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A B S T R A C T   

Background: Currently, there are few studies on immune-related prognostic analysis of hepato-
cellular carcinoma (HCC). Our aim was to establish an immune-correlated prognostic model for 
HCC. 
Methods: Immune-associated cells were obtained from the scRNA-seq dataset (GSE149614) of 
HCC. Differentially expressed genes between normal and tumor cells from immune-associated 
cells and the immune-related genes from the ImmPort database were used to identify immune- 
related differentially expressed genes (IRDEGs). Subsequently, the risk model was established 
in the TCGA-LIHC cohort (n = 438) from the Cancer Genome Atlas (TCGA) database by using 
Kaplan-Meier (K-M) survival curve, univariate/multivariate Cox regression analysis. Subse-
quently, we further analyzed tumor immune microenvironment characteristics, somatic mutation, 
immune checkpoint and its ligand expression levels between high- and low-risk groups, as well as 
drug sensitivity prediction. ICGC cohort was set as the validation cohort. TCGA-LIHC cohort and 
three independent the Gene Expression Omnibus (GEO) datasets (GSE54236, GSE14520, and 
GSE64041) was used to verify IRDEGs expression, as well as PCR assays using clinical samples. 
Results: The IRDEGs was composed of 4 genes, namely B2M, SPP1, PPIA, and HRG. The 438 HCC 
patients were divided into high- and low-risk group. The high-risk group was associated with poor 
prognosis, including higher T stage, advanced pathological stages, less immune cell infiltration, 
higher TP53 mutation rate, the high expression of CTLA4 and HAVCR2. Besides, high-risk pop-
ulations benefit from most chemotherapy drugs. Similarly, the performance of the risk model was 
validated in the ICGC. All four datasets (TCGA-LIHC cohort, GSE54236, GSE14520, and 
GSE64041) and clinical q-PCR results demonstrated that, compared with normal samples, the 
expressions of B2M and HRG were lower in tumor samples, and the expression of SPP1 was 
higher. 
Conclusion: In summary, the immune-related prognostic signature had a good predictive perfor-
mance on prognosis and immunotherapy for HCC patients.  
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1. Introduction 

Liver malignancies remain a global health threat, with the number of cases expected to exceed one million by 2025 [1]. Hepa-
tocellular carcinoma (HCC) is common malignant tumor of the liver, accounting for over 80 % of all primary liver cancers [2]. It is 
estimated that 1.3 million people are expected to die from liver cancer by 2040 (an increase of 56.4 % from 2020) [3]. Clinically, the 
effective treatment options for HCC are percutaneous approach, liver transplantation, hepatectomy, etc. [4,5], but the overall prog-
nosis (OS) remains poor. The tumor microenvironment (TME) is important for the recurrence susceptibility and drug resistance of HCC 
[6,7]. Hence, to better improve the prognosis of HCC patients, it is meaningful to elucidate the relationship between the TME and HCC, 
resulting in establishing a reliable prognostic model for HCC. 

Currently, immunotherapy has been proven effective and safe in treatment of solid tumors [8], among which immune checkpoint 
inhibitors (ICIs), adoptive cell therapy, and tumor vaccines are common tumor immunotherapy methods in clinical practice. For 
instance, the U.S. Food and Drug Administration authorized Nivolumab as the first programmed death-1 (PD-1) inhibitor for HCC 
treatment [9,10]. Moreover, adoptive T-cell therapy represented a promising therapeutic approach for HBV-associated HCC [11]. 
However, the aboved immunotherapy is only effective for a small percentage of HCC patients and lacks sensitivity for most patients 
[12]. 

