were fine-tuned for specific WSI tasks. However,
the success of self-supervised learning (SSL) has boosted the development of WSI-specific SSL models19–21. These models
reveal a unique latent space within WSIs, offering the potential to significantly enhance downstream task performance by
using the model output’s features. These novel feature extractors are usually based on transformer-based models, specifically
vision transformers, that are an extension of natural language processing transformers applied to imaging modalities22. The
improvements achieved by using there feature extractors over using Imagenet-trained models is task-specific, and needs to be
tested for each independent task.

Regarding the development of ploidy quantification models from H&E images, previous work has resulted in a deep
learning-based model to quantify hepatic ploidy from non-cancerous H&E images with good results23. However, authors did
not predict the bulk ploidy value that can be obtained from other NGS technologies, but whether the cell had two, four, or
more than four sets of chromosomes. Thus, the development of a deep learning-based model able to quantify bulk ploidy
complementary to NGS-derived ploidy can be important to further strengthen the predicted ploidy. In addition, it is known that
ploidy patterns are cancer type-specific, and cancers that originate from related tissues tend to exhibit similar ploidy patterns.
Thus, having a pan-cancer model might be valuable, allowing the model to learn common ploidy patterns across tissues3, 24,
increasing its potential for broader clinical use.

In this work, we present Ploidy Vision Transformer (PloiViT), a vision transformer-based model for the digital quantification
of ploidy from pan-cancer H&E digital pathology slides. Furthermore, we compare the performance with a traditional ML
model, XGBoost, and also with a late fusion model that fuses the outputs of both models. We make use of a WSI representation
based on the aggregation of features obtained using two different feature extractors: an ImageNet pre-trained ResNet50, and
CTransPath19 (defined as ResNet and CTrans going forward), given the satisfactory results that these models have showed in
other tasks. We train and validate all models using fifteen different cancer types, and compare the predictions between them and
between the feature extractors. Furthermore, we show that transformer-based models outperform traditional ML models when
tested on independent cohorts. Finally, ploidy predictions are significantly different between important phenotypes (gleason
score in prostate cancer, IDH-1-mutation in glioblastoma and HER2 positive in breat cancer).

Results
Machine learning models accurately predict ploidy values from digital pathology slides
We used TCGA as our discovery cohort to develop our models (see Methods). From this cohort, we first used an 80-20%
training test split, and used the 80% training data for model development. To validate and select the different hyperparameters
of the models, we performed a five-fold cross-validation over the training set. We compared the performance of three different
models, using features from two different feature extractors: ResNet and CTrans. All details about model training can be found
in the Methods section.

Firstly, we computed the performance across the five test sets in the five-fold cross-validation. For all performance metrics,
root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE), the model that
combines the outputs from PloiViT and XGBoost (PloiViT+XGBoost) using CTrans features outperformed the rest of models
in TCGA samples (Table 1). Models using CTrans features reached a superior performance in comparison to those using
ResNet features. This is especially clear for the PloiViT model, where there is a difference of 0.2568 in terms of RMSE,
and there is a significant difference between the model trained using ResNet features and that trained with CTrans features
(paired t-test p-value ≤ 0.01). Furthermore, we computed all metrics per cancer type by joining the predictions over all test sets,
simulating the performance over the whole training split, to observe the difference in performance between them (Figure 2 A,
Supplementary Tables 1, 2, and 3). The best results were obtained for TCGA-PRAD (RMSE 0.3148), TCGA-THCA (RMSE
0.3346), and TCGA KIRP (RMSE 0.3346) in terms of RMSE. The worse results were obtained in TCGA-LUAD (RMSE
0.9867), TCGA-STAD (RMSE 0.9020), and TCGA-BRCA (RMSE 0.8164).

