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Abstract

Bering Land Bridge National Preserve and Cape Krusenstern National Monument in north-

west Alaska have approximately 1600 km of predominantly soft-sediment coastlines along

the Chukchi Sea, a shallow bay of the Arctic Ocean. Over the past decade, marine vessel

traffic through the Bering Strait has grown exponentially to take advantage of new ice-free

summer shipping routes, increasing the risk of oil spills in these fragile ecosystems. We

present a high-resolution coastal vegetation map to serve as a baseline for potential spill

response, restoration, and change detection. We segmented 663 km2 of high-resolution

multispectral satellite images by the mean-shift method and collected 40 spectral, topo-

graphic and spatial variables per segment. The segments were classified using photo-inter-

preted points as training data, and verified with field based plots. Digitizing points, rather

than polygons, and intersecting them with the segmentation allows for rapid collection of

training data. We classified the map segments using Random Forest because of its high

accuracy, computational speed, and ability to incorporate non-normal, high-dimensional

data. We found creating separate classification models by each satellite scene gave highly

similar results to models combining the entire study area, and that reducing the number of

variables had little impact on accuracy. A unified, study area-wide Random Forest model for

both parklands produced the highest accuracy of various models attempted. We mapped 18

distinct classes, with an out-of-bag error of 11.6%, resulting in an improvement to the past

per-pixel classification of this coast, and in higher spatial and vegetation classification reso-

lution. The resulting map demonstrates the utility of our point-based method and provides

baseline data for incident preparedness and change detection. Elevation is highly correlated

with the ordination of the vegetation types, and was the most important variable in all tested

classification models. The vegetation classification brings together the largest amount of

vegetation data for the Chukchi Sea coast yet documented.
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Introduction

The dynamic, soft-sediment Arctic coastal ecosystems of northwest Alaska offer important

ecological services and habitat for a wide variety of Arctic and migratory species [1]. These

shorelines include vast and shallow lagoons with fractal-patterned interiors, large estuaries

teeming with waterbirds, barrier islands, sandy capes, salt marshes, mudflats, brackish wet-

lands, and the world’s northernmost eelgrass beds [2]. Like those of eastern North America

before European contact, the northwest Arctic shorelines are wild, productive, and extensive.

These areas are globally significant for a variety of life forms; in particular the lagoon systems

and Nugnugaluktuk Estuary (Fig 1) of BELA are identified as Global Important Bird Areas by

the Audubon Society [1]. These lagoons also serve as important habitat for a diversity of fish

and bird species, including whitefishes and other salmonids, which are important subsistence

resources in the region [3].

The enabling legislation [4] of both Bering Land Bridge National Preserve (BELA; Fig 1)

and Cape Krusenstern National Monument (CAKR; Fig 1) mandates protection of subsistence

resources, plant communities, coastal formations, migratory bird habitat, fish and wildlife, and

additionally archaeological sites in CAKR. CAKR was established in large part to preserve the

history of ancient human settlements along the coast which arose in concert with the rich

coastal resources, and which provide a detailed archaeological chronosequence of human habi-

tation spanning over 5000 years [5, 6]. The Arctic coast continues to be home to Native Iñu-

piaq communities, for whom marine mammal and fish harvests are the center of their

statutorily protected way of life.

Arctic sea ice volume, extent and duration have declined dramatically for decades [7], leav-

ing the coast increasingly vulnerable to fall and winter storms. The tidal range along the north-

west Alaskan coast is small, estimated at a 30 cm daily average range [8], but storm surge and

atmospheric pressure can drive water levels several meters beyond mean sea level [9, 10].

Reduction in sea ice means a winter storm now has greater potential to drive oil or other con-

taminants deep into the sensitive habitats described in this study.

In the summer months, the Arctic ice pack is now sufficiently far north to allow for passage

of vessels via both the Northern Sea Route (above Siberia) and the Northwest Passage (through

the Canadian Archipelago to Greenland). Over the past decade, vessel traffic has grown expo-

nentially through the Bering Strait with the retreat of summer sea ice and now includes a sig-

nificant number of tankers and cargo ships [11]. At the same time, planning and initial stages

of development for oil and gas extraction have progressed in the National Petroleum Reserve-

Alaska, as have plans for the development of deepwater ports at Nome and Cape Blossom

(near Kotzebue). These developments now place BELA and CAKR at risk of a marine incident

without adequate pre-disturbance vegetation mapping.

Remote sensing and vegetation classification

Prior to this study the best available vegetation map of the study area was a 30-m per-pixel ras-

ter map derived from supervised classification of Landsat data, covering all of the five National

Park Service units in northern Alaska, produced by Jorgenson et al. [12]. This map was based

on extensive fieldwork, and maps 44 detailed ecotypes, of which 5 were specific coastal types.

Overall map accuracy was estimated to be between 65 and 80%.

National Parks still primarily create vegetation classification maps via a combination of

fieldwork and hand-drawn polygons based on aerial imagery (e.g. [13–16]). These methods

can be labor intensive, and do not allow for error estimation without further costly fieldwork.

Remote sensing vegetation classification has advantages—less time investment, lower cost, and

multiple levels of error estimation. Per-pixel methods, where each pixel of aerial imagery is
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individually classified, frequently result in a ‘salt-and-pepper’ effect [17]. Grouping pixels into

segments, or objects, allows more homogenous clusters to be classified, as well as the collection

of object-level traits such as size and shape [17–19]. Geographic object-oriented landcover

classification has been widely used in urban and agricultural areas, where the borders between

types are clearly delimited and segment shape is often a highly useful parameter [20, 21]. Its

use is undeveloped landscapes is often limited to classifying a handful of broad landcover clas-

ses; e.g. forested vs unforested [22, 23]. Mapping of higher resolution landcover classes (>8

classes) is also typically divided by functional group (e.g. [24]), or physiognomy (e.g. [25]), not

plant associations.