The TME of HCC is a complex structural hybrid that coexists and interacts with multiple immune cells to impact the efficacy of 
immunotherapy, leading to sustain HCC development [13]. T cells are the pivotal immune cells in the anti-tumor immune response, 
which can kill tumor cells in an antigen-specific manner [14]. In addition, natural killer (NK) cells are cytotoxic lymphocytes of the 
innate immune system, capable of killing cancer cells [15]. In tumor immunity, T cells and NK cells have complementary roles by 
sharing several important inhibitory and activating receptors that target enhancement of T cells- and NK cells-mediated immune 
responses [16]. Besides, as one of the most important immune cells, B cells play a key role in both innate and adaptive immunity. 
According to research findings, the co-presence of CD8+ T cells and CD20+ B cells in tumor tissue was associated with better prognosis 
in patients with metastatic melanoma [17]. Therefore, elucidating the crosstalk of the TME and immune cells is critical to help 
formulate personalized immunotherapeutic strategies for HCC patients. 

Here, we developed an immune prognostic model for HCC, with a view to providing reference for predicting immunotherapy and 
prognosis in HCC patients. 

2. Materials and methods 

2.1. Data download and processing 

Fig. 1 has shown the analysis route. The Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) has 
offered the single-cell RNA-seq (scRNA-seq) dataset (GSE149614). A total of 63,101 cells were acquired in GSE149614, including 
28,687 normal cells and 34,414 tumor cells. We then selected immune cells (T, B, and NK cells) for follow-up analysis based on the 

Fig. 1. The flow chart of our study.  
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isolated cell cluster information reported by Lu et al. [18]. 
Immune-associated genes were from the ImmPort database (https://immport.niaid.nih.gov/). 
TCGA-LIHC cohort (https://xenabrowser.net/datapages/) has offered a total of 438 HCC samples, including the transcriptome 

data, clinical information, survival information, somatic mutation data. Next, the samples (n = 438) were divided into the normal 
group (n = 59) and tumor group (n = 379). See Table S1 for detailed information. 

The ICGC (https://dcc.icgc.org/) dataset was used to verify the prognostic value, including the transcriptome, clinical and survival 
data. 

Three independent datasets (GSE54236, GSE14520, and GSE64041) were used for validation. GSE54236 included 161 HCC 
samples, GSE14520 included 488 HCC samples, and GSE64041 included 125 HCC samples. 

2.2. Identification of immune-related differentially expressed genes 

The Seurat package (v.4.1.1) in the R package (v.4.0.2) was performed to analyze the scRNA-seq data. Filter criteria refer to our 
previous report [19]. Subsequently, we used the FindMarkers function (logfc.threshold = 0.585) to identify differentially expressed 
genes (DEGs) between tumor and normal cells in selected immune cells. The immune-related DEGs (IRDEGs) were obtained by taking 
the intersection of DEG and immune-related genes. 

2.3. Generation of the immune-related risk model in HCC 

Kaplan-Meier (K-M) survival curve was used to identify the relationship between IRDEGs and the progression free interval (PFI), 
OS, and disease free interval (DFI) of HCC patients. The candidate prognostic genes were identified by overlapping the factors with P <
0.05 in three K-M survival curves. Then, the univariate and multivariate Cox regression models and the survival R package were used to 
obtain optimal IRDEGs with prognostic ability. K-M curves described the survival of each group in the risk model. The predictive power 
of the model was evaluated using receiver operating characteristic curve (ROC). Moreover, we investigated the relationship between 
immune-related risk model and clinical and pathological features using Wilcoxon tests. 

2.4. Evaluation the associations between the risk model and immune cell infiltration, mutation profiles and clinical treatments 

The TCGA-LIHC cohort was grouped into high- and low-risk groups. CIBERSORT algorithm was performed to obtain the proportion 
of tumor-infiltrating immune cells [20]. The unpaired t-test was performed to compare the levels of immune cells between the two 
groups. K-M curve was applied to further evaluate the relationship between OS and immune cell with (P-value <0.05). The maftools R 
package was performed to calculate and visualized the mutation profiles [21]. Similarly, K-M method was used to calculate the OS, and 
the Wilcoxon test was used to compare the expression of immune checkpoint molecules between different groups. Moreover, onco-
Predict R package [22] was used to predict the maximal IC50 of the two groups. 

