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Abstract

Competition is a major factor structuring plant communities and controlling their productivity.

The functional similarity between the interacting species and the context resource availabil-

ity are assumed to be most critical factors that modulate the strength, sign, and outcome of

plant competition, yet their roles and interactions are subjected to debate. In a glasshouse

experiment, we constructed monocultures and bi-specific cultures of three common peren-

nial grasses of Mediterranean drylands, the short grass Brachypodium retusum and the tus-

sock grasses Stipa tenacissima and Lygeum spartum, and investigated how the functional

similarity between these species modulate their interactions and culture productivity under

contrasting levels of water availability. Regardless the degree of functional similarity

between the interacting species, B. retusum consistently exhibited a greater competitive

ability than the other two species, followed by L. spartum, and with S. tenacissima behaving

as the weakest competitor. Bi-specific cultures of B. retusum and either L. spartum or S.

tenacissima produced higher biomass than the average biomass of the respective monocul-

tures (i.e. overyielding), whereas the combination of the most similar species, L. spartum—

S. tenacissima, which exhibited the highest competition symmetry (i.e., the more similar

mutual impact), did not show any significant overyielding. Higher water availability increased

productivity and promoted transgressive overyielding for the most dissimilar species, B.

retusum and L. spartum, which however exhibited intermediate competition asymmetry.

This study calls attention to the thin line between differences in functional traits and competi-

tion asymmetry that could eventually lead to either competitive exclusion or resource parti-

tioning and coexistence.

Introduction

Competition has been since long considered the most significant interaction structuring plant

communities [1–3] and thereby controlling ecosystem function [4]. Biotic factors such as the
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functional traits and similarity of the interacting species are known to affect the strength, sign,

and outcome of plant-plant interactions [5, 6], yet the role of species functional similarity in

shaping plant competition outcomes is still under debate [7, 8]. Understanding this role and

how it can be modulated by the abiotic environment is critical for predicting how competition

influences the structure and functioning of plant communities.

The ability of the species to compete with each other results from two components: the abil-

ity to suppress a neighbor (competitive effect) and the ability to avoid or resist being sup-

pressed (competitive response), both jointly shaping the relative competitive performance of

the interacting species [9, 10]. The competitive effect ability has been positively related to traits

such as plant size, growth rate, and the production of allelopathic exudates, while the competi-

tive response ability has been mostly associated with traits such as root development and seed

size [10, 11]. The interaction between plants that strongly differ in traits related to their com-

petitive abilities, either effect or response abilities, could result in a clear competitive hierarchy

and a high degree of competition asymmetry (i.e., contrasting reciprocal impact), eventually

leading to the suppression of the worst competitor [12]. However, increasing contrast in func-

tional traits could also imply niche differentiation, and thereby reduced competition and

higher probability of coexistence [13], particularly when niche differences exceed differences

in the competitive ability of the interacting plants [7, 14].

If the species functional dissimilarity implies niche differentiation, more functionally

diverse plant communities should be able to use resources more completely; reducing niche

overlapping and resulting in a positive relationship between diversity and productivity through

complementarity effect [15–19]. However, if the contrast of species traits is large, certain spe-

cies or certain functional groups could have the favorable traits to provide the species with a

greatest inherent productivity and competitive ability. This would support a composition effect

on productivity, rather than diversity being the direct causing factor. This phenomenon is

known as sampling effect [15, 20, 21] and can to lead to over-yielding (i.e. higher productive of

diverse mixtures than the average productivity of the monocultures), but not to transgressive

over-yielding (i.e. mixtures outperforming the best monoculture). Contrarily, complementar-

ity effects would increase the net use of resources and improve the performance of the species

in mixtures, potentially leading to transgressive over-yielding [22, 23].

Abiotic factors such as resource availability are recognized as modulators of the intensity of

competition [24, 25], and therefore of the competition impacts on productivity of the commu-

nity. However, the role played by resource availability in modulating competition is still an

area of debate [5, 26–28]. While some authors have suggested that competition increases with

increasing productivity [29–31], there is also evidence of the opposite pattern [32–34], as well

as evidence of competition dominating at both ends of resource availability gradients [35, 36].

