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Deep learning in deep time
Alexander E. Whitea,b,1

Digitized natural history records, now numbering in
the billions (1), span widely across the tree of life and
provide the foundation for numerous recent advances
in biodiversity research (2, 3). Mechanistic insights are
emerging for old questions, including how diversity
has expanded and contracted through Earth’s history
(4), how species have come to occupy the wide range
of ecological roles observed on land and sea alike (5,
6), and how the millions of species on Earth will re-
spond to a rapidly changing climate in the future (7).
Fundamentally, such studies require an understanding
of both how individual organisms are classified to spe-
cies and how species are related in their evolutionary
history. In deep time, where fossils provide scattered
snapshots of historical diversity, taxonomic resolution
is particularly elusive. Molecular data are entirely ab-
sent, the fossil record contains numerous gaps in time
and space, and fossil preservation presents a host of
challenges for evaluating the shape and structure of
diagnostic anatomical traits. Numerous fossil speci-
mens remain poorly resolved, particularly in their evo-
lutionary relationships to modern taxa, clouding the
temporal and geographic resolution of biodiversity
in deep time. For widespread ecologically important
clades like plants, this limits our ability to reconstruct
the dynamics of ancient ecosystems (8).

In PNAS, Romero et al. (9) present a deep-
learning–based approach for classifying some of the
fossil record’s most widely documented yet vexing
historical material—fossil pollen (8, 10). Paired with
an ecological and climatic understanding of the distri-
butions of plant groups today, taxonomically resolved
pollen studies provide an important lens for paleobo-
tanical diversity and data for paleoclimatic inference
(8, 10). Romero et al. (9) show how this record can be
further refined with deep learning. The authors exam-
ine a locally rare but geographically widespread fossil
morphospecies historically distributed through Africa
and South America between 59.2 and 7.2 Ma. They
classify individual fossil specimens according to their

affiliation with modern plant genera (Fig. 1) and, in
turn, suggest that the nanoscale diversity of pollen
shape and texture in this widespread taxon represents
far greater evolutionary diversity than appreciated so
far. When classified into modern genera, the ages of
these fossils imply evolutionary splits that predate
those established with molecular techniques, impact-
ing estimates of diversity through time and our under-
standing of the rise of species. Other identifications
suggest modern African genera were previously
established in South America and have since gone
locally extinct, with implications for biogeography
and historical distribution of ecological diversity. The
authors provide an in-depth comparison between the
deep-learning–based classification and a traditional
morphometric approach that relies on measurements
obtained by hand from images. The analysis reveals
how deep-learning–based taxonomic identifications
for pollen fossils can reshape our understanding of
when and where plants were historically distributed
and, in turn, how they evolved.

The crux of the authors’ approach is the combina-
tion of recently developed high-resolution micro-
scope technology (11) with deep convolutional
neural networks (CNNs), powerful machine-learning
models developed for image pattern recognition
and classification. Neural networks are not new—early
concepts were developed in the mid-20th century and
CNNs emerged in the 1980s—but computational ad-
vances have rapidly improved their accuracy over the
last decade (12). The methodological framework is rel-
atively straightforward—a dataset of images with
known labels is used to train a model to generate ac-
curate classifications for data with unknown labels.
Training is accomplished by feeding the known data
(e.g., red, green, and blue color values contained in
the pixels of a digitized image) through the model and
iteratively adjusting model parameters to generate ac-
curate labels (e.g., taxon known to be represented in
the image). Protocols and algorithms for training
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accurate CNNs are rapidly advancing, and transfer learning (13), a
process by which pretrained CNNs are modified and adjusted for
new applications, has lowered the threshold for the number of
training images required, allowing relatively data depauperate
implementations. Where thousands of examples per class were
once needed, Romero et al. (9) train a relatively accurate model
with 16 extant plant genera and a mere 459 specimens.

The power of CNNs is that they are “deep nets”—multilayered
statistical models that interpret information hierarchically to gen-
erate accurate predictions. For pollen, this means early model
layers likely represent generalized shapes (oval, oblong, spherical)
and deeper layers represent fine-scale differences in surface tex-
ture. This is why transfer learning works—a CNN trained to iden-
tify household items has already learned quite a bit about
recognizing shapes. This hierarchical interpretation of visual cues
is also not unlike the way a traditional taxonomist might work to
classify an organism, and deep learning is now being applied
widely for automated species detection and ecosystem monitor-
ing (reviewed in ref. 14) and was recently developed in a study of
extant pollen (15). Romero et al. (9) show how CNNs trained to
identify modern taxa can be paired with imaging techniques to
classify organisms deep in the fossil record.

The models developed by Romero et al. require a specific type
of microscope image as input, so in this way restrict the wide-
spread generality of their model to other forms of data. This
disadvantage is far outweighed, however, by the fact that deep
learning applied in this context is “trait agnostic”—because the
input is an entire image or set of three-dimensional (3D) image
slices, the relevant features that discriminate between classes are
not predefined but rather learned innately. Traditional ap-
proaches, and indeed many other machine-learning algorithms,
require a predefined set of traits (“features” in machine-learning
parlance) on which to learn (16); assessments of morphological
diversity through time and space thus rely on which traits are cho-
sen. The automated learning of discriminative features through
deep learning instead allows an objective quantification of highly

complex traits like 3D shapes, as shown by Romero et al. (9), or
colors, as was recently examined in moths (17). There are certainly
drawbacks—deep-learning models are often constrained by the
set of classes used for training, so called “supervised” learning,
but new methods are being developed to cope with taxonomic
error in species identification (18). Perhaps more fundamentally,
the biological significance and origin of complex learned features
are not obvious, and methods are needed to understand the bi-
ological basis of deep-learning–based classifications. Advances in
the science of deep learning are coming rapidly and require time
to be integrated in a biodiversity context. For example, the ge-
ometry (19) and the intrinsic dimensionality (20) of the learned
feature space may yet hold promise for understanding how
deep-learning models quantify the physical differences between
taxonomic groups, potentially allowing metric assessments of
learned representations across disparate taxonomic groups.

Sophisticated digitized images of biological specimens are
now a critical piece of the biodiversity information pipeline (21).
The utility of these specimen-based artifacts has yet to be fully
explored, however, and many challenges remain. Foremost, mass
digitization (imaging) of specimens, not to mention specimen
preservation itself, was in many cases initiated before the poten-
tial of deep learning in biodiversity research was well understood.
Making use of biological material that was otherwise not intended
to be photographed raises numerous questions about how these
massive samples of convenience can and should be used to gen-
erate deep-learning–based insights. In some cases, as in Romero
et al.’s contributions here, purpose-built deep-learning models
will be needed to process the products of specific imaging tech-
niques. In all cases, however, biologists will need to carefully con-
sider how the hypothesis testing framework and likelihood-based
methods of today can be integrated with the complex and rela-
tively understudied science of deep learning. With over 800,000
unidentified fossil records currently in the world’s primary biodi-
versity data aggregator (1, 22), there are countless insights on the
biodiversity of deep time waiting to be uncovered.
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Fig. 1. A workflow for classifying fossil pollen with deep learning. (A) Extant pollen specimens are digitized using a nondestructive microscopy
technique. Images are then used to train a neural network (middle block). Once trained, the model processes images and generates probabilities
for membership in modern genera. (B) Fossil pollen is processed with the samemicroscopy technique, and images are passed through the trained
classifier from A. The model quantifies the membership of fossil specimens in modern taxonomic groups. Images shown here are merely
illustrations.
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