2.5. Verification of the model performance in ICGC cohort and IRDEGs expression in multiple cohorts and clinical samples 

The signature of the risk model was validated in the ICGC cohort by using K-M method and ROC curve. The Kruskal-Wallis test was 
applied to text the expression of 4-IRDEGs in the TCGA-LIHC, GSE54236, GSE14520, and GSE64041. 

Six HCC patients were recruited from October 2023 to December 2023 at the Third People’s Hospital of Shenzhen. The tumor and 
para-cancerous tissues were obtained during the operation for q-PCR assay. Total RNA was extracted by TRIzol reagent (TIANGEN, 
Beijing, China), and was used to cDNA by Hifair® III 1st Strand cDNA Synthesis SuperMix for qPCR (gDNA digester plus) (Yesen, 
Shanghai, China). Hieff® qPCR SYBR Green Master Mix (No Rox) (Yesen, Shanghai, China) was used for the q-PCR. Relative quan-
tification was determined using the 2–ΔΔCt method. The primers were shown in Table S2. The study was approved by the Ethics 
Committee of Third People’s Hospital of Shenzhen (No. 2022-068). All participants provided written informed consent to participate in 
this study and for their data to be published. 

2.6. Statistical analysis 

The mean ± standard error of mean (SEM) was used to show the data. Graph Pad 8.0 was utilized to analyze. The Student’s t-test 
was applied to compare continuous variables between the two groups. P < 0.05 was considered significant. 

3. Results 

3.1. Construction of immune-related risk assessment model 

A total of 27,780 immune cells (T/B/NK cells) were isolated from a single-cell atlas of the multicellular ecosystem of HCC [18], and 
after rigorous quality control, a total of 27,586 high-quality immune cells were analyzed (Fig. 2A). Subsequently, we identified 439 
DEGs between tumor and normal cells in selected immune cells. Next, 1509 immune-related genes were downloaded from ImmPort 
database. By overlapping the immune-related genes and DEGs of immune cells, we identified 52 IRDEGs for subsequent analysis 
(Fig. 2B). 
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Based on the TCGA-LIHC cohort, we established the immune-associated prognostic model. The K-M analysis (PFI/OS/DFI) was 
performed to screen the potential prognostic signatures. As shown in Figs. S1A–C, there were 6 common IRDEGs (APOH, B2M, HRG, 
KNG1, PPIA, and SPP1) had the prognostic ability in different survival curves (P < 0.05). Next, the univariate (Table 1) and multi-
variate Cox regression (Fig. 3A) analyses of PFI were applied on the IRDEGs, and the 4 IRDEGs (B2M, SPP1, PPIA, and HRG) were 
finally considered as optimal immune genes with prognostic ability. Then, K-M analysis showed that the high-risk group had the worse 
survival outcomes (P < 0.0001, Fig. 3B). In addition, the ROC curve also varies with time (Fig. 3C). Similarly, the OS and DFI associated 
univariate and multivariate Cox regression analyses (Fig. 3D and G), the K-M survival analysis (Fig. 3E and H) and time-dependent 
ROC analysis (Fig. 3F and I) were validated the predictive efficacy of the 4-IRDEGs signature. 

3.2. Correlation between the risk model and the clinicopathologic features in HCC patients 

The correlation between 4 IRDEGs and tumor staging was analyzed, respectively. As exhibited in Fig. 4A and B, the risk score was 
associated with clinical stage and T stage based on patients’ PFI statistics. Similarly, based on patients’ OS and DFI information, the risk 
score was closely associated with clinical stage and T stage, which can predict patients’ tumor stage (Fig. 4C–F). These findings 
demonstrated that the 4-IRDEGs signature has excellent potential to predict HCC patient’s prognosis by evaluating their risk score. 