Once we selected the different hyperparameters in the five-fold cross-validation (see Methods), we trained all models
on the 80% training data, using 20% of it as validation for early stopping purposes. Then, we evaluated the model on the
hold-out test set (Figure 2B, Table 2, Supplementary Tables 4, 5, and 6). Again, the combination of PloiViT and XGBoost
using CTrans features outputs outperformed the rest of the models in terms of MAE and MAPE, reaching a RMSE of 0.7221, a
MAE of 0.4730, and a MAPE of 0.1694. Only, XGBoost using CTrans features outperformed the fusion model in terms of
RMSE (0.6810). This maintains the superiority of the CTrans over the ResNet features, and also the fusion of both models. A
comparison between the real values and predictions per cancer type is presented in Supplementary Figure 1.

Transformer-based models demonstrate superior generalization in independent cohorts
We evaluated our models on two independent cohorts, CPTAC25 and PBTA26. For CPTAC, we assessed performance on
LUAD and GBM using models trained on TCGA and the two feature extractors (ResNet and CTrans). In terms of MAE
and MAPE, PloiViT with CTrans features consistently outperformed other models, yielding a CPTAC-GBM MAE of 0.5499
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Figure 1. Machine learning for accurate ploidy quantification from digital pathology slides. Panel A: Our models use as
input a whole-slide image, applies several preprocessing steps (see Methods) and predict the overall ploidy value. We used
TCGA samples from fifteen cancer types as our discovery set, and tested our model on three independent cohorts for survival
prediction and spatial validation. Panel B: Oue training and prediction pipeline. It uses as input N tiles from the whole-slide
image, and a pretrained Resnet50 or CTrans model is used to obtain N feature vectors. A K-Means clustering algorithm is used
to reduce the N features vectors to K clusters, and the centroid vector per cluster is computed. These K centroid feature vectors
are used as input to the transformer encoder or the XGBoost model to perform the ploidy prediction. Panel C: We compared
the performance of PloiViT, XGBoost, and the fusion of both models (named PloiViT+XGBoost) using either ResNet50 or
CTrans features in a five-fold cross validation. In this plot, we represent the performance of each model in terms of mean
absolute error (MAE), root mean squeared error (RMSE), and mean absolute percentage error (MAPE). The lower the values,
the better the performance. The best median performance was achieved by PloiViT+XGBoost using CTrans features, followed
by XGBoost using CTrans features.

and a CPTAC-LUAD MAE of 0.9216 (Table 3, Supplementary Tables 7, 8). For RMSE, PloiViT CTrans was superior for
CPTAC-LUAD, while the PloiViT+XGBoost fusion model with ResNet features narrowly edged out PloiViT CTrans for
CPTAC-GBM (0.8354 vs. 0.8333). Notably, these results mirrored TCGA performance, where PloiViT CTrans achieved
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Table 1. Machine learning models accurately predict ploidy on TCGA. Metrics obtained per model, and feature extractor
in the five-fold cross validation. The fusion model that uses CTrans features is the one that obtains the best results. Using
CTrans features outperformed using ResNet features for both models. Best results are highlighted in bold.

Model RMSE (mean ± std) MAE (mean ± std) MAPE (mean ± std)
PloiViT ResNet 1.0349 ± 0.1294 0.8540 ± 0.1202 0.3695 ± 0.0779
XGBoost ResNet 0.7496 ± 0.1071 0.6396 ± 0.0524 0.2563 ± 0.0159
PloiViT+XGBoost ResNet 0.8241 ± 0.1011 0.6881 ± 0.0800 0.2922 ± 0.0439
PloiViT CTrans 0.7781 ± 0.0997 0.6078 ± 0.0945 0.2439 ± 0.0362
XGBoost CTrans 0.7203 ± 0.1174 0.5929 ± 0.0702 0.2358 ± 0.0169
PloiViT+XGBoost CTrans 0.7002 ± 0.0903 0.5599 ± 0.0622 0.2241 ± 0.0172

Table 2. Machine learning models generalize to the TCGA hold-out test set. Metrics obtained per model, and feature
extractor in the TCGA hold-out test set. The fusion model that uses CTrans features is the one that obtains the best results.
Using CTrans features outperformed using ResNet features for both models. Best results are highlighted in bold.