To assist in park preparedness, we have produced a vegetation classification and detailed

map of the coastal vegetation communities. The Jorgenson et al. [12] raster map includes only

two brackish water vegetation classes—Coastal Brackish Sedge-Grass Meadow and Coastal

Brackish Willow Shrub. In reality, coastal salt marsh is among the most productive habitats

along the BELA and CAKR coasts and represents a complex mosaic of vegetation types, each

of which hosts different bird species using these areas for nesting, foraging and pre-migration

Fig 1. Study area map. 1A. Location of the Chukchi Sea. 1B. Location of the two parks and relevant coastal landmarks. Elevation data USGS 30 ARC-

second Global Elevation Data, GTOPO30. Research Data Archive at the National Center for Atmospheric Research, Computational and Information

Systems Laboratory. https://doi.org/10.5065/A1Z4-EE71. CC By 4.0.

https://doi.org/10.1371/journal.pone.0273893.g001
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staging. As most of the BELA coast falls into a multi-species bird hotspot represented as a

global Important Bird Area, fine-scale delineation of habitat types helps discriminate habitats

into polygons used by dozens of species for different purposes at different times of the year

[26]. These types include lagoon interior marshes at different tidal elevations, estuarine salt

marshes at different elevation and salinity, and several other halophytic sedge and shrub-domi-

nated classes. By mapping vegetation at a higher resolution than Jorgenson et al. [12], we hope

to enable far more insight aimed at potential uses for spill response, post-spill restoration, Nat-

ural Resource Damage Assessment (NRDA), and the scientific community at large for uses in

vegetation monitoring, climate change, and sea level rise detection. In the event of an oil spill,

a fine-scale habitat baseline is the single most valuable tool for response, restoration and

NRDA [1]. We aimed to map at least 10 distinct coastal vegetation types, with a minimum

polygon size of 200 m2 and smooth polygon boundaries when displayed at 1:10,000 scale. To

meet NPS standards for vegetation classification, we mapped USNVC vegetation types. NPS

minimum accuracy for vegetation classification is 60% [26]; our target accuracy was 80% as is

typical of similar object-oriented classifications [22, 24, 27].

Methods

Study area

Coasts of both parks lie along the Chukchi Sea, an embayment of the Arctic Ocean north of

the Bering Strait (Fig 1). The Chukchi Sea is a shallow continental shelf, averaging 50 m deep.

The primary coastal features of both parks’ lands are gravelly or sandy barrier island com-

plexes, backed by lagoons [28, 29]. The beach ridges of both coasts initiated nearly 4000 years

BP as the sea level stabilized [30, 31]. Lagoons and estuaries are bordered by salt marshes (Fig

2A). Other parts of the coast are ice-rich permafrost bluffs with a narrow band of beach (Fig

2B). These coastal bluffs are found where the lagoon and barrier complexes are absent: in

CAKR most notably along much of the west-facing coast, and in BELA near Kitluk River and

along the coast of Kotzebue Sound. Bedrock outcrops occur along the coast in Goodhope Bay

(Fig 2C) and Ugrurak Bluff, north of Tasaychek Lagoon in Cape Krusenstern. The mean

annual temperature along the BELA and CAKR coasts is -5˚ C [32].

Field methods

We sampled 362 vegetation plots in Bering Land Bridge National Preserve and Cape Krusen-

stern National Monument in the summers of 2018 and 2019. Due to the remote, roadless

nature of these parklands, access was by helicopter and foot. Using satellite imagery, we

selected sampling areas to maximize high spectral and landform diversity and to minimize

flight time and expense. Plots were arrayed subjectively, attempting to capture as much of the

ecological variation as possible in the imagery across a broad geographical area. On the

ground, plots were located within areas of homogeneous vegetation, as well as mosaics (multi-

ple types within 200 m2) and gradual eco-tones, but plot locations that spanned distinct

boundaries between types were avoided. Our intent was to obtain a representative sample of

the vegetation while avoiding plot locations that were likely to mix data from plant assem-

blages that were likely to represent more than one type in the final classification. Plots were cir-

cular with an 8-meter radius (200 m2). All vascular plants with at least 1% cover within the plot

were identified to species in the field or collected for later identification. Plants below 1%

cover were identified in the field to species or genus. Taxonomy follows the vascular plant

inventory of the National Park Service (NPS) Arctic Inventory and Monitoring Network

(ARCN) [34]. Mosses and lichens were identified to species or species group, following the

ARCN Vegetation sampling protocol [35]. For all species in the plot, ocular estimates of cover
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were made using the following five classes: 0:<1%, 1:1–5%, 2:5–25%, 3:25–50%, 4:50–75%,

5:>75%, a modified Daubenmire scale [36]. GPS coordinates were collected at plot center on

Trimble Geo XH 6000 or Geo 7X model receivers, and post-process corrected to the Kotzebue

CORS reference station. The mean horizontal error was 30 cm, with 99% in the range of 10–50

cm. Electrical conductivity (EC) in units of μS/m, an estimate of salinity, was measured at plot

center with a soil probe (Hanna Instruments Direct Soil EC Tester). Photos were taken in each

cardinal direction. Cover of functional groups (e.g. shrubs, forbs, graminoids) was estimated

visually. Post-fieldwork, a hydric index—a proxy for site wetness—was calculated by weighted

averaging using wetland species weights from the Federal Interagency Committee for Wetland

Delineation [37].

Along with the 362 plots collected in the summers of 2018 and 2019 (two of which were

non-vegetated), we incorporated 37 coastal plots collected in 2003 by Jorgenson et al. [12] and

35 coastal plots established in 2013 as part of the ARCN Vegetation Node Sampling protocol

[35]. These data, measured in percent cover, were converted to the above cover categories for

Fig 2. Examples of coastal geomorphology features. A. Patterned salt marsh at the mouth of the Nugnugaluktuk Estuary, eastern BELA. B. Bedrock

outcrop on the coast of Goodhope Bay, eastern BELA. C. Ice-wedge polygon tundra bluff along the beach north of Cape Krusenstern Lagoon, CAKR. D.

Active and stabilized sand dunes on the barrier island of Cowpack Lagoon, northern BELA. Photo A NPS, public domain, B, C & D photos from

ShoreZone [33], licensed CC By 3.0.

https://doi.org/10.1371/journal.pone.0273893.g002
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comparison with our data, and synonymy was standardized to the NPS Arctic Network plant

species list [34]. Non-vascular plant diversity was reduced to the species list collected for the

ARCN vegetation protocols [35]. To be comparable to the EC units collected in this study EC

values for Jorgenson et al. [12] plots were truncated to 4000 (the maximum value read on our

instruments). EC was not collected for the 35 ARCN plots; we imputed these values through a

k-nearest neighbor model using the R package VIM [38] (data available: [39]).

