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Cholera is on the rise globally, especially epidemic cholera which is characterized by intermittent and
unpredictable outbreaks that punctuate periods of regional disease fade-out. These epidemic dynamics
remain however poorly understood. Here we examine records for epidemic cholera over both contemporary
and historical timelines, from Africa (1990-2006) and former British India (1882-1939). We find that the
frequency distribution of outbreak size is fat-tailed, scaling approximately as a power-law. This pattern
which shows strong parallels with wildfires is incompatible with existing cholera models developed for
endemic regions, as it implies a fundamental role for stochastic transmission and local depletion of
susceptible hosts. Application of a recently developed forest-fire model indicates that epidemic cholera
dynamics are located above a critical phase transition and propagate in similar ways to aggressive wildfires.
These findings have implications for the effectiveness of control measures and the mechanisms that
ultimately limit the size of outbreaks.

holera remains a public health threat in many countries around the world where outbreaks occur spor-

adically and punctuate periods of disease extinction or fade-outs'. This epidemic behaviour is character-

ized by dramatic variation in the size of individual outbreaks including large intermittent and
unpredictable events. It corresponds to the so-called ‘type III’ epidemics in the literature on childhood diseases
such as measles™, and differs fundamentally from the better studied population dynamics of endemic cholera in
foci of persistent disease with recurrent seasonal transmission*”’. Historically, epidemic cholera was common in
the vast stretches of land surrounding the Ganges and Brahmaputra in former British India, upriver from the
estuary and the homeland of the disease in Bengal®’. In recent decades, epidemic cholera has appeared in Africa,
South and Central America, and the Asian Subcontinent'.

Although the population dynamics of some individual epidemics have been addressed'®', a characterization
of ensemble properties for multiple events over time is lacking for any region. Consideration of the statistical
properties of multiple events is of relevance to address what mechanisms determine and limit the size of out-
breaks. In particular, the apparent stochasticity implied by disease fade-outs does not tell us per se whether cholera
is above or below the ‘emergence/elimination’ threshold at which an infected individual replaces itself by less than
one secondary infection on average. Similarly, it does not inform us on how the size of outbreaks will vary as we
approach this threshold from below or above, as environmental, socio-economic or intervention conditions
change in time. These questions are closely related to the current interest in critical transitions in nonlinear
systems in general®.

Results

To examine ensemble properties, we have analysed an extensive historical data set for cholera mortality from the
districts of Punjab and Assam in former British India that span about six decades (1880-1939) (Fig. 1), as well asa
compilation of contemporary weekly cholera cases reported to the World Health Organization (WHO) for
countries in Africa from 1990 to 2006. We compute epidemic (or “event”) sizes from the time series data by
aggregating all case numbers (for Africa) or mortality numbers (for India) between consecutive fade-outs, with a
fade-out defined as no reported infection, or no death, over a one month period. This duration is long enough to
ensure that events are independent, in the sense of one event going extinct before the other is initiated (since the
pathogen is known to rapidly loose culturability and to suffer predation by bacteriophages in aquatic environ-
ments, outside the human host', where its mean lifespan is typically considered less than a week'>""). Figure 1d
illustrates the frequency distribution of epidemic sizes for one particular historical district. This distribution is fat-
tailed, with the frequency of the larger epidemics over-represented relative to what would be expected for an
exponential or a bell-shape distribution with a characteristic, most frequent, size. This pattern is similar to those
described for the size distributions of natural disasters such as earthquakes and wildfires'>~". This similarity is

| 4:3710 | DOI: 10.1038/srep03710 1



| Nowogong (Assam,India)
<o
3 3
T
o
I
o
e A
Yo
o
I I I I I
1890 1900 1910 1920 1930
b c
° Cholera: Nowogong Fire: Western Taiga Shield
52 A © 4
o 5
©
) »
N B o
w9 o o
x 27 N —
[ 7]
2 o
Fe] =
> ?
o e 7
'o .
- I I I I I I I I I I I I
0 10 20 30 40 50 0 10 20 30 40 50
time sequence time sequence
d
x 9 N o (o]
©
£ (o]
<. e
@ o - ©
T o o
5 < o O
S o
o = O Cholera o
o .
L2, O Fire
o o
T I I I I I
107 107° 1072 107 10°
size S/ Smax