Model RMSE MAE MAPE
PloiViT ResNet 0.8226 0.6710 0.3007
XGBoost ResNet 0.7007 0.5743 0.2400
PloiViT+XGBoost ResNet 0.7318 0.5972 0.2605
PloiViT CTrans 0.9110 0.6592 0.2353
XGBoost CTrans 0.6810 0.5249 0.2189
PloiViT+XGBoost CTrans 0.7221 0.4730 0.1694

RMSEs of 0.9569 for TCGA-GBM and 1.5387 for TCGA-LUAD on the hold-out test set (Table 2).
Subsequently, we predicted ploidy values for 125 PBTA slides (formed by four different cancer types) with determined

ploidy (see Methods). PloiViT with CTrans features again excelled across all metrics, reaching an RMSE of 0.6758, MAE of
0.4792, and MAPE of 0.1649, surpassing XGBoost CTrans which obtained an RMSE of 0.7041, MAE of 0.5698, and MAPE of
0.2132 (Table 4). These low error values, especially the MAPE, underscore the strong generalization of our transformer-based
model to unseen cohorts.

Table 3. Root mean squared error (RMSE) obtained per model and per cancer type in the CPTAC cohort. Best results are
highlighted in bold.

CPTAC Project PloiViT XGBoost PloiViT+XGBoost
ResNet CTrans ResNet CTrans ResNet CTrans

CPTAC-GBM 0.8458 0.8354 0.8406 0.8525 0.8333 0.8378
CPTAC-LUAD 1.3090 1.1804 1.3215 1.2590 1.3128 1.2128

Table 4. Metrics obtained per model, and feature extractor in the PBTA dataset. Best results are highlighted in bold.

Model RMSE MAE MAPE
PloiViT ResNet 0.7157 0.5523 0.1990
XGBoost ResNet 0.6915 0.6053 0.2358
PloiViT+XGBoost ResNet 0.6918 0.5773 0.2167
PloiViT CTrans 0.6758 0.4792 0.1649
XGBoost CTrans 0.7041 0.5698 0.2132
PloiViT+XGBoost CTrans 0.6811 0.5244 0.1890

Prostate, glioblastoma, and breast cancer patients with specific phenotypes present higher predicted ploidy
values
Next, we tested whether samples from patients with specific phenotypes presented higher predicted ploidy values than other
patients. Specifically, we tested whether prostate cancer patients within a high risk group (based on the Gleason score) showed
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Figure 2. Models using CTrans features outperform models using ResNet features for pan-cancer ploidy prediction.
Panel A: Comparison in terms of root mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage
error (MAPE) between PloiViT, XGBoost, and PloiViT+XGBoost models using ResNet and CTrans features. For the metrics,
the closer to zero denotes a better performance. These results were obtained by joining the predictions in all test sets in the
five-fold cross validation of the discovery set (TCGA). Panel B: Comparison in terms of RMSE, MAE, and MAPE between
PloiViT, XGBoost, and PloiViT+XGBoost models using ResNet and CTrans features in the TCGA hold-out test set.

a higher ploidy value. Furthermore, we compared the predicted ploidy value between glioblastoma patients with and without
the IDH-1 mutation. Finally, we tested the predicted ploidy value between breast cancer patients with negative and positive
epidermal growth factor receptor (HER2). Thus, given the generalization performance of the PloiViT CTrans model, we used it
to predict the ploidy values in all TCGA-PRAD (N = 895), TCGA-GBM (N = 236), and TCGA-BRCA (N = 1098) samples.
It must be noted that the predictions were made for unseen samples, since only a portion of samples were present in the training
set (N = 55 in the case if PRAD, N = 155 for GBM, and N = 90 for BRCA). Furthermore, during training our models were
blind to any kind of phenotype stratification. For TCGA-PRAD samples, we divided the patients in three risk groups based on
their Gleason Score (low risk: Gleason Group 1, intermediate risk: Gleason Groups 2, and 3, and high risk: Gleason Groups 4,
and 5). For the TCGA-GBM samples, we split the patients in two groups: IDH-1 wildtype or mutant patients. Finally, for
TCGA-BRCA we splitted the patients in two groups: HER2 negative and positive.