Classification methods

Our classification goal was to balance the recognition of as many discrete vegetation types as

possible with the ability to distinguish these types via photo interpretation and automated clas-

sification on the map product. Our final goal of the classification methods was the description

of vegetation types that can be keyed dichotomously, and we used both analytical and subjec-

tive tools to separate vegetation types.

We initially attempted to classified plots via previously existing vegetation classification

schemes [12, 40]. Some plots clearly fit type descriptions, others were lumped into overly

broad categories, and others did not match any described vegetation types. We assigned plots

to types which matched descriptions; these included Halophytic salt marsh, Dunegrass beach

meadow, Crowberry tundra and Freshwater wet sedge meadow [12, 40]. We used nonmetric

multidimensional scaling (NMS) ordination [41] iteratively to test whether these pre-existing

types were coherent in species space, whether further subdivisions were possible, and how

unlabeled plots clustered.

We began our analyses with a matrix of 432 plots and 302 species. A Bray-Curtis dissimilar-

ity matrix was used as the basis for ordinations. As ordinations are reductions in dimensional-

ity via co-occurring species, plots with only one species do not ordinate. Thus, plots assigned

to the predominately monoculture classes comprised of Arctophila fulva, Carex lyngbyei,
Carex saxatilis and Hippuris tetraphylla were removed from ordination analyses, as were outli-

ers, defined as plots more than two standard deviations above the mean Bray-Curtis dissimi-

larity [42] to all other plots [43]. These plots were statistical as well as ecological outliers.

Thirteen outlier plots and 31 monoculture type plots were removed from the ordination analy-

ses. All species occurrences with less than 1% cover, and species with less than three plot occur-

rences total, were removed from the dataset, leaving a matrix of 386 plots and 117 species.

Preliminary ordinations were used to find whether further subdivisions of types were coherent

in species space. Outliers and boundaries between types were distinguished using sorted table

analyses [44, 45].

Non-metric multidimensional scaling (NMS) ordinations were run via the R package

‘vegan’ using the function ‘metaMDS’ [46]. A Bray-Curtis dissimilarity matrix of the commu-

nity data (reduced as described above) was input with the following parameters: 2 dimensions,

with 250 runs of data, a maximum number of random starts 500 and maximum iterations 999.

The ordination was constrained to 2 dimensions based on a step-down in dimensionality. Pre-

vious ordination positions were used as a starting point, and data were centered but not other-

wise transformed.

Mapping methods

The map was based on WorldView-2 (WV2) satellite imagery (resolution 0.46 m panchro-

matic, 1.85 m multispectral) captured in July 2013 and July 2014. The 16.4-km wide images

were orthorectified and clipped to the study area in ArcMap 10.6 [47]. The multi-spectral

imagery was then segmented via the ArcMap ‘Segment Mean Shift’ tool with the following

parameters: spectral detail 20, spatial detail 18, minimum segment size 54 pixels, which mimics

PLOS ONE Coastal vegetation map of two Arctic parklands

PLOS ONE | https://doi.org/10.1371/journal.pone.0273893 August 31, 2022 6 / 27

https://doi.org/10.1371/journal.pone.0273893


the size of our 8-m radius ground based plots (200 m2) [48]. The spatial and spectral detail

parameters used by the proprietary ArcGIS software range from 1 to 20; they are not equiva-

lent to the bandwidth parameter h used in the original formulation of the mean-shift method

[49], and no additional information on their properties is provided. Lacking an a priori basis

for choosing the spatial and spectral parameters, we chose values by trial and error to produce

segments distinctly finer than our intended final map. This ensured that all potential objects of

interest were differentiated. The unnecessary complexity in the segmentation was then

reduced by the classification process, which merged adjacent segments assigned to the same

class. The unnecessary complexity in the segmentation was then reduced by the classification

process, which merged adjacent segments assigned to the same class.

After all plots were assigned to classes, the spectral, topographic and spatial variables of

image segments containing vegetation plots were used as training data. Further training data

were added whenever landcover class was clearly identifiable from the imagery, in order to

increase the overall number of training points and to increase representation of rare classes.

Sources of imagery for visual interpretation of landcover class included: 1) an orthomosaic of

true-color aerial 1:24,000-scale photographs, taken in 2003 by AeroMetric Inc and digitized at

0.6 m resolution of the CAKR and BELA coasts; 2) the statewide 2012 SPOT imagery mosaic;

3) pan-sharpened WV2 imagery (available for the coasts of both CAKR and BELA); and 4)

oblique aerial photographs of the coast available through ShoreZone [33]. The land cover class

was identified visually at numerous locations using these image sources, and digitized as point

locations. Individual points can be digitized much more rapidly than drawing polygons, which

are typically used for supervised classifications, at a rate of ten or more per minute (Fig 3).

Allowing the segmentation to define training area boundaries reduces much of the decision-

making needed during training data collection, allowing for many more points to be collected.

This method allows collection of training data which encompasses the full range of variation of

each land cover type. A total of 11,647 visually interpreted points with class labels were inferred

for BELA, and 6575 from CAKR. The labeled points were then intersected with the segmenta-

tion, the variables of the segments where each point fell were extracted, and these records

formed the basis of the supervised classification.

A total of 40–46 variables were collected for each segment (Table 1), derived from the WV2

satellite imagery, Alaska 5-meter IFSAR digital terrain model, the National Hydrography Data-

set [50] and the 2003 coastal orthomosaic described above. NDVI, the normalized difference

vegetation index was calculated from the WV2 images as Near Infrared (NIR)–Red/ (NIR

+ Red). The normalized difference water index (NDWI) was calculated as Green–NIR /

(Green + NIR) [51]. Spectral data was the level 1b radiometrically corrected, 16-bit pixel val-

ues, and not further processed to radiance or reflectance.

Only the training data derived from the visually interpreted point locations was used to

assign map cover classes to the imagery. We used the plot data and locations to calibrate our

visual interpretation of training points, and as a reserved test set for error analysis.

The “unknown” segments (those not identified by visually interpreted training points) were

classified by the Random Forest classifier [52]. Random Forest (RF) is a powerful machine

learning classifier, widely used in object-oriented mapping due to its high accuracy, and its

ability to incorporate high-dimensional model variables and non-normally distributed data

[27, 53]. RF is an ensemble classifier, built from many classification-and-regression (CART)

trees.