Further, little is known on how the availability of resources could influence the effects of biotic

factors on competition. Direct manipulation of water availability, as the main limiting factor

in drylands, can help to reveal the role of resource availability in generating fitness differences

among co-occurring species and modulating the effects of functional similarity on resource

competition.

To evaluate the effects of the functional similarity of the interacting plant species on the

competition outcome and the productivity of the species mixture, and how these effects are

modulated by the availability of resources, we analyzed interspecific versus intraspecific inter-

action effects and diversity effects on plant performance and culture biomass for three com-

mon grass species of Mediterranean drylands (Brachypodium retusum Pers., Stipa tenacissima
L. and Lygeum spartum L.) under contrasting water availability. We hypothesized that (I) indi-

viduals in mono-specific cultures will experience stronger competition effects than in bi-spe-

cific cultures. (II) Plant-plant interaction outcome in bi-specific cultures will vary according to
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the functional similarity among species, with each species competing more intensely and sym-

metrically with the most functionally similar species. (III) Higher functional dissimilarity

between the interacting species will result in higher probability of complementarity effects,

leading to higher productivity relative to the respective monocultures. For the selected target

species, this would imply higher biomass production for B. retusum–L. spartum cultures and

lower production for L. spartum–S. tenacissima cultures. (IV) Higher water availability will

increase the contrast in competitive ability between the species and the asymmetry of competi-

tion, as well as the probability of sampling effect in case of increased productivity in mixtures.

Materials and methods

Target species

We used three C3 perennial grass species that are common and abundant species in Mediterra-

nean drylands: Brachypodium retusum (Pers.) P. Beauv., Stipa tenacissima L. and Lygeum spar-
tum L. The three species belong to the Poaceae family, within the subfamily Pooideae. The

phylogenetic analysis of the Pooideae group, [37, 38] supports the position of the Lygeeae, a

tribe with a single species: L. spartum, as the second earliest diverging lineage in the subfamily.

Stipeae, with 28 genera, appeared after two other lineages branched off, and Brachypodieae (20

species in one genus) appeared after one more diverging lineage, being the most recently

evolved tribe of the three target groups. Regarding their morpho-functional traits, S. tenacis-
sima and L. spartum form dense tussocks, with an average height of ~60 cm in the case of L.

spartum and of ~90 cm in the case of S. tenacissima, while B. retusum is a short grass with a

more extensive and erect growth, and stems of ~30 cm in height (S1 Appendix). The three spe-

cies have an extensive below-ground rhizome, with rooting depths of 15–20 cm in B. retusum,

and 30–40 in S. tenacissima, and L. spartum, respectively [39], yet the latter species can reach

deeper depths [40]. The two tussock grasses are found in the driest environments of the Medi-

terranean basin and exhibit similar maximum photosynthetic rate and leaf nitrogen concen-

tration, and leaf and canopy structures that help to reduce the impact of high-radiation

environments. However, L. spartum seems to be adapted to more mesic conditions and saline

soils than S. tenacissima, which has a more opportunistic growth and higher plasticity to

respond to drought [41]. Brachypodium retusum has a wider geographical range and climate

tolerance, being generally frequent in the Mediterranean basin, western Asia and Arabia, and

growing in a wide variety of grassland and shrubland communities, from xerophilous grass-

lands and semiarid low matorral (tomillares) and steppes to tall maquis and garrigue in sub-

humid areas [38, 42]. Various dissimilarity indices calculated from the available data on nine

morpho-functional functional traits (S1 Appendix) consistently support that L. spartum—S.

tenacissima (L-S) is the most similar species pair, followed by B. retusum—S. tenacissima
(B-S), with an estimated dissimilarity of 1.4 times the L-S dissimilarity, and by the most dis-

similar pair: B. retusum—L. spartum (B-L), with an estimated dissimilarity of 1.7 times the L-S

dissimilarity (S1 Appendix).