The high-risk patient group exhibited significantly higher predicted ploidy values compared to both low- and intermediate-
risk groups (Mann-Whitney u test p-value ≤ 0.0001 in both cases, Figure 3 A). No significant difference was found between
low- and intermediate-risk groups (Mann-Whitney u test p-value ≥ 0.05). Mean ploidy values (95% CI) were 2.1710 (2.1669-
2.1920), 2.0666 (2.0722-2.1117), and 2.0703 (2.0774-2.0950) for high-, low-, and intermediate-risk groups, respectively.

Similarly, IDH-1 mutated patients showed significantly higher predicted ploidy values than wild-type patients (Mann-
Whitney u test p-value ≤ 0.0001, Figure 3 B). Mean values (95% CI) were 2.4528 (2.3334-2.4631) and 2.2361 (2.2326-2.2827)
for mutated and wild-type patients, respectively.

Additionally, HER2-positive patients exhibited significantly higher predicted ploidy values than HER2-negative patients
(Mann-Whitney u test p-value ≤ 0.0001, , Figure 3 C), with mean values (95% CI) of 2.8770 (2.8506-2.9312) and 2.7516
(2.7600-2.7952), respectively.
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Figure 3. Prostate cancer within a higher gleason risk group and glioblastoma patients with IDH-1 mutation present a
higher predicted ploidy. Panel A: Difference in predicted ploidy value between risk groups in TCGA-PRAD defined by their
gleason score. Patients in the high risk group showed a significantly different predicted ploidy value with low and intermediate
risk patients. Panel B: TCGA-GBM IDH-1 mutant patients presented a significantly higher predicted ploidy value than
wildtype patients. Panel C: TCGA-BRCA HER2 positive patients presented a significantly higher predicted ploidy value than
HER2 negative patients. n.s. denotes no significance (p-value ≥ 0.05), **** (p-value ≤ 0.0001).

Transformer-based models can accurately predict tile-level spatial ploidy values across the tissue
We then used a spatial transcriptomics glioblastoma cohort27 (see Methods), to test whether our models could spatially predict
ploidy values across the tissue at tile level. We used the pretrained models on TCGA, predicted the ploidy value for each spot,
and compared with the NGS-derived ploidy value using the inferCNV R package. We computed the RMSE, MAE, and MAPE
for each model across 16 slides, by using all spots predictions and NGS-derived values (Table 5, and Supplementary Tables 9,
and 10).

PloiViT significantly outperformed the XGBoost model (paired t-test p-value ≤ 0.0001), both using the ResNet and the
CTrans features (Table 5). Furthermore, PloiViT using CTrans features obtained the best mean performance (mean RMSE:
0.0963±0.0645, mean MAE: 0.0859±0.0597, and mean MAPE: 0.0429±0.0298) closely followed by PloiVIT using ResNet
features (mean RMSE: 0.1231±0.0674, mean MAE: 0.1095±0.0631, and mean MAPE: 0.0547±0.0315). However, this
difference was not significant between the two PloiViT models (paired t-test p-value ≥ 0.05). Error metrics obtained by
XGBoost were worse, reaching a mean RMSE of 0.6419 and 0.7139 using ResNet and CTrans features respectively. This
validates the previously obtained results in independent cohorts, showing that PloiViT presents better generalization capabilities
to unseen data. In addition, the results obtained by PloiViT using CTrans features in terms of MAPE are comparable to those
obtained in the hold-out test set by the PloiViT+XGBoost model using CTrans features (0.1143, Supplementary Table 10) in
the TCGA-GBM cohort, further validating these results.

Discussion
The study of DNA ploidy, which is highly correlated with aneuploidy, is a rapidly emerging focus in cancer research due to the
aneuploidy links with prognosis and drug resistance. It promotes evolutionary flexibility, cellular adaptation, cancer stem-cell
properties, and immune evasion, all key drivers of aggressive tumor behavior. Targeting these aneuploidy-linked mechanisms
holds therapeutic promise, with early successes in exploiting synthetic lethality, mitotic defects, and aneuploidy-tolerance
mechanisms2, 4. Thus, having a reliable and cheap ploidy quantification tool that complements NGS-derived ploidy can advance
patient treatment and clinical decisions.