Using the RF decision tree modeling approach as implemented in the R package ‘random-

Forest’ [54], we classified the segmented map in four ways (Table 2). First, the training data

were divided for each satellite scene, and a total of 40 localized RF models were built. Secondly,

all the training data were combined to create a single study-area wide model with the scene
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identifier as a variable. For both modeling approaches, the initial model measure of variable

importance was used to reduce the variables to the 15 most important, uncorrelated variables,

and the models were then re-run. Prior to the reduction in variables, Spearman rank correla-

tions were used to test the relationship between variables using package ‘Hmisc’ in R [55].

Spearman rank correlations of all 40 variables found three variables that were highly correlated

Fig 3. Training points were (a) digitized via interpretation of the imagery, (b) intersected with the segmentation with spatial, spectral and

topographic variables extracted, and (c) classified to land cover class via Random Forest. Imagery: Manley, WF, Sanzone, DM, Lestak, LR, and

Parrish, EG 2007. Index Layers for High-Resolution Orthorectified Imagery from 2003 for the Coastal Areas of Bering Land Bridge NP (BELA). https://

irma.nps.gov/DataStore/Reference/Profile/1044493 Public domain.

https://doi.org/10.1371/journal.pone.0273893.g003

Table 1. Pearson correlation between site variables and the NMS ordination scores.

r Axis 1 r Axis 2

Environmental Variables

EC (μS/m) -0.8694 0.4941

Hydric index 1.00‡ 0.00

Log distance to estuary (km) 0.6974 -0.7167

Log distance to ocean (km) -0.9998 -0.018

Elevation (m) 0.9892 -0.1467

‡Ordination rotated to hydric index.

https://doi.org/10.1371/journal.pone.0273893.t001
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(> 0.9) with other variables at an alpha level of 0.01. These were the segment green band, the

mean of the 2003 Orthomosaic green and its standard deviation (S2 Table; p-values S3 Table).

Those three variables were removed from consideration for the 15 variables used in the impor-

tant variable models. For all approaches, we ran the data with 1000 trees and the number vari-

ables sampled per node (parameter ‘mtry’) as determined by the function ‘rfTune’.

Error analysis

We used two approaches to assess map accuracy: the bootstrap method provided by RF analy-

sis, and the field plots as an independent test. We computed errors using the field plots as veri-

fication data, because the classifications were performed solely with the photo-interpreted

points as training data. Our field plots were placed intentionally, and they do not provide an

unbiased estimate of the proportion of each type in the study area. However, within each type

they provide a useful check on accuracy that can be compared with the OOB error rates.

Because RF is based on classification trees that leave out a random subset of the data, RF

can calculate out-of-bag (OOB) error, the percent of the training data left out of the boot-

strapped sample that is misclassified. Breiman [52] found OOB error to be an accurate metric

that did not necessitate leaving out an independent test set. However, Millard and Richardson

[27] found that OOB error was inflated for high-dimensional models relative to an indepen-

dent test set, and recommend reducing the variable set to uncorrelated, high-importance vari-

ables; these formed the basis of our decision to include only the top 15 uncorrelated variables

for both modelling approaches. Note that OOB error for individual classes is an estimate of

“producer’s accuracy” [56], i.e., the percent of observations (segments in our case) from a

known class that were correctly classified.

Results

Vegetation classification

The ordination’s final stress was 0.1271, with an instability (standard deviation of change in

stress over the previous ten runs) of 0.00015. The observed non-metric fit for the ordination

was 0.984.

The covariates elevation, hydric index, salinity (EC) and the log of distances to ocean or estu-

ary bodies were used as correlation overlays in the ordination, as these were environmental fac-

tors most highly correlated with ordination axes and of greatest interpretive value ecologically.

There was a strong negative correlation between elevation and EC (-0.76) and a moderate posi-

tive correlation between distance to the ocean and EC, but otherwise weak relationships

between variables (S1 Table). The ordination was rotated to align Axis 1 maximally with the

Table 2. Summary of model design.

All variables Important variables

Scene-specific all variable models Scene-specific important variable models

Scene-

specific

Input: 40 matrices with 37–45 variable columns

and 86–1340 (mean 525) segment rows. Output:
40 RF models, each for a given scene.

Input: 40 matrices each with 15 variable columns

and 86–1340 (mean 525) segment rows. Output:
40 RF models, each for a given scene.

Unified all variable model Unified important variable model

Unified

study area

Input: 1 matrix with 40 variable columns and

21696 segment rows. Output: 1 RF model for the

entire study area.

Input: 1 matrix with 15 variable columns and

21696 segment rows. Output: 1 RF model for the

entire study area.

A workflow protocol is attached in Appendix 2 in S2 File.

https://doi.org/10.1371/journal.pone.0273893.t002
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hydric index, the most strongly correlated factor, r2 = 0.42 (Table 3; Fig 4). A higher hydric

index indicates a drier site, thus this axis appears to represent a wetness gradient. The structure

of the ordination is similar to the ecological sequence seen along beach ridges. Axis 2 separates

plots closest to the ocean from those that are most isolated from salt water with transitional,

mid-salinity plots in between. EC was not perpendicular to the ordination—presumably

because EC registered as 0 in dry soils, regardless of their proximity to the ocean. Surprisingly,

neither distance to ocean or distance to estuary was a highly correlated variable. This may be

because linear distance from the ocean or an estuary does not accurately represent protection

from storm surge. For example, a site 500 m from the ocean protected by two intervening beach

ridges is not equivalent to a site 500 m from the ocean along contiguous low-lying salt marsh.

Classes were further separated subjectively using the ordination. Several highly diverse,

forb-dominated plots in CAKR clustered consistently from crowberry lichen tundra, in the

now designated ’Herbaceous meadow’ vegetation type (see Appendix 1 in S1 File). The brack-

ish plots intermediary to salt marsh and freshwater sedge were dominated by Carex rariflora
and Salix ovalifolia, and assigned to the ‘Brackish sedge wet meadow’ type.