Experimental design

We prepared monospecific and bi-specific cultures of the target species in a glasshouse at the

University of Alicante, Alicante (Spain). The experimental design included two main factors,

culture type (monospecific and bi-specific) and watering regime (frequent and reduced water-

ing). Bi-specific cultures consisted of all possible combinations of the three species (B. retusum
—L. spartum, B. retusum—S. tenacissima; and L. spartum—S. tenacissima). Each combination

of culture type (3 monospecific and 3 bi-specific) and watering regime was replicated 4 times,

resulting in a total number of 48 cultures.
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In July 2014, the cultures were established in plastic pots of 11x11 cm at the base and 16x16

cm at the top, and filled with a homogenized substrate up to 13 cm in height, resulting in a

total volume of substrate of approximately 2.3 L. The substrate consisted of 40% of coconut

fibre, 40% of red peat and 20% of fine silica sand (with particle size ranging between 0.2 and

0.7 mm), designed to guarantee a good drainage and to facilitate plant harvesting at the end of

the experiment. We sowed 3 seeds per hole on 6 small holes per pot. The seeds were supplied

by the Forest Seed Bank of the Valencian Forest Administration. During the first days of the

experiment, we replaced non-germinating seeds and removed extra seedlings in case there was

more than one seedling per hole, until we achieved the target density of one individual per

sowing hole, and thus 6 individuals per pot, for all the cultures. The pots were randomly placed

on a 1 x 3 m bench, and kept under natural daylight. To avoid possible local variation of light

and other environmental factors, the relative location of the pots on the bench was changed

weekly. Air temperature and relative humidity in the glasshouse varied between 19 and 31.5˚C

and between 65 and 75%, respectively, during the experiment. We applied 100 mL watering

per pot (representing, approximately, an increase of 4% in soil moisture content) three times

per week, for the frequent watering treatment (W++), and twice per week for the reduced

watering treatment (W+). For the first 140 days, the cultures were monitored weekly for plant

height and number of leaves of each individual. Data were averaged per pot. After 5 additional

months, all pots were harvested; above and belowground plant material was separated at the

stem base, and belowground material was delicately washed to remove soil remains attached

to the roots. Above and belowground biomass was separately oven-dried for 72h at 80˚C, and

weighed afterwards.

Data analyses

For each target species, we analyzed the average plant height and number of leaves per culture

(pot) using a Repeated Measures analysis of variance, with Watering regime (W), with two lev-

els, frequent watering (W++) and reduced watering (W+), and accompanying Species (S),

with three levels (B, L and S) as between-subject factor, and Time (T) as within-subject factor.

Biomass data (above-ground biomass, below-ground biomass, total biomass) were analyzed by

using a Mixed-effects analysis of variance with two fixed factors: watering (W), with two levels,

(frequent watering (W++) and reduced watering (W+)) and Culture (C), with two levels

(mono and bi-specific), and one random factor: Species combination (SC), with six levels

(B-B, L-L, S-S, B-L, B-S, L-S). For each target species, we calculated the net interspecific com-

petition effect of each competing species on final plant height and number of leaves as the dif-

ference between the average values for the plants growing in each bi-specific culture and the

average values for the monospecific cultures of the target species. From these values and adapt-

ing the approach proposed by Johansson and Keddy [12], we estimated pairwise interspecific

competition asymmetry for species i and j as the absolute difference between the net interspe-

cific competition effects (NE) of the two species on each other (|NEi-j—NEj-i|), with higher val-

ues indicating higher asymmetry. We estimated overyielding and transgressive overyielding

effects on aboveground, belowground and total biomass as the difference between the biomass

produced by each bi-specific culture and either the average of the respective monospecific cul-

tures (i.e. overyielding) or the respective most productive monoculture (i.e transgressive over-

yielding). We evaluated the statistical significance of the net interaction effects on plant height

and number of leaves, and the significance of the overyielding and transgressive overyielding

as significant deviations from zero using two-tailed Student’s one-sample t-tests. All data met

the normal distribution of residuals and homoscedasticity assumptions. All statistical analyses

were performed by using v.23.0 Statistical package (SPSS Inc., Chicago, IL, USA).
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Results