In this work we have presented PloiViT, a transformer-based model capable of accurately quantifying ploidy from routinely
obtained H&E stained digital pathology slides. We compared the performance of our model with XGBoost and a late fusion
model. While within the TCGA cohort a better performance was obtained by the late fusion and ML models (Tables 1, 2),
this performance was not maintained when tested on independent cohorts. PloiViT using CTrans features outperformed both
XGBoost and the late fusion model on CPTAC in terms of MAE and MAPE (Supplementary Tables 7, 8), for all metrics in the
case of the PBTA cohort (Table 4), and for all slides in the spatial GBM cohort (Table 5, and Supplementary Tables 9, and 10).

Furthermore, it must be noted that PBTA contains cancer types outside those in the training set, showing impressive results.
These results show the better generalization performance that deep learning models have over traditional ML methods. We also
hypothesize this could be due to the attention mechanism used in PloiViT. To train XGBoost, a single feature vector is used, so
the average of all clusters centroids is used as input to the model. However, for PloiViT, all 100 centroid feature vectors are
used as input, allowing the model to learn relationships between them thanks to the self-attention operation. Nevertheless, it
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Table 5. Root mean squared error (RMSE) obtained per model and slide in the spatial glioblastoma cohort. Given the low
performance of the XGBoost model, we did not compute the performance of the PloiViT+XGBoost model. Best results are
highlighted in bold.

Slide ID PloiViT XGBoost
ResNet CTrans ResNet CTrans

269_T 0.1102 0.0540 0.6485 0.7929
270_T 0.1451 0.0961 0.7061 0.7478
296_T 0.1923 0.1973 0.5764 0.7851
275_T 0.0704 0.0237 0.6886 0.5420
248_T 0.0397 0.0154 0.6089 0.6642
334_T 0.2668 0.0508 0.6592 0.6106
268_T 0.1259 0.0633 0.6628 0.7511
255_T 0.1563 0.1860 0.6154 0.6561
259_T 0.0469 0.0602 0.6296 0.7280
266_T 0.0367 0.1263 0.7280 0.7021
242_T 0.1423 0.0736 0.6376 0.9478
262_T 0.1264 0.1104 0.6947 0.6340
260_T 0.0738 0.0272 0.5712 0.7858
243_T 0.0355 0.0544 0.6046 0.7848
265_T 0.2114 0.2101 0.6061 0.6265
304_T 0.1896 0.1927 0.6328 0.6632
Mean 0.1231 0.0963 0.6419 0.7139
STD 0.0675 0.0645 0.0442 0.0940

is still surprising the high-accuracy that a traditional ML can achieve on this task, especially comparing the computational
requirements to train both models.

If we compare the performance between the two feature extractors, it is clear that using a digital pathology specific model
like CTrans provides an advantage over ResNet features, especially observing the results obtained both in the five-fold cross
validation and in the hold-out test set (Tables 1, 2). This result has recently been reported in other works, and it seems to be
the future path for digital pathology classification28–30. Testing the CTrans feature extractor in non-TCGA cohorts is crucial,
since CTrans was trained using TCGA samples. When we tested the pre-trained models in the independent cohorts, the models
using CTrans features also outperformed the ResNet models. This was not the case for all cancer types (e.g. TCGA-LUAD,
TCGA-STAD, or TCGA-GBM, Supplementary Table 4), but there was an improvement in the mean performance of the models.
Thus, similarly to what other researchers have reported in relevant cancer tasks, using a SSL trained model on digital pathology
as a feature extractor outperforms feature extractors trained on natural images for ploidy quantification20, 21.