Figure 1| Time series and size distributions exhibit similarities for cholera and wildfire. (a), Type III epidemic pattern in a representative time series
for historical cholera mortality in the Nowogong district of Assam (India). (b & c), Outbreak sizes for the above cholera data and fire sizes from the
Western Taiga Shield (Canada)'” shown as time sequences. These are qualitatively similar. (d), The respective distributions for outbreak sizes and fire sizes
show similar fat-tailed shapes, with comparable slopes. (The largest sizes typically deviate from the main distribution because of small samples).

particularly apparent when the size distribution for cholera epi-
demics is compared to that of fires for a region with aggressive wild-
fires such as the Boreal forest of the Northern hemisphere (Fig. 1d).
Examination of these size distributions for the full data set (Fig. 2)
reveals that there are regularities in these patterns across regions and
historical periods, with outbreaks of all sizes over several orders of
magnitude whose relative frequencies are not random but scale
approximately as a power-law. A similar pattern characterizes the
distribution of inter-epidemic intervals, although these range over
fewer orders of magnitude (Supplementary Fig. S5).

This motivates us to better characterize these size distributions
with a recently developed minimal forest-fire model that is both
spatially explicit and stochastic'’; this model represents an extension
of the well-known Drossel-Schwabl model (hereafter DSM'®). The
original forest fire model was proposed in the context of self-orga-
nized criticality (hereafter SOC'") and applied to both wildfires in
nature" and childhood diseases such as measles®. The extension we
consider here was recently shown to better explain the observed

variation in empirical size distributions of wildfires, in particular
the values and full spread of the exponents of these power-law-like
patterns observed across ecoregions'®".

In the model, transmission is localized by representing space as a
two-dimensional lattice whose cells can be in one of three possible
states: infected, recovered (and immune) and susceptible (non-
immune). Disease dynamics is the result of three main processes
affecting the state of these cells: the local birth-death process mod-
elling the propagation of infection to near-neighbouring cells (at
respective rates 4 and u), the random immigration of infection from
outside the system (the injection or ‘sparking’ rate f), and the replen-
ishment of susceptible individuals via new births or the loss of
immunity (at rate p). Infection spreads at rate 4 as long as the epi-
demic front has at least one non-isolated infected cell (one with
susceptible cells in its local neighbourhood) (Methods). In the
well-mixed or “mean-field” version of the model, the infected cell
can infect a susceptible cell anywhere on the lattice. The temporal
scales of these processes differ significantly, so that the spread of
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Figure 2 | The size distribution of cholera outbreaks is fat-tailed for both the historical and recent periods. Size distributions for the Punjab, Assam
and Africa are shown respectively in the three columns from left to right (red circles). The size distributions obtained from the corresponding best-
likelihood model are overlaid for comparison (blue circles). Lower bound estimates of the parameter ¢ place epidemic cholera in the highly contagious

category for all data sets. See Methods for a description of the data.

infection occurs at a much faster rate than the re-growth of
susceptibles, which in turn is much faster than the rate at which
new infections enter the system. The model has effectively two para-
meters, ¢ = A/ corresponding to the (local) reproductive ratio R, of
the disease (up to a maximum value given by the neighbourhood
size), and 0 = p/f corresponding to the average susceptible replen-
ishment number between consecutive immigration of infections. The
critical value of ¢ = 1 separates two distinct dynamical regimes: (1) a
sub-critical regime in which fade-outs are purely random and occur
from demographic drift because the local spread of infection is too
slow relative to recovery or death; and (2) a super-critical regime
where epidemics are curtailed because infections have rapidly
depleted their local pool of susceptible hosts.

We have fitted the model to determine how accurately it captures
the empirical distribution of epidemic sizes and whether the
dynamics are above or below the critical point, as well as their dis-
tance from this point (see Methods). For the model, the epidemic size
is given by the number of infected cells as the epidemic progresses
from start to end. Figure 2 illustrates the fit of the model to the
epidemic size distributions for different locations in the full data

set. The estimated value of ¢ for both the contemporary and
historical data always exceeds 1, indicating a super-critical regime
(Supplementary Table S1). This estimate is typically large (>1),
corresponding to a region of parameter space for which the model
behaves like the DSM with similar power law exponents (Fig. 3). Our
maximume-likelihood estimation procedure can give us the lower
bound of the confidence interval for ¢ but not a precise estimate
itself, once the system is considerably above the critical point. This
is because the size distribution changes little (Fig. 3), and so does the
model likelihood (Supplementary Fig. S4), once ¢ is sufficiently far
into the super-critical regime. A more precise estimate of a lower
bound is possible with a larger number of epidemic events. To this
end, we aggregated all regional events for each of the three data sets
for Africa, Punjab and Assam (Supplementary Table S1); the aggreg-
ate estimates remain consistent with those of the component regions.