Using the ordination and sorted table analyses, we describe 12 vegetation types as formal

NCVS plant associations (Appendix 1 in S1 File). The map includes these 12 vegetation types,

as well as six other broad classes, which we will hereafter collectively refer to as land cover clas-

ses (Table 4). The six broad classes include the non-vegetated classes of water, sediment and

built-up (human infrastructure), Salt Marsh-Water Mosaic, and two non-coastal vegetated

classes, Tall Shrub Upland and Upland Tundra. Salt marsh-water mosaic is identical in terms

of plant cover to salt marsh, but includes a high percent cover of water, and is spectrally dis-

tinct. The two non-coastal classes, Tall Shrub Upland (dense vegetation found along steep

slopes and freshwater riverine systems) and Upland Tundra (consisting of low shrub-sedge

tundra outside of tidal influence), are mapped to delimit the study area. These two classes were

only incidentally sampled and we do not include them in the description of vegetation types.

Full descriptions of the vegetation types, as well as a dichotomous key and data summaries of

plots are included in Vegetation Types, Appendix 1 in S1 File.

Attempts to separate the large Brackish Sedge-Willow Marsh cluster of plots into willow- or

sedge-dominated classes were not consistent in the ordinations. The spectrally distinct ‘salt

marsh-water mosaic’ ecotype was added to the map to display the estuary and lagoon islands

composed of a fine patchwork of mud/water pockets between salt marsh vegetation. In terms

of species composition, these were identical to salt marsh plots. One undersampled type that

did not ordinate consistently, Grayleaf Willow Shrub, was included as a type because it was

very distinct on the imagery (see S1 File).

Several potential types were so rare on the landscape that we were unable to include them

and designated them as ‘unclassified’. These include two Sphagnum (peatmoss) dominated

plots on the edge of lakes in Cape Krusenstern, CAKR, and Juncus arcticus (Arctic rush) domi-

nated swales in sparsely vegetated beach ridge swales in BELA. Also included are three plots

with the freshwater aquatic emergent species Hippuris vulgaris (common marestail). Due to

the difficulty in mapping halophytic Hippuris tetraphylla (fourleaf marestail), which is more

prevalent in the study area but still generally rare, we also designated these plots as unclassified.

Ultimately, 5 plots were designated as outliers, 12 as unclassified, and 8 had low enough vege-

tation cover (<10%) that they were mapped as sediment.

Variable importance

Variable importance is measured two ways for random forest trees: mean decrease accuracy

(MDA), how much accuracy decreases when a variable is excluded from the model, and mean
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Table 3. Segment variables and their imagery sources.

Variable(s), grouped by source Units Notes

Segmented image

Pixel count count Area approximation

Compactness index Range is 0 to 1, where 1 is a circle.

Rectangularity index Range is 0 to 1, where 1 is a rectangle.

Longitude of segment centroid m Alaska Albers projection

Latitude of segment centroid m Alaska Albers projection

Distance from centroid to ocean m Calculated from National Hydrography Dataset ocean shapefile

Segment color, NIR nm

Segment color, green nm

Segment color, red nm

WV2 satellite image

Red, mean & standard deviation nm

Green, mean & standard deviation nm

Blue, mean & standard deviation nm

NIR2, mean & standard deviation nm

Coastal, mean & standard

deviation1
nm

Yellow, mean & standard

deviation1
nm

NIR1, mean & standard

deviation1
nm

RedEdge, mean & standard

deviation1
nm

NDVI index NIR–Red/ (NIR + Red) Range -0.73 to 0.80

NDWI index Green–NIR / (Green + NIR) Range: -0.59 to 0.75

Satellite scene unique identifier2 categorical

Date of satellite image2 categorical

IFSAR 5-m Digital Terrain Model

Elevation, mean & standard

deviation

m

Curvature, mean & standard

deviation

index Range 7 to -7, where 0 is a straight surface, positive values are

concave and negative convex.

Aspect, northness and eastness index Calculated as cos(aspect × π)/180 and sin(aspect × π) /180. Range

-1 to 1, where -1 = south, 1 = north. Likewise, for eastness,

-1 = west, and 1 = east.

Slope, mean & standard deviation degrees

IFSAR 5-m Digital Terrain Model & IFSAR 5-m Digital Surface Model

DSM height above DTM, mean &

standard deviation

m vegetation height proxy

2003 Coastal Orthomosaic

Red, mean & standard deviation nm

Green, mean & standard deviation nm

Blue, mean & standard deviation nm

Location

Park (BELA/CAKR)2 categorical

1 Collected for 3 satellite scenes which had all 8 WV2 bands.
2 Used in the unified models.

https://doi.org/10.1371/journal.pone.0273893.t003
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decrease Gini (MDG), a measure of how homogenous nodes including the variable are. We

tested the stability of both measures with 100 random forest models using jackknife runs leav-

ing out 10% of the data (ala [58, 59]) and found them both to be highly stable (r2 between the

rank of each variable from full dataset and the 100 resamples was >.99 for both MDG and

MDA, see S4 Table). We report MDA for ease of interpretation, but MDG results are substan-

tively similar (S4 Table).

Fig 5 displays the ranking of the importance of the segment variables for land cover classes,

as measured by MDA for the unified, all-variable model. Elevation is the single most important

variable, especially for Upland Tundra and the two Salt Marsh classes. Distance to ocean is

important generally, and particularly for distinguishing Dunegrass Beach Meadow, the vegeta-

tion type found directly at the beachfront. NDWI (a metric of wetness) and NDVI (a metric of

vegetation density) are most important for recognizing the unvegetated classes of sediment

and water. Latitude and longitude are important variables for most types; many of the vegeta-

tion types are structured sequentially along beach ridges. The least important factors are seg-

ment compactness and rectangularity, two metrics of segment shape.

Fig 4. Ordination of plots using NMS. The point cloud was rotated to align the hydric index maximally with Axis 1. The 5 variables most correlated

with Axes 1 and 2 are displayed (Table 3). Colored symbols refer to the vegetation classes, defined in Table 2. Classes were grouped by convex hulls,

with Willow Scrub and unclassified plots excluded.

https://doi.org/10.1371/journal.pone.0273893.g004
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Model comparisons

We compared 4 models, scene-specific models with all variables (Scene spef., all var.) and top

15 important variables (Scene spef., top var.), and a study-area wide unified model with all var-

iables (Unified, all var.) and top 15 important variables (Unified, top var.). We found all 4

models to have generally similar accuracies, with the unified important variable model and

scene-specific all variable model in particular having slightly higher overall accuracies, and dif-

ferent strengths in recognizing classes (Table 5).