Accompanying species and watering effects on individual plant growth

The time for seedling emergence was very similar for L. spartum and B. retusum (around 6

days after sowing), and slightly delayed for S. tenacissima (around 11 days after sowing). Plant

height increased quickly during the first two months, and then tended to a plateau, with values

around 50, 40 and 20 cm for L. spartum, B. retusum and S. tenacissima, respectively. Stipa tena-
cissima showed the lowest height growth rates (Fig 1, panel A). The growth in height did not

significantly vary with either watering treatment or accompanying species, yet there were sig-

nificant interactions between the two factors and time (T x W x S) and between watering and

time (T x W) for some of the species (Table 1). For S. tenacissima, there was a significant inter-

action between watering and accompanying species (W x S), with individuals of this species

showing higher height in monocultures than in bi-specific cultures in case of frequent watering

and the opposite pattern (lower height in monocultures) under reduced watering. The differ-

ence in final height between the plants growing in the bi-specific cultures and in the respective

monospecific cultures (net interspecific competition effect) did not significantly vary from

zero (Fig 1, panel B), except for S. tenacissima under frequent watering, which showed a nega-

tive effect of the interaction with L. spartum, and for B. retusum under reduced watering,

which showed a positive effect of the interaction with S. tenacissima, as compared with the

respective intraspecific interaction effect. Thus, the competitive effect of L. spartum was higher

on S. tenacissima than on B. retusum, and the competitive response of B. retusum was stronger

against S. tenacissima than against L. spartum.

Between-treatment differences in the number of leaves started to be noticeable around 80

days after sowing, once growth in height slowed down. Two of the target species, B. retusum
and L. spartum, showed higher number of leaves under the frequent watering treatment (Fig 2,

panel A; Table 1). For the three species, the number of leaves significantly varied with the

accompanying species, being higher in cultures that included S. tenacissima and lower in cul-

tures that included B. retusum (Table 1). The comparison of the pairwise net interspecific com-

petition effects (i.e., relative to the respective intraspecific competition effect of each target

species) on the number of leaves (Fig 2, panel B) showed a significant negative impact of B.

retusum on S. tenacissima, and no effect on L. spartum; a negative impact of L. spartum on S.

tenacissima under frequent watering, and no effect on B. retusum; and a higher competition

effect of S. tenacissima on L. spartum than on B. retusum. Looking at the competition response

against the interacting species, the difference in the final number of leaves between bi-specific

and monospecific cultures of B. retusum, showed a positive effect of the interaction with either

L. spartum or S. tenacissima as compared with the intraspecific interaction effect, yet this effect

was lower (i.e., weaker competitive response) for the interaction with L. spartum. For L. spar-
tum, there were no significant differences between interspecific and intraspecific interaction

effects on the number of leaves, except for a significant positive effect of the interaction with S.

tenacissima under reduced watering (i.e., stronger competitive response against S. tenacissima
than against B. retusum and against conspecific individuals). For S. tenacissima, we found a

negative effect of the interaction with any of the two other species as compared with the intra-

specific interaction effect, with a weaker interspecific competitive response under reduced

watering and particularly weak against B. retusum (Fig 2, panel B).

The species pair B. retusum–S. tenacissima exhibited the largest interspecific competition

asymmetry, followed by B. retusum–L. spartum, and with L. spartum–S. tenacissima showing

the most symmetrical interspecific competition. The interspecific competition asymmetry and

the asymmetry gradient between the species pairs were clearer for the number of leaves than

for plant height values (Table 2). There was a trend towards increased asymmetry with

Functional similarity and competitive symmetry control productivity in grass mixtures
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Fig 1. Pairwise interaction effect on plant height. A) Average (±1 SE) height for the three target species as a function of the accompanying species: B (B. retusum, light

blue circles); L (L. spartum, green triangles); S (S. tenacissima, orange squares) and the watering regime applied (W++, frequent watering; W+, reduced watering). B)

Difference (net effect) in final plant height at the end of the study period (140 days) between each bi-specific culture and the average of the respective monospecific

cultures for each target species. Asterisks and empty circles represent, respectively, significant and marginally significant deviations of net effects from zero (two-tailed

Student’s one-sample t-tests): p<0.01 (��), and p<0.06 (˚); n = 4. Note the change in Y axis scaling.

https://doi.org/10.1371/journal.pone.0221667.g001
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increased water availability for the B. retusum–L. spartum pair, and towards the opposite trend

(increased asymmetry with decreased water availability) for the L. spartum–S. tenacissima pair;

competition asymmetry for B. retusum–S. tenacissima did not show any clear response to

water availability.