3.3. Exploring the immune cell infiltration and mutation profile of the prognostic signature 

We evaluated the relationship between the immune cell infiltration level and the risk score in the TCGA-LIHC cohort using the 
CIBERSORT method. As shown in Fig. 5A, the follicular helper T cells, regulatory T cells, γ-δ T cells, resting NK cells, monocytes, M0 
and M2 macrophages, resting dendritic cells, activated mast cells and neutrophils showed significant differences between the normal 
and tumor groups. Moreover, there were remarkable differences in naive B cells, CD8+ T cells, follicular helper T cells, regulatory T 
cells, γ-δ T cells, M0 and M1 macrophages, resting mast cells, and eosinophils between the high- and low-risk groups (Fig. 5B). The K-M 
curve showed that high level of CD8+ T cells had significantly better OS than low level of CD8+ T cells (P = 0.027, Fig. 5C). Genes such 
as TP53, TTN, CTNNB1, MUC16, PCLO, ALB, MUC4, ABCA13, APOB, RYR2, LRP1B, OBSCN, CSMD3, XIRP2, AXIN1, FLG, CACNA1E, 
HMCN1, RYR1, SPTA1 were top 20 significantly mutated genes in tumors (Fig. 5D). MUC16 showed high mutation rates in the low-risk 
group (20 % vs. 13 %), and TP53 showed higher mutation rates in the high-risk group (34 % vs. 23 %) (Fig. 5E). Unsurprisingly, there 
was a remarkable relationship between the mutation status of TP53 and HCC patients’ OS (P = 0.0197, Fig. 5F). These results indicated 
TME and gene mutation were important for the development and prognosis of HCC. 

3.4. Study of clinical treatment with the risk model 

To investigate whether the prognostic model is concerned with immunosuppressive point biomarkers, the Wilcoxon test was 
applied to compare the expressions of immune checkpoint-related genes in the two groups. The results suggested that high expression 
of CTLA4 (P = 0.01, Fig. 6A) and HAVCR2 (P = 0.0034, Fig. 6B) were was positively correlated with the high-risk group, and PD-L1 
presented with high expression in the low-risk group (P = 0.0062, Fig. 6C). However, PD-1 (P = 0.16, Fig. 6D), TIGIT (P = 0.79, 
Fig. 6E), and LAG-3 (P = 0.13, Fig. 6F) expression levels were not significantly different. Moreover, chemotherapeutics also played a 
vital role in treating HCC patients. Drug sensitivity analysis indicated that vinblastine, staurosporine, pictilisib, paclitaxel, and tra-
metinib might be more effective in high-risk patients, while rapamycin and bortezomib-1191 might be more effective for low-risk 
patients (Fig. 6G). Moreover, we predicted the IC50 values of 6 drugs commonly used in HCC. The results showed the IC50 value of 
Lapatinib was lower in the high-risk group (Fig. S2A), while the IC50 values of Camptothecin, Cytarabine, Docetaxel, Gemcitabine, and 

Fig. 2. Identification of IRDEGs. (A) Violin plots showing the quality control of scRNA-seq from GSE149614 dataset. (B) Venn diagram of the 
intersection between immune-related genes and differentially expressed genes in immune cells. 
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Sorafenib had no significant difference between high-risk group and low-risk group (Figs. S2B–F). These findings demonstrated that 
the risk model has the predictive ability in clinical treatment for HCC patients. 

3.5. Validation of the risk model in the ICGC cohort and IRDEG expression in multiple cohorts and clinical specimens 

The ICGC cohort was used to examine the accuracy of the prognostic model. In the ICGC cohort, K-M analysis showed that the low- 
risk group has better OS (P < 0.0001, Fig. 7A). The areas under the curve (AUCs) values at 1-, 3- and 5-year were 0.705, 0.749 and 
0.667, respectively (Fig. 7B). We further evaluated the expressions of 4-IRDEGs in different datasets. In the TCGA-LIHC cohort and 
GSE54236 dataset, the expressions of B2M and HRG were down-regulated and the expressions of SPP1 and PPIA were up-regulated in 
tumor groups compared with the normal groups (Fig. 7C and D). In the GSE14520 dataset, the expressions of B2M, SPP1, and HRG 

Table 1 
The results of univariate cox regression analysis.  