For the independent field test set, accuracy is similar across models (Table 4). Accuracy was

0.7 or better for all types and models except GWS, which was not adequately sampled (n = 5).

Several widespread types had accuracies of 0.9 or better. Extremely low (0.5) and high (1)

Table 4. Map land cover classes.

Land cover class (Abbreviated

name)

Characteristic plants No. field

plots

General notes

Brackish Marestail Marsh

(Marestail)�
Hippuris tetraphylla 10 Monoculture of emergent vegetation, found in shallow, brackish ponds.

Brackish Sedge-Willow Marsh

(Brack. sedge)

Carex rariflora, Salix ovalifolia 100 At higher elevations or greater distances from coastal water than Salt marsh,

slightly drier and less saline.

Built-up - Human infrastructure.

Crowberry Lichen Tundra

(Crowb. tundra)

Empetrum hermaphroditum, Thamnolia
vermicularis, Leymus mollis

46 Dry beach ridges found further from the coast than dunegrass beach meadow.

Older beach ridges develop higher lichen cover.

Deciduous Low Shrub Tundra

(Shrub tundra)

Betula nana, Ledum palustre 16 Vegetation typical of non-coastal arctic shrub tundra; found in the study area

in innermost beach ridges of larger complexes. Transitional from crowb.

tundra.

Dunegrass Beach Meadow

(Dunegrass)

Leymus mollis, Lathyrus maritimus 25 Immediately adjacent to the beachfront, well-drained soils. Low diversity,

early successional type.

Freshwater sedge wet meadow

(Wet sedge)

Carex aquatilis, Eriophorum
angustifolium

26 Vegetation typical of wet arctic tundra; found in most protected swales of large

beach ridge complexes.

Grayleaf Willow Scrub (Willow

scrub)

Salix glauca 5 Low (< 1 m) willow thickets found uncommonly near the outer beach ridge.

CAKR only.

Herbaceous Dry Beach Ridge

Meadow (Herb. meadow)

Artemisia tilesii, Epilobium latifolium,

Saxifraga tricuspidata
17 Similar to crowb. tundra, but with high diversity and cover of forbs. CAKR

only.

Lyngbye’s Sedge Meadow�

(Lyng. sedge)

Carex lyngbyei 11 Monoculture of halophytic sedge found in standing brackish water, typically

swales immediately adjacent to the outermost beach ridges.

Pendantgrass Lagoon Margin�

(Lagoon margin)

Arctophila fulva 22 Heterogenous, narrow (~2–8 m) bands of emergent vegetation found along

inner lagoon edges. BELA only.

Rock Sedge Marsh� (Rock

sedge)

Carex saxatilis, Iris setosa 3 Narrow, brackish swales. Found only on Cape Krusenstern beach ridge

complex.

Salt Marsh Carex subspathacea, Puccinellia
phryganodes

162 Low-lying vegetation on soils saturated with salt water. Low diversity veg. type

that is highly important migratory bird forage [57].

Salt Marsh Mosaic (Salt marsh

mos.)

Carex subspathacea, Puccinellia
phryganodes

- Salt marsh vegetation pocketed with small water/mud patches.

Sediment 11 Non-vegetated, non-water surfaces including sand, rock, gravel and mud.

Tall Shrub Upland (Shrub upl.) Not included in vegetation type

descriptions.

9 Shrubby bluff often present between coastal vegetation and upland.

Upland Tundra (Upland) Not included in vegetation type

descriptions.

5 Shrub and sedge tundra beyond tidal influence.

Water - Coastal and fresh water bodies.

Map classes, with dominant plant species and a description.

�Predominately monoculture class not included in ordination.

https://doi.org/10.1371/journal.pone.0273893.t004
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Fig 5. Mean Decrease in Accuracy (MDA) for the unified study area model, by land cover class. The first, labeled column displays the MDA

for the model overall.

https://doi.org/10.1371/journal.pone.0273893.g005
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values were obtained only for types with very small sample sizes of 5 or less. Accuracy varies

more between classes than it does between models.

For OOB error, most classes have very similar accuracies across models (Fig 6; Table 4).

Some of the rarer classes have a wider range in accuracy, with the unified models being notably

worse for these classes. When out-of-bag errors are parsed by satellite scene (Fig 7), again,

error rates between scenes vary more than between models, that is to say, some scenes consis-

tently classify better than others, regardless of model used. There is no consistent relationship

between training data sample size and accuracy in by-scene comparisons (data S5 Table, multi-

ple linear regression results S6 Table, adjusted R2 = 0.008).

Reducing the model to the fifteen most important variables increased accuracy only for the

unified model. This can be seen slightly in the field test set results and more strongly for OOB

error. For the field test set, the unified, top-variable model was more accurate than its counter-

part all variable model in 7 out of 15 classes and tied in 5. For OOB error, the unified impor-

tant-variable model is more accurate than the all-variable model for 12 out of 18 classes, with a

1.7% increase in overall accuracy (Table 4; Fig 6). In contrast, the scene-specific model sets the

unified and important-variable models tie for 11 out of 15 classes of the field test data, and 8 of

Table 5. The producer’s error for the independent test set of excluded field plots for all four sets of models and out-of-bag producer’s error from each RF model.

Field plot producer’s accuracy RF OOB producer’s accuracy

Class n
plots

Scene spef.,

all var.

Scene spef.,

top var.

Unified, all

var.

Unified, top

var.

Class n data Scene spef.,

all var.

Scene spef.,

top var.

Unified, all

var.

Unified, top

var.