Species combination and watering effects on culture biomass

Culture biomass was significantly higher under frequent watering than under reduced water-

ing (Table 2), with the largest differences between watering regimes for the combination of B.

retusum and L. spartum (B-L), and the smallest difference for the monoculture of S. tenacis-
sima (Fig 3). For monospecific cultures and frequent watering, there was a clear productivity

trend from B. retusum, which produced the highest above-ground biomass, to S. tenacissima,

which produced the lowest biomass. Below-ground biomass showed a different trend, with L.

spartum producing the highest biomass, followed by B. retusum. Under reduced watering L.

spartum produced the lowest above-ground biomass (Fig 3). For bi-specific cultures, the two

combinations including B. retusum (B-L and B-S) showed the highest biomass (Fig 3). In gen-

eral, both above and below-ground biomass in bi-specific cultures tended to be higher than in

monospecific cultures, particularly under frequent watering (Fig 3), yet neither the culture

(mono vs bi-specific) effect or the interaction between culture and watering were significant

(Table 3). The different specific combinations (B-B, L-L, S-S, B-L, B-S, and L-S) significantly

varied in above-ground biomass, but differences in below-ground and total biomass were not

significant. Total biomass and above-ground biomass showed, respectively, a significant and

marginally significant interaction between species combination and watering (Table 3).

In general, bi-specific cultures of B. retusum and either L. spartum or S. tenacissima pro-

duced higher biomass than the average biomass of the respective monocultures (i.e. overyield-

ing effect), with this effect being slightly more pronounced under frequent watering and for the

combination B. retusum—S. tenacissima (B-S). The combination L. spartum—S. tenacissima
(L-S) did not show any significant overyielding. When compared with the best monoculture

of each combination, bi-specific cultures performed better only for the couple B. retusum—L.

Table 1. Analysis of treatment effects on plant height and number of leaves for the three target species.

B. retusum L. spartum S. tenacissima
Height Number of leaves Height Number of leaves Height Number of leaves

T

df:11/7

990.9 (<0.001) 271.3 (<0.001) 968.1 (<0.001) 58.5 (<0.001) 518.5 (<0.001) 86.1 (<0.001)

W

df: 1

2.3 (0.144) 4.3 (0.054) 1.4 (0.251) 19.3 (<0.001) 1.3 (0.275) 1.9 (0.186)

S

df: 2

1.1 (0.362) 13.9 (<0.001) 0.5 (0.636) 5.5 (0.014) 0.7 (0.505) 21.8 (<0.001)

W x S

df: 2

0.4 (0.696) 0.3 (0.725) 0.4 (0.705) 0.1(0.879) 6.0 (0.010) 0.6 (0.547)

T x W

df: 11/7

3.3 (<0.001) 5.7 (<0.001) 4.3 (<0.001) 12.8 (<0.001) 0.4 (0.950) 0.6 (0.710)

T x S

df: 22/14

1.4 (0.112) 6.1 (<0.001) 1.8 (0.016) 2.3 (0.009) 2.4 (0.001) 17.0 (<0.001)

T x W x S

df: 22/14

2.3 (0.002) 0.4 (0.981) 0.3 (0.998) 0.3 (0.992) 1.7 (0.032) 1.1 (0.379)

Values are F (P value) calculated using Repeated Measures Analysis of Variance; Time (T) is within-subject factor; Watering regime (W) and accompanying species (S)

are between-subject factors; df: degrees of freedom. Numbers in bold highlight significant (p<0.05) effects; numbers in italics highlight marginally significant effects

(p<0.1).