To further study whether our predictions accurately represented the effect of some phenotypes in the samples, we compared
the predicted ploidy value in three TCGA cohorts (PRAD,GBM, and BRAC), for the gleason risk group, the IDH-1 mutation
respectively, and the HER2 status respectively. It must be noted that we predicted the value for all available samples, not
restricting ourselves to the handful of samples for which the NGS-derived ploidy value is known. For TCGA-PRAD, we showed
that a significantly higher ploidy value was predicted within the high risk group in comparison to the low and intermediate
risk groups (Figure 3 A). The gleason score inform us about the prognostic perspective of the patient and also helps guide the
patient’s therapy31–33. High risk patients group are those with advanced neoplasms that are unlikely to be cured. Given the
association between abnormal ploidy values and prognosis34, it is expected that PRAD patients within the high risk group
present a higher mean ploidy value than those in early stages of the disease. Next, we also compared the predicted ploidy
value in TCGA-GBM samples between wildtype and those samples with a mutation in IDH-1. Mutations affecting the DNA
damage response (e.g. IDH-1 mutation in GBM) enable polyploid cells to further proliferate35. Thus, a higher predicted ploidy
value is expected in those samples with the IDH-1 mutation, which was the case in our experiments (Figure 3 B). Finally,
HER2 overexpression or amplification in BRCA is a marker of aggressive disease and poorer outcomes. This receptor activates
signaling pathways that drive cancer cell growth and proliferation36. Thus, given the higher proportion of cancer cells, it is
expected that HER2 positive patients have a higher ploidy value than negative patients. This was the case in our experiments,
where a significant difference was found in the predicted ploidy between positive and negative patients (Figure 3 C). These
experiments validate the capability of our model to predict ploidy values that accurately align to the expected biology of
important phenotypes and disease stages.
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Finally, even though our model was trained for slide-level prediction, we decided to test the model capabilities by predicting
spatial patterns of ploidy values across the tissue. By using a spatial GBM cohort, we showed that PloiViT models outperform
XGBoost by a large margin, and using the CTrans features also outperform ResNet features (Table 5). Furthermore, it is
noticeable that the error obtained by PloiViT is low, and comparable to that obtained by the late fusion model in the TCGA-GBM
hold-out test set cohort (Supplementary Table 4). It must be noted that the tiles required upsampling to the desired resolution,
since the spatial spot comprehends a tile of approximately 56× 56 pixels. Furthermore, XGBoost allows to use a single
tile to make the prediction, while for PloiViT we are using a sliding-window method (see Methods), which might affect the
performance of one over the other. Nevertheless, PloiViT outperformed XGBoost in the rest of independent cohorts, therefore,
it is expected that the same happens in the spatial cohort.

Our models demonstrate the ability of deep learning to quantify ploidy across multiple cohorts. However, there are important
considerations to be made. Our models were trained exclusively on TCGA data, and while this is an invaluable resource,
incorporating data from multiple sources would enhance model diversity. Additionally, since our models’ quantification is
trained on the TCGA wider-scale validation using different quantification methods is necessary. Furthermore, we currently
quantify ploidy at the bulk level due to data limitations. A high-quality, H&E-matched spatial transcriptomics dataset at
single-cell resolution would be transformative, enabling the development of a model capable of predicting ploidy for individual
cells. While such datasets are not yet available, they hold the potential for significant advancements in this field.

PloiViT demonstrates the superiority of transformer-based models over traditional machine learning approaches for ploidy
prediction, offering improved generalization and accuracy. As a crucial addition to the digital quantification toolkit, PloiViT has
the potential to derive critical clinical information from cost-effective modalities, positively impacting patient care. We foresee
that PloiViT can be used to complement NGS-derived ploidy, providing a more robust final quantification by relaying on both
methodologies. To facilitate the use of the tool and further research, we have made our models available both in the source
code, a user-interface inference application, and a python package (see Code Availability). Future research directions include
extending our model to additional cancer types, subject to data availability. Integrating multiple datasets, given sufficient
samples, would further enhance performance. Moreover, the availability of spatial transcriptomics data would enable training a
model with improved accuracy and the ability to pinpoint spatial patterns of ploidy.