To further explore the potential implications of these empirical
patterns for the dynamics transitioning towards, or away from, crit-
icality”, we summarize in figure 3 the different size distribution
patterns exhibited by the model as the parameter ¢ is progressively
increased from 1. A power-law emerges at the (2™ order) critical
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Figure 3 | Simulated size distributions from the model are fat-tailed for all values of & above 1. Top panel, Size distributions simulated from the

neighbourhood model are shown for increasing values of ¢, from ¢ = 1 through ®, together with the corresponding fit of the power-law function n(s) ~
s~ (solid black line) (a finite-size scaling of the form n(s) ~ s~*exp(s/smax) applies to the distributions for ¢ = 1.2, where s,,,,, denotes the largest outbreak
size). The model bridges two critical phenomena, namely 2™ order criticality at o = 1 (with o = —1.5) and SOC at ¢ = % (with = —1.14), and generates
a spectrum of fat-tailed distributions for different values of a single parameter ¢. Bottom panel, The plot shows the relationship between the estimated
power-law exponent o and g. As ¢ is lowered from o towards 1, the exponent decreases slowly at first, and then more rapidly as it approaches the critical

point ¢ = 1, undershooting the critical slope of —1.5 between 1 < ¢ = 1.3.

phase transition at ¢ = 1 whose exponent equals -1.5. Below this
value, the dynamics are essentially linear, with no depletion of local
susceptibles; the event size distribution for this sub-critical regime
shows a characteristic exponentially decreasing shape (Supplemen
tary Fig. S6). An analytical expression for the size distribution of
the birth-death process exists in the literature*, which shows
how the long-tail expands as ¢ approaches 1. In contrast, in the
limit of infinite g, the model reduces to the DSM with a power-law
exponent —-1.14. (A correction to this numerically observed DSM
scaling has been proposed in the limit of very large size and 0>,
much larger than those considered here.) Hereafter we refer to
the limit of infinite ¢ as the “SOC limit” of our model. Although
models exhibiting the 2" order phase transition and DSM have been
independently studied quite extensively'’>?, the model presented
here is to our knowledge the only one capable of bridging these
two distinct phenomena by varying a single parameter, ¢. This fea-
ture gives our model the ability to generate a family of size distribu-
tions that remain power-law like regardless of considerable variation
in parameters.

The model’s behaviour can be further characterized by compar-
ison with that of its ‘mean-field’ counterpart, in which the locality of
transmission is lost and an infection can randomly propagate to
random sites throughout the lattice. For ¢ = 1, the neighbourhood
and mean-field model exhibit as expected the same power law
because spatial correlations result from the branching process itself*’
rather than from the neighbourhood interactions (Fig. 4a). As ¢

increases past 1 and enters the super-critical regime, these correla-
tions quickly break down in the mean-field model. Because the
infection can spread far and wide and in so doing, generate very large
outbreak sizes quite distinct from the bulk of the distribution
(of smaller outbreaks), the fat-tailed distribution breaks apart
(Fig. 4b-d). By contrast, the spread of localized infection in the
neighbourhood model can maintain spatial correlations at all scales,
and the size distributions remain power-law like for all ¢ up to ¢ = o,
the SOC limit (Figs. 3,4). These patterns do not depend on the num-
ber of neighbours (Supplementary Fig. S2): the spatial correlations
determining the shape of these distributions remain unaffected for
neighbourhood sizes much smaller than the size of the lattice. This
observation indicates that the parameter estimates are insensitive to
the particular neighbourhood used in the model as long as the con-
dition relative to the total size of the system holds. It also follows that
the well-mixed, temporal models developed for endemic cholera will
fail to reproduce an important statistical property of empirical data
in epidemic settings, the scaling evident in frequency distributions of
epidemic size. Local spread and stochasticity appear essential to
reproduce those patterns.