Univariate Cox regression analysis- significant genes Hazard_Ratio P-value 

B2M 0.791021142 0.021823694 
HSPA6 1.129316184 0.025203337 
KNG1 0.897770135 0.000661572 
PPIA 1.381698784 0.020353856 
HRG 0.928755637 0.001775543 
ACTG1 1.316656194 0.039810106  

Fig. 3. Construction of immune-related prognostic model. Multivariate Cox analysis of PFI (A), OS (D), and DFI (G). K-M survival analysis of PFI (B), 
OS (E), and DFI (H). Time-dependent ROC curve analysis of PFI (C), OS (F), and DFI (I). 
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were the same as the TCGA-LIHC cohort and GSE54236 dataset, while the expression of PPIA was declined in tumor group comparing 
to the normal group (Fig. 7E). Analogously, there was no significant difference in the expression of B2M between the two groups in the 
GSE64041 dataset, and the expression trend of other IRDEGs was consistent with the TCGA-LIHC cohort and GSE54236 dataset 

Fig. 4. The correlation between the prognostic model and the clinicopathological features. Advanced pathological stages of PFI (A), OS (C), and DFI 
(E). T stage of PFI (B), OS (D), and DFI (F). 

Fig. 5. Analyzing of potential immunotherapy-related signatures. (A) The Kruskal-Wallis test was used to compare the proportion of immune cells 
in normal and tumor samples. (*P < 0.05, ns indicated no significance). (B) The Kruskal-Wallis test was used to compare the proportion of immune 
cells in low-risk and high-risk groups. (*P < 0.05, ns indicated no significance). (C) K-M survival analysis of CD8+ T cells. (D) The mutation profiles 
of the low- and high-risk groups. (E) Comparison of the mutation rate between low- and high-risk groups. (F) K-M survival analysis of mutation 
status of TP53. 

L. Cao et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e34012

7

(Fig. 7F). The q-PCR assay was performed to validate the expressions of 4-IRDEGs in clinical specimens. Compared with para- 
carcinoma tissues (normal group), the expressions of B2M and HRG in liver cancer were significantly down-regulated (Fig. 7G), 
while the expression of SPP1 was observably increased. PPIA had no significant difference in the two groups. These results indicated 
the risk model could accurately predict the prognosis of HCC patients, and the levels of IRDEGs was associated with the development of 
HCC. 

Fig. 6. Clinical treatment analysis of the risk model. Comparison of the expression of CTLA-4 (A), HAVCR2 (B), PD-L1 (C), PD-1 (D), TIGIT (E), and 
LAG3 (F) between low- and high-risk groups using Wilcoxon test. (G) The differences of estimated IC50 of 7 representative drugs between low- and 
high-risk groups. 

Fig. 7. Validation of the risk model in the ICGC cohort and 4-IRDEGs expression in multiple datasets and clinical samples. (A) K-M survival analysis 
of the ICGC cohort. (B) Time-dependent ROC curve analysis of the ICGC cohort. Comparison of 4-IRDEGs expression between tumor and normal 
samples in TCGA-LIHC cohort (C), GSE54236 (D), GSE14520 (E), and GSE64041 (F). (G) Clinical validation of 4-IRDEGs expression. (*P < 0.05, ns 
indicated no significance). 
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4. Discussion 

Immunotherapy has become available therapy for HCC. However, due to the heterogeneity of the TME, the interaction of immune 
cells in TME not only affects the progression of the tumor, but also influences the effect of immunotherapy [23]. However, the role of 
TME and immune cells in HCC prognosis remains unclear. Therefore, it is urgent to explore new prognostic biomarkers from immune 
cells from TME that have the power to forecast the efficacy of immunotherapy and survival in HCC patients. 