Methods

Patient cohorts
The Cancer Genome Atlas Project
For model training and evaluation, anonymized patient data were retrieved from the publicly available The Cancer Genome
Atlas (TCGA) archive (available at https://portal.gdc.cancer.gov). We used paraffin-embedded (FFPE) whole
slide images (WSIs) and ploidy values from fifteen cancer types, including bladder urothelial carcinoma (BLCA), breast invasive
carcinoma (BRCA), blioblastoma multiforme (GBM), head and neck squamous cell carcinoma (HNSC), kidney chromophobe
(KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma
(LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD), skin
cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD), Thyroid carcinoma (THCA), and uterine corpus endometrial
carcinoma (UCEC). The number of patients and WSIs is listed in Supplementary Table 11.

Clinical Proteomic Tumor Analysis Consortium
For validation, anonymized patient data were retrieved from the publicly available Clinical Proteomic Tumor Analysis
Consortium (CPTAC) cohort25 (https://www.cancerimagingarchive.net/collections). We downloaded
matched WSIs from two cancer types, lung adenocarcinoma (LUAD) and glioblastoma multiforme (GBM). The sample size is
described in Supplementary Table 12.

Pediatric Brain Tumor Atlas
Anonymized WSIs from the pediatric brain cancer cohort from PBTA consisted of four tumor subtypes: low-grade glioma/astrocytoma
(LGG), high-grade glioma/astrocytoma (HGG), Ganglioglioma, others and others (https://kidsfirstdrc.org). Clini-
cal data was downloaded from the original publication of Shapiro et al.26. Ploidy values were inferred via Control-FREEC37.
The sample size is described in Supplementary Table 13.

Spatial Glioblastoma Dataset
Spatial transcriptomic data and matched histology images of GBM were obtained from a published study by Ravi et al.27

(https://datadryad.org/stash/dataset/doi:10.5061/dryad.h70rxwdmj). Ploidy values per spot were
obtained using the inferCNV package38.
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Preprocessing of Whole Slide Images
Whole-slide images (WSIs) were acquired in SVS format and downsampled to a magnification of 20x (0.5 µm per pixel). The
Otsu threshold method was applied to generate a tissue mask, facilitating the exclusion of tiles predominantly containing white
background39. Each WSI was partitioned into non-overlapping tiles measuring 256x256 pixels (128 µm x 128 µm). For each
slide, a maximum of N = 4000 tiles was randomly selected, filtering out those containing more than 20% background and tiles
with low contrast.

For slide-level feature representation, the selected tiles were grouped into bags. Initially, a ResNet-50 module pretrained on
ImageNet, or the pre-trained CTransPath model, were employed to transform each tile into a feature vector (1xN, being N the
embedding dimension of each feature extractor, N = 2048,768). Subsequently, the k-means algorithm was utilized to cluster
similar tiles within each slide into K = 100 clusters. The features of patches within each cluster were then averaged, yielding a
matrix of 100xN or vectors representing the slide. This allows to capture the intrinsic characteristics of groups of tiles while
reducing the computational requirements for a transformer-based model.

Machine learning models details
In this work we have used two different models: PloiViT and XGBoost. PloiViT draws inspiration from the original ViT
architecture proposed by Dosovitskiy et al.22, which extends the Transformer framework from natural language processing
(NLP) to the realm of computer vision40. Furthermore, it is also based on SEQUOIA, our proposal for digital quantification of
cancer transcriptomes41. In the ViT framework, images are segmented into patches of size 16×16 pixels, akin to "tokens" in
NLP. These patches undergo linear projection to extract feature vectors, which are subsequently processed by a transformer
encoder. This encoder refines the input representation and directs it to a multi-layer perceptron (MLP) head for final prediction.
A schematic representation of the architecture can be observed in Figure 1 A.