Discussion

To summarize, a minimal model of forest-fire dynamics captures the
empirical patterns of cholera epidemics in widely separate regions,
and suggests that epidemics spread like fire in the super-critical
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Figure 4 | Size distributions for the neighbourhood and mean-field models are compared. The outbreak size distributions for the neighbourhood (red
circles) and mean-field (blue circles) model are compared for ¢ = 1, 1.2, 3 and ® (raw, or un-binned, distributions are shown to highlight differences).
(a), Both models exhibit the same 2" order criticality at ¢ = 1, and hence the two distributions coincide with identical slope o = —1.5. (b—d), The slopes
diverge for ¢ > 1: only the neighbourhood model continues to exhibit the fat-tailed distribution as ¢ is increased all the way to o°; by contrast, the
mean-field scaling quickly breaks apart into two distinct groups of small and large sizes (see text).

regime. This implies that the local depletion of susceptibles underlies
the turnaround of epidemics, rather than demographic stochasticity
as proposed with a model for a South African epidemic* or season-
ality per se as in models for endemic cholera in Bangladesh®’. This
local depletion may result from local ‘herd’ immunity or even beha-
vioural changes arising when individuals become aware of cholera’s
presence. An interesting consequence of the 2™ order criticality is
that epidemics of all sizes tend to arise as the critical point ¢ = 1 is
approached (Supplementary Fig. S1c). This implies that intervention
efforts that push the system progressively towards the elimination
boundary would increase the likelihood of extreme epidemic events.

Type III epidemics in isolated small populations were modelled
previously with an elegant application of the DSM that was limited to
the extremely fast (instantaneous) propagation of infection®. This
resulted in the same size distribution (with a fixed exponent) regard-
less of the values of other parameters, as the system ‘self-organized’ to
the same patterns characteristic of DSM (the ¢ = % limit), a limita-
tion that was resolved by invoking a different dimensionality of the
transmission network®. At the opposite extreme of sub-critical beha-
viour, branching (birth-death) processes were previously applied to
the ‘stuttering’ outbreaks of measles in London which have emerged
with the progressive relaxation of vaccination®. Our model bridges
these two regimes. As such, it can be applied to follow changes in ¢
over time as the result of intervention measures, and to anticipate
emergence, or elimination, as an infectious disease approaches the
critical point.

The analogy to forest fire dynamics is not limited to epidemics
outbreaks in small individual populations in isolation®; it should
apply more generally to epidemic infectious diseases in a metapopu-
lation structure* depending on population size and distances from
the populations acting as sources of infection. The key aspect would
be the relative time scales of the three basic processes, and in par-
ticular how the introduction rate is influenced by the connectivity of
the metapopulation network. In this sense, the heavy-tailed shape of

the epidemic distribution in a large city may break down not because
of the large population size per se, but due to the frequent movement
among relevant spatial subunits, which would violate the condition
of the double separation of time scales. An estimate of 0 for an
epidemic of another diarrhoeal disease, rotavirus, in Melbourne
(Australia) suggests evidence for such an inadequate time-scale sepa-
ration*®. Investigation of the metapopulation dynamics of the model
is underway, including the effect of hierarchical patterns of connec-
tivity (within and between populations as a function of size) and
associated patterns of synchrony.

Because of the way the data was collected, we have considered here
cholera outbreaks assembled over large regions. Thus, the definition
of an event cannot differentiate between a genuine single event and
one that aggregates cases or mortality from two or more events that
are sufficiently synchronous to overlap in time. A genuine event
would be one that is initiated by a single ‘spark’ within the area under
consideration. We have seen however that aggregation over different
spatial extents does not alter our conclusions (Supplementary Fig.
S7). Future work should seek to address better delineated spatial
scales for individual events and consider the dynamics of the epi-
demic model in a regional metapopulation context. Data sets with
higher spatial resolution would be invaluable to better understand
how the stochastic dynamics of transmission are reflected in epi-
demic patterns, and how these patterns are themselves influenced
by the spatial scale of aggregation. The effects of seasonality and
climate induced extrinsic forcing of the birth-death process should
also be addressed®.

Our lower-bound estimates of ¢ suggest that the reproductive
number of cholera tends to be considerably larger in epidemic than
in endemic settings. For comparison, estimates of R reported in the
literature for endemic cholera range from 1 to 17, with a majority of
estimates not much larger than 1***°. These estimates do not repres-
ent however measures of local spread, and the population-wide R,
can poorly apply to disease propagation in a spatio-temporal context
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where it is neither necessary nor sufficient for its value to exceed 1 for
an epidemic to occur'?. Our estimates (>>1) of the local Ry suggest
that epidemic cholera not only spreads ‘like fire’ but does so like
aggressive wildfires in nature. A raging wildfire in a similar regime
cannot be easily brought under control and its final size largely
depends on the exhaustion of available fuel. In the case of cholera,
intervention saves lives, and as such, it should clearly be a priority.
However, the final size of a cholera epidemic, once it is initiated,
especially in less developed regions with a large vulnerable popu-
lation, might be largely insensitive to intervention efforts. This obser-
vation reinforces the importance of ultimately controlling cholera, a
well-known disease of poverty, by eliminating the conditions that
make its regional persistence possible and its local reappearance
likely. Treatment and vaccination during an epidemic, despite their
clear value to individuals, are unlikely to achieve the well-known
historical results of basic sanitation and access to clean water.