TME in HCC is associated with immune cell infiltration [24]. In this study, according to the scRNA-seq of HCC, we established a 
prognostic model based on 4-IRDEGs from immune cells and immune-related genes, which can predict the pathological stage and 
prognosis of HCC patients. Besides, the risk model could reflect the tumor immune microenvironment and somatic cell mutations, 
thereby providing references for clinical guidance for the treatment of HCC patients. 

Our prognostic risk model was developed from 4-IRDEGs with prognostic significance, named B2M, SPP1, PPIA, and HRG. B2M, as 
an antigen presentation gene, its alteration effects the normal folding and transport of major histocompatibility complex (MHC) class I 
to the cell surface, resulting in resistance to immune checkpoint inhibitors [25,26]. Moreover, B2M mutations could cause impairment 
in the recognition of tumor antigens by CD8+T cells [27,28]. Liu et al. [29] reported that SPP1 could accelerate the polarization of 
macrophages to m2 phenotype tumor-related macrophages, thus promoting the occurrence and development of HCC. In addition, 
SPP1, as an anoikis-related rognostic gene, can efficiently predict the OS and tumor immune microenvironment of HCC [30]. PPIA is 
highly expressed in HCC and enhances the malignant phenotype of HCC cells [31]. Besides, PPIA with high expression promoted the 
resistance of HCC to sorafenib, which leads to poor prognosis of HCC [32]. Zhang et al. found that HRG was at a low level in HCC, and 
overexpression of HRG inhibited the proliferation and tumor formation of HCC cells [33]. The above studies have shown that the 
4-IRDEGs are related to the immunotherapy and tumor progression of HCC, which is very important for predicting the prognosis and 
immune response of HCC. 

To assess the clinical applicability of this prognostic model, we analyzed the correlation between the model and pathological stage. 
The higher risk score was positively related to pathological stage, which is consistent with other HCC prognostic models [34], con-
firming the reliability of our prognostic model. In addition, TME is important for regulating tumor progression and immune response in 
HCC. Furthermore, the risk scores were negatively related to the infiltration of naive B cells, CD8+ T cells, follicular helper T cells, and 
M1 macrophages. Study has shown that B cell infiltration is positively correlated with the response of tumor patients to immuno-
therapy [35]. CD8+ T cell responses are critical for anti-tumor immunity [36]. CD8+T cell depletion reduces the efficacy of anti-PD-1 
therapy against HCC [37]. M1 macrophages are generally considered to be tumor-killing macrophages, mainly with anti-tumor and 
immune-promoting effects. Hao et al. [38] found that inhibition of APOC1 can promote the transformation of M2 macrophages into M1 
macrophages, thereby reshaping the TME and improving the immunotherapy effect of anti-PD1 on HCC. These studies explained the 
poorer prognosis in high-risk populations in our risk model. 

Somatic mutation can be an important index to predict the clinical efficacy of immunotherapy [39]. Our results showed that TP53 
in the high-risk group was accompanied by a high mutation rate, while MUC16 with high mutation rate was in the low-risk group, 
which is consistent with other report [40]. Additionally, compared with the wild type, TP53 with high mutation rate has a poor 
prognosis in HCC patients, which may be related to the involvement of TP53 mutations in the occurrence and development of HCC 
[41]. Moreover, our prognostic model can predict HCC patients who will benefit from ICIs therapy and chemotherapy, which may 
improve guidance for personalized treatment of HCC. 

5. Conclusion 

In summary, IRDEG could be as an immune-related prognostic biomarker for HCC. Our prognostic model performed well in 
predicting the outcomes and immunotherapy of HCC patients, highlighting the understanding of the relationship between immune 
cells and TME. 
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