Marestail 10 0.70 0.70 0.80 0.80 Marestail 389 0.68 0.68 0.58 0.60

Brack. sedge 100 0.82 0.87 0.84 0.85 Brack. sedge 2480 0.83 0.83 0.81 0.84

Crowb.

tundra

46 0.78 0.75 0.76 0.73 Crowb.

tundra

1357 0.82 0.84 0.84 0.85

Dunegrass 25 0.89 0.89 0.93 0.93 Dunegrass 1996 0.90 0.90 0.90 0.91

Low shrub 16 0.75 0.75 0.75 0.75 Low shrub 722 0.85 0.87 0.83 0.85

Wet sedge 26 0.68 0.64 0.61 0.61 Fresh sedge 830 0.83 0.86 0.85 0.86

Willow

scrub

5 0.60 0.60 0.60 0.60 Willow scrub 316 0.89 0.88 0.92 0.93

Herb.

meadow

17 1.00 0.94 1.00 0.88 Herb.

meadow

455 0.83 0.83 0.74 0.78

Sedge swale 11 0.91 0.91 0.91 1.00 Lyng. sedge 135 0.72 0.81 0.70 0.72

Lagoon

margin

22 0.82 0.86 0.82 0.82 Lagoon

margin

125 0.85 0.82 0.73 0.72

Rock sedge 3 1.00 1.00 1.00 1.00 Rock sedge 22 0.73 0.77 0.77 0.77

Sediment 11 0.50 0.75 1.00 1.00 Sediment 1411 0.91 0.91 0.92 0.92

Salt marsh 162 0.77 0.80 0.81 0.78 Salt marsh 3657 0.90 0.90 0.91 0.91

Shrub

upland

9 0.70 0.70 0.80 0.80 Shrub upland 1823 0.89 0.89 0.88 0.88

Upland 5 0.82 0.87 0.84 0.85 Upland 3131 0.92 0.93 0.93 0.93

overall 468 0.79 0.81 0.82 0.80 Built-up� 24 0.88 0.88 0.71 0.67

Water� 993 0.92 0.92 0.93 0.93

Salt marsh

mos.�
1830 0.88 0.86 0.87 0.85

overall 21696 0.877 0.879 0.877 0.881

The number of test plots is higher than the number collected, as some plots occur on overlapping satellite scenes, which were classified separately in all modeling

approaches. Such plots were counted as testing each classified scene. In bold: the highest accuracy for a given type. Four-way ties are unbolded. Starred classes in the

OOB section indicate land cover classes without field plot test data.

https://doi.org/10.1371/journal.pone.0273893.t005
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Fig 6. OOB producer’s error for the four modeling approaches, subdivided by land cover class. Land cover classes are ordered

alphabetically. The n of training data is presented in parentheses.

https://doi.org/10.1371/journal.pone.0273893.g006
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Fig 7. OOB producer’s error for the four modeling approaches, subdivided by satellite scene. Scenes are ordered by amount of training

data.

https://doi.org/10.1371/journal.pone.0273893.g007

PLOS ONE Coastal vegetation map of two Arctic parklands

PLOS ONE | https://doi.org/10.1371/journal.pone.0273893 August 31, 2022 17 / 27

https://doi.org/10.1371/journal.pone.0273893.g007
https://doi.org/10.1371/journal.pone.0273893


the 18 classes for OOB error, and have near-identical overall accuracy (Table 4). This is in con-

trast to the results from Millard & Richardson [27], who found an independent test set neces-

sary to assess the value of reducing variable dimensionality.

The unified, important variable model was the most accurate for a plurality of land cover

classes (9 out of 18), the majority of scenes (23 out of 40), and had the lowest overall OOB pro-

ducer’s error, 11.6%. There is a strong correlation with sample size—widely sampled classes

are more accurate in the unified models, while 5 out of 6 of the rarest classes have lower error

in the scene-specific models. Visual comparison of the maps produced by the two best models,

the scene-specific all variable model and the unified top variable model, found minor differ-

ences. For the purposes of this map, our priorities were distinguishing vegetated from non-

vegetated areas, and the boundaries of more abundant classes. We chose the unified important

variable model to produce the final map.

Table 6 shows the error matrix of the independent test set against this classification. Many

of the errors are predictable—dunegrass beach meadow, an often sparsely vegetated type, is

most commonly misclassified as sediment. Salt marsh and salt marsh mosaic, which have iden-

tical plant associations, are frequently confused. Brackish sedge-willow meadow is found in

close proximity to and has gradual transitions from salt marsh and crowberry-lichen tundra,

the two types with which it is most confused. Visual inspection of the map shows that inappro-

priate types are not being mapped on mismatched landforms (i.e. beach ridge types in estuar-

ies), and much of the error is from difficulty in distinguishing transitions. However, the error

is uncertain for many of the smaller land cover classes. As we do not have a sampling design

proportionate to the area occupied by each class, we do not calculate user’s accuracy. The OOB

error matrix is shown in S7 Table.

Final map product

The final product is a 663.4 km2 map of the vegetation of the BELA & CAKR coasts, available

as a vector GIS layer [39]. Figs 8–10 show the maps, as well as close-ups of the detail. The map

will also be made available through the Alaska Ocean Observing System’s online Ocean Data

Explorer [60]. This data network hosts coastal and oceanographic data from multiple partners,

making it readily available to natural resource managers and stakeholders in spill preparation

and response.

Discussion

Uses of mapping product

We envision three primary uses for these high-resolution coastal land cover layers: spill

response, restoration, and long-term ecological monitoring. First, as the Arctic sea ice has

retreated, shipping through the Bering Strait has more than doubled since 2008. The multi-

agency U.S. Committee on the Marine Transportation System projects likely vessel transit

increases of approximately 30% in the next decade [61]. With increased shipping comes an

increased risk of spills from the cargo, towing, fishing, and tanker vessels that have constituted

70% of the several hundred vessels in the region each year in the second half of the last decade.

Immediately following an oil spill, responders will need high-quality information about the

distribution of coastal communities along the shoreline with important conservation value

(e.g., salt marshes, brackish sedge-willow marshes) and a high likelihood of oil retention (i.e.,

areas of low wave energy, marine eddies, etc.) Low-lying, backwater vegetation communities

generally have high importance as bird breeding areas [62] and oil releases have the potential

to remain on site for decades [33, 63]. Site-specific oil spill response strategies have been estab-

lished by the State of Alaska for sensitive areas [64], but little is known about the vegetation
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and habitat composition within these sites. In the event that prioritization of response

resources is needed due to logistical issues in a response, our data layers will allow area estima-

tion of the most sensitive habitats, thus enabling data-based triage. Overlaying Shorezone’s Oil

Residency Index [33] onto land cover classes of interest could assist in developing a plan for

prioritization of response resources.