Methods

Data. The weekly data for epidemic cholera outbreaks in African countries during
1990-2006 has been assembled from the records of the World Health Organisation
(http://apps.who.int/globalatlas/). The monthly district-wise cholera mortality data
for former British India has been assembled from the Annual Sanitary (Public Health)
Reports for the Provinces of Assam and Punjab. Because the number of epidemic
events obtained from each of the data sets in Africa and Punjab is low, we consider
ensembles of events from several geographically contiguous regions to generate size
distributions, and obtain more reliable statistics (Supplementary Fig. S3). This
grouping makes the implicit assumption that outbreaks are uncorrelated in space, in
the sense that each of them in a given district or country starts with a single
introduction of infection from outside the system, rather than from multiple
initiation points generating concurrent epidemics in time within the given area (see
Model formulation). The grouping also considers that aggregation over different or
randomized spatial subunits within a region does not affect the shape of the
distributions, an assumption we have verified in our analyses (Supplementary Fig.
S7).

Specifically for Africa, five regional groups are defined by aggregating epidemic
events as follows: Group 1 comprises Burundi, Malawi, Uganda, Rwanda, United
Republic of Tanzania, Somalia, Kenya, Zanzibar; Group 2 comprises Chad, Sudan,
Mali, Niger, Dijibouti, Burkina Faso; Group 3 comprises Mozambique, Swaziland,
Zambia, Zimbabwe, Madagascar, Comoros; Group 4 comprises Sierra Leone, Liberia,
Togo, Benin, Gambia, Cote de Ivoire, Ghana, Senegal, Guinea Bissau, Nigeria, Mali,
Niger, Mauritania, Burkina Faso; and Group 5 comprises Congo, Central African
Republic, Zaire, Gabon, Cameroon, Democratic Republic of Congo, Equatorial
Guinea, Sao Tome and Principe, Angola. Similarly for Punjab, five regions are con-
sidered by aggregating epidemic events from different districts as follows: Region 1
comprises Attock, Rawalpindi, Jhelum, Gujrat, Shahpur, Mianwali; Region 2 com-
prises DGKhan, Mooltan, Muzaffaragarh, Jhang, Lyallpur, Montgommery; Region 3
comprises Gujranwala, Sialkot, Sheikhupura, Lahore, Amritsar, Gurdaspur; Region 4
comprises Ferozpore, Jullundur, Hoshiarpur, Kangra, Ludhiana, Hissar; and Region 5
comprises Gurgaon, Delhi, Rohtak, Karnal, Simla.

Model formulation. Each cell of the two-dimensional grid can be in one of three
possible states, namely, infected, recovered (and immune) or susceptible (non-
immune), and are labelled as I, R or S respectively. Infection is introduced randomly
in the system at a slow rate f, and can initiate an epidemic only if it hits a susceptible
cell. Empty cells become susceptible at a rate p(>>f), which ensures substantial
susceptible growth between consecutive introductions. The infection spreads to
susceptible cells locally, among 4 or 8 near neighbours, at a rate 4, and an infected cell
recovers at a rate i The rates Z and y are chosen such that p<T ' (s), where T(s) is
the duration of a typical outbreak of size s, which further ensures that susceptibles do
not reappear until the epidemic dies out. The parameter ¢ = /i corresponds to the
localized basic reproductive ratio Ry. The double separation of time scale f < p<T "
is similar to the necessary condition for generating fat-tailed size distributions in SOC
models'”™"°. Our model additionally incorporates a finite propagation rate of the
epidemic via rates A,u < %, whereas in SOC the propagation is instantaneous; it
reduces to the SOC model in the limit ¢ — .