In our approach, the image segmentation concept aligns with the partitioning of WSIs into K feature clusters, with a feature
extractor dimensionality of N (K = 100, N = 2048,768). The resulting 100×N feature matrix is then channeled into the
transformer encoder, comprising 6 encoder blocks, 16 attention heads, and a head dimension of 64. This transformer encoder
facilitates the exploration of inter-cluster relationships, crucial for determining their relevance in slide-level prediction tasks.
Subsequent to layer normalization, the transformed output is conveyed to an MLP layer with dimensions N ×1, to predict the
ploidy value.

For XGBoost, we used the implementation provided in the XGBoost Python Package. We used a Grid Search Cross-
Validation to find the best hyperparameters. We defined the following set of hyperparameters for the search: min_child_weight:
[1,5,10], gamma: [0.5,1,1.5,2,5], subsample: [0.6,0.8,1.0], colsample_bytree: [0.6,0.8,1.0], max_depth: [3,4,5,6], and eta:
[0.1,0.3,0.6].

Training and evaluation details
For training and evaluation of the model, we conducted a five-fold cross-validation using data from the TCGA cohort. Firstly,
the data was partitioned at patient-level in a 80%-20% training and hold-out test sets. The hold-out test set was not used
during model training, and it was only used for evaluating the model after the hyperparameter selection and model training.
Then, a five-fold cross-validation was used within the training set. In each fold i, the dataset was partitioned on patient level,
allocating 80% for ‘global‘ training and 20% for testing. To determine the optimal stop point for training the model in fold i,
the ‘global‘ training set i was further split into 90% for training and 10% for internal validation. We used the Mean Squared
Error (MSE) as the loss function during model training, with each model being trained for a maximum of 100 epochs. For early
stopping and determining the point for model saving, we used the MSE on the validation set, which a patience value of 20
epochs. Throughout this process, we used a fixed learning rate of 3×10−3 and batch size of 32, and the model parameters were
optimized with the Adam optimizer. Then, once the best hyperparameters were selected, the whole training set (80% of the
data) was used to train both models model using the same hyperparameters and optimizer in the case of PloiViT, and then the
predictive performance was tested on the hold-out test set. For validating the models, we computed the MSE values, the Mean
Average Error (MAE) and the Mean Absolute Percentage Error (MAPE).

Spatial prediction of ploidy value on tile level
To predict ploidy values at the tile level, we used two different approaches. For XGBoost we used the features from the tile
to make the prediction. On the other hand, for PloiViT , we implemented a sliding-window technique. Beginning from the
upper-left corner of the whole-slide image (WSI), we consider a window of size 10×10 tiles. To specify the window’s position,
we denote it by the (x,y) coordinates of its upper-left tile. Consequently, the window in the upper-left corner is denoted as w0,0
(with the x,y axes following image processing conventions, where the origin is in the upper-left corner, and the x-axis increases
to the right while the y-axis increases downwards).

The feature vectors of the tiles within window wx,y, which form a 100×2048 matrix, are fed into the model. Each individual
tile’s feature vector serves as a ’cluster mean vector’. The resultant predicted ploidy value pwx,y is recorded for all tiles in the
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window. Subsequently, the window is shifted to the right by a distance of stride tiles (wx+stride,y), and the predicted ploidy
for each tile in this new window is saved. Once the window reaches the end of a row (i.e., when x+ stride+10 equals the
width of the image), a new window begins stride tiles below the previous row (w0,y+stride). After traversing the entire WSI, the
prediction for each tile is computed as the average of all values saved for that tile when it was part of a window wx,y. In our
implementation, we opted for stride = 1 (larger strides entail less computational time but offer reduced granularity).

Software details
All code was developed using Python 3.11. Models were trained on a single NVIDIA V100 with 80 GB RAM. As the
deep learning framework we used pytorch42, and for computing the evaluation metrics, we used the scikit-learn python
package43. Data visualization and data I/O was performed using the matplotlib, seaborn and pandas python libraries. PloiViT
is encapsulated as a python package (ploidyml), that can be installed using pip, as described in the Code Availability section.
Model weights are provided in the Github respository. The user-interface software was developed using the Streamlit python
library. All requirements and library versions can be found in the requirements.txt file provided in the Github repository of the
project.
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