Second, in the years following a spill, our land cover layers could prove valuable in guiding

both restoration and Natural Resource Damage Assessment proceedings [65]. In a spill reach-

ing U.S. lands, the responsible party is required to pay the cost of restoration, and the land-

owner and other regulatory parties determine the necessary restoration action. If the spill

causes damage on NPS lands, NPS requires restoration of vegetation communities and physi-

cal site properties to their original, natural condition [66, 67]—in contrast to other landowners

that may require only simple revegetation or restoration of ecological function. Our data layers

can provide necessary information about composition, aerial extent, and location of affected

communities. Using the characteristics of the unaffected areas of a given cover class in Appen-

dix 1 in S1 File (vegetation type descriptions, S1 File) coupled with detailed vegetation work in

the affected area and adjacent unaffected areas, restoration staff can create targets against

which restoration efforts may be evaluated.

Lastly, these layers may serve as an excellent baseline against which to compare future vege-

tation changes from climate change and landscape changes that follow increasing coastal ero-

sion [28]. NPS’s Arctic Network has conducted long term monitoring of terrestrial vegetation

Table 6. Error matrix for the field test plots.

Marestail Brack.

sedge

Crowb.

tundra

Dunegrass Low

shrub

Fresh

sedge

Willow Herb.

meadow

Lyng.

sedge

Lagoon

margin

Rock

sedge

Sediment Salt

marsh

Shrub

upland

Upland

Marestail 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Brack.

sedge

1 87 7 0 1 5 2 0 0 0 0 0 12 0 0

Crowb.

tundra

0 1 36 0 2 0 0 0 0 0 0 0 0 0 0

Dunegrass 0 3 1 24 0 0 0 1 0 0 0 0 2 0 0

Low shrub 0 0 0 0 12 1 0 0 0 0 0 0 0 0 0

Fresh

sedge

0 1 0 0 1 19 0 0 0 0 0 0 0 2 0

Willow

scrub

0 0 0 0 0 0 3 0 0 0 0 0 0 0 0

Herb.

meadow

0 0 1 1 0 0 0 16 0 0 0 0 0 0 0

Lyng.

sedge

1 0 0 0 0 0 0 0 10 0 0 0 0 0 0

Lagoon

margin

0 0 0 0 0 0 0 0 0 19 0 0 0 0 0

Rock sedge 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0

Sediment 0 0 0 0 0 0 0 0 0 1 0 11 5 0 0

Salt marsh 0 8 1 0 0 1 0 0 1 0 0 0 143 0 0

Shrub

upland

0 0 0 0 0 0 0 0 0 1 0 0 0 7 0

Upland 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

Water 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Columns present the reference (field) classes, rows present the classified data. Correctly classified plots are presented in bold.

https://doi.org/10.1371/journal.pone.0273893.t006
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on NPS Arctic units since 2004 [35]. Because our data layers are high-resolution, they will per-

mit an assessment of coastal landcover change in future decades using similarly high-resolu-

tion imagery that is becoming increasingly available from both public and commercial

sources.

Use of mapping method

This is one of the first large-scale, high-resolution object-oriented classifications of any

National Park unit, and demonstrates that such methods are functional for conservation

efforts. This classification method has several advantages as well as limitations. In per-pixel

classifications, isolated pixels can be misclassified in the midst of the true, homogenous type,

resulting in ‘salt-and-pepper’ land cover maps [17]. Segmentation reduces this by aggregating

pixels into more natural units, and improves the display quality of the final map. Additionally,

30 m2 pixels are often mixtures of communities because they straddle boundaries or ecotones.

Segments greatly reduce the number of boundary pixels, making more homogenous areas that

are easier to classify. Segmentation also allows for object-level variables to be collected, such as

Fig 8. Map of coastal vegetation of Bering Land Bridge National Preserve. Background imagery Landsat mosaic produced for the Arctic Network.

https://irma.nps.gov/DataStore/Reference/Profile/2171608 Public domain.

https://doi.org/10.1371/journal.pone.0273893.g008
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shape parameters or texture, though we did not find these useful for our classification of a pri-

marily undeveloped landscape.

As is true of any classification, high quality ground-based data is essential. Our total of 443

plots is substantial and well-distributed, but there are still several kilometer-wide gaps between

Fig 9. Map of the coastal vegetation of Cape Krusenstern National Monument. Background imagery Landsat mosaic produced

for the Arctic Network. https://irma.nps.gov/DataStore/Reference/Profile/2171608 Public domain.

https://doi.org/10.1371/journal.pone.0273893.g009
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some samples, due to the remote nature of the Chukchi coast and the existence of parcels of

private land along the shore. The ability to recognize vegetation types from satellite imagery or

aerial photography is often difficult, and the existence of continuous oblique photography

along the coast available through ShoreZone [33] was a major asset to this project.

The method of identifying training points and then intersecting those identifications with

the segmentation has yet to be widely used. It is in essence the same as the methods found

internally for some object-oriented software workflows, where imagery is first segmented and

the training data is collected via manually identifying segments [68]. The point-based method

has the advantage that it can be adapted to any segmentation. Placing and categorizing training

points is much faster than delineating polygons, allowing for a much larger set of training data

to be collected. Collection of training points can be undertaken in a systematic way, via a grid

or random sample. We did not use this method because of the large number of types we were

attempting to recognize; assigning training points to unambiguous areas is more efficient.

Classifying each satellite scene by a separate model has certain advantages, allowing dispa-

rate variable information and potentially better inference for localized classes. For our map, we

Fig 10. Highlights of the coastal vegetation map. A. Inner beach ridge complex of Cape Espenberg, BELA. B. Outer barrier island of Ikpek Lagoon,

BELA. C. Beach ridge complex of Cape Krusenstern, CAKR. D. Nugnugaluktuk estuary, BELA. Background imagery Landsat mosaic produced for the

Arctic Network. https://irma.nps.gov/DataStore/Reference/Profile/2171608 Public domain.

https://doi.org/10.1371/journal.pone.0273893.g010
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found minor differences between scene-specific and unified models. Including the scene iden-

tifier as a model variable allowed the decision tree forest to incorporate the local differences in

classes. All but two of our satellite tiles were WV2 imagery taken within a year of each other,

and we were able to collect 40 variables for all scenes, making the data consistent across the

study area. Maps with wider variation in data availability and spectral information between

scenes may perform better with scene-specific models.

We improved on the spatial resolution of the existing coastal land cover map, going from

900 m2 Landsat pixels to minimum 200 m2 polygons, and the ecological resolution, increasing

from 5 coastal types to 12. Our accuracy rates, at 88.4% OOB producer’s accuracy for the final

model, surpassed our target of 80% accuracy.
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