Model implementation. All T cells are kept in a queue and processed sequentially in
the order they are added to the queue (random processing of the queue does not affect
the conclusions presented here). A random number in (0,1) is drawn to decide
whether the first I cell in the queue recovers (I— R transition) with probability u/(4 +
W), or whether a random S neighbour of this I cell becomes infected (S — I transition)
with probability /(4 + p). If there is no S neighbor, the next I cell in the queue is
chosen and so on, until one infection occurs. The recovered I cell is removed from the
queue, and the newly created I cell is added to the end of the queue, with these steps
repeated until the last I cell in the queue recovers (i.e. the epidemic dies out). We
present results obtained with the 4-neighbor model (the 8-neighbor model exhibits
similar patterns; Supplementary Fig. S2).

Model simulation. Simulations were run on a grid of L* = 500 X 500 cells and rigid
boundary conditions are used. (For this large grid size, the alternative choice of
periodic boundaries does not affect the outcome of the simulations.) A
neighbourhood size of 4 (Von Neumann neighbourhood) is used throughout, unless
stated otherwise (as in Supplementary Fig. S2). Once the densities reached a
stationary state, 100,000 epidemics were sampled to obtain the frequency distribution
for each combination of ¢ = A/u, 0 = p/f. Size distributions were constructed by
binning the outbreak size data according to (log-equally spaced) size classes. The
values for o were selected such that 2 + p = 1 with A bounded between (0.4,1) in steps
0f 0.01 (2 = 1 corresponds to ¢ = %, which is the SOC limit for the model). For the
SOC regime, larger grids require longer transients to reach the stationary scaling®'; we
therefore calibrated the 500 X 500 grid for transient length by making sure the model
exhibits SOC scaling at ¢ = o (Figs. 3, 4d) after 100,000 epidemics, and used this
transient length for all simulations with this grid size. A further calibration is needed
for the parameter 6 = p/f because a finite-size effect relates the grid size to the
inoculation rate f. For a given growth rate p and grid size, a larger fand hence smaller 0
will trigger outbreaks before susceptibles are sufficiently numerous to develop
adequate spatial connectivity, resulting in the absence of large cluster sizes in the
distribution™. Similarly for a given 0, smaller grids will effectively raise by increasing
the inoculation risk of a random S cell, and trigger outbreaks prematurely. For our
model with a 500 X 500 grid, we found 6 = 750 to be the range that exhibits SOC
scaling at ¢ = %, and used a representative value 0 = 1000 for all model simulations in
figures 3, 4. However, for fitting the data sets (fig. 2), 0 is allowed to move freely, and is
estimated together with ¢. The values of 0 are well-determined by the data as
indicated by narrow confidence intervals (Supplementary Table S1). The maximum-
likelihood estimates indicate a clear separation of time scales for the processes of
inoculation from outside (at rate f) and susceptible regrowth (at rate p) for both
Assam and Africa. The separation is less pronounced for the Punjab data sets, with
values around 100 that effectively constrain the tail of the distribution and potentially
reflect a smaller population (Supplementary Table S1).

Parameter estimation and model validation. For fitting the cholera data with our
model, we estimated the parameter o together with  (Supplementary Table S1). This
was done by maximizing the log likelihood, log L= Zi n; log p;, of the model given
the data, where #; is the number of observed epidemics in bin i and p; is the probability
that an epidemic falls in that bin based on the model"”. The uncertainty range of ¢ was
calculated as the 95% confidence interval via likelihood profiling, with
logL(o1)=logL(c)F1.92% (and similarly for ).

The estimation procedure described above presupposes the model is a valid
description of the data, which may not always be true®. We therefore independently
addressed model validity by computing a goodness-of-fit using the KS (Kolmogorov-
Smirnov) statistic D=maX;>,,, |Ciata (s) — Cs,0(s)|, where sy, denotes the smallest
outbreak size (=5) considered for the distribution, and C,, and C,; g refer to the CDF
(cumulative distribution function) of event sizes for the data and model®*. This
quantity provides a measure of the distance between the size distribution from the
data and that from a particular model (given ¢ and 0). We estimated the p-value that
the model cannot be excluded given the data, by first generating a distribution of D
values by using Ceampre in place of Cyy, (in the expression) for a large number of
samples from the simulations, and then comparing the D value based on the empirical
data to this distribution. The model is valid at p = 0.05 level if the data D falls within
5-95% of the distribution. For each cholera data set, we obtained the p-value of a
series of models with different ¢ (and 0 fixed at the respective MLE; see
Supplementary Table S1). This yields a lower bound of ¢ below which the model is
excluded (with p = 0.05); this bound is consistent with the lower bound for the MLE
of o (not shown).
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