https://doi.org/10.1371/journal.pone.0221667.t001
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Fig 2. Pairwise interaction effect on the plant number of leaves. A) Average (±1 SE) number of leaves for the three target species as a function of the accompanying

species: B (B. retusum, light blue circles); L (L. spartum, green triangles); S (S. tenacissima, orange squares) and the watering regime applied (W++, frequent watering; W

+, reduced watering). B) Difference (net effect) in the number of leaves per plant between the bi-specific cultures and the average of the respective monospecific cultures,

for the whole studied period (140 days) for each target species. Asterisks and empty circles represent, respectively, significant and marginally significant deviations of net

effects from zero (two-tailed Student’s one-sample t-tests): p<0.001 (���); p<0.01 (��), p<0.05 (�), and p<0.06 (˚); n = 4. Note the change in Y axis scaling.

https://doi.org/10.1371/journal.pone.0221667.g002
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Table 2. Competition asymmetry on plant height and number of leaves for the three pairs of interacting species.

Interacting species pair Height Number of leaves

W+ W++ W+ W++

B-L 2.2 ± 2.2 3.4 ± 4.2 7.3 ± 1.7 10.5 ± 6.6

B-S 3.9 ± 1.8 7.0 ± 3.0 29.5 ± 9.7 24.7 ± 4.8

L-S 0.5 ± 3.1 0.3 ± 3.0 3.8 ± 0.7 2.6 ± 1.1

Asymmetry values estimated from the average (± SE) net interspecific competition effects of species i on species j (NEij) and of species j on species i (NEji) on the plant

number of leaves (Fig 2, panel B) as |NEi-j—NEj-i|; SE = (SENEij
2 + SENEji

2)1/2. B, L and S represent B. retusum, L. spartum, and S. tenacissima, respectively.

https://doi.org/10.1371/journal.pone.0221667.t002

Fig 3. Culture biomass as a function of species combination and watering. Above-ground (A) and below-ground

(B) biomass (average ± 1 SE; n = 4). B-B, L-L, and S-S: monocultures of B. retusum, L. spartum and S. tenacissima,

respectively; B-L, B-S, and L-S: bi-specific cultures of each pair of species, with B, L and S representing B. retusum, L.

spartum, and S. tenacissima, respectively. Solid line: average biomass for monospecific cultures; dashed line: average

biomass for bi-specific cultures.

https://doi.org/10.1371/journal.pone.0221667.g003
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spartum (B-L) under frequent watering, which produced significantly higher biomass than B.

retusum monocultures (i.e., transgressive overyielding). In two cases (B-L and L-S aboveground

biomass under reduced watering) comparison with the respective best monoculture pointed to

underyielding, yet this effect was not significant (Fig 4).

Discussion

We examined how the functional similarity between plant species modulate their interactions

and overall culture productivity for three common perennial grass species in Mediterranean

drylands, and whether these effects varied depending on water availability. We did not find a

simple, monotonic relationship between the degree of functional similarity and the competi-

tion strength and symmetry between each pair of target species. The contrast in morpho-func-

tional traits between the target species did not systematically entail niche differentiation and

reduced competition, but rather a greater competitive ability of B. retusum, followed by L.

spartum, and with S. tenacissima as the weakest competitor. Our results suggest, however, that

both sampling and complementarity effects, attributable to the interaction between species

with contrasting traits, could have contributed in a combined way to the positive effect of

diversity in the productivity of the cultures. Water availability modulated the competitive

asymmetry between species and thus the productivity of the species mixtures.

Functional similarity as modulator of competition between grass species

Regardless the functional similarity between each pair of target species, any of the species per-

formed better when growing with S. tenacissima and worse when growing with B. retusum,

indicating a lower and higher competitive ability of these two species, respectively. Both the

competitive effect and the competitive response abilities [9] responded in a broadly consistent

way to the functional differences between the interacting species. Thus, for any of the target

species, the interspecific competitive effect was higher on the most similar species, and the

interspecific competitive response ability was stronger against the most similar species. How-

ever, depending on the target species considered, the intraspecific competitive response ability

was either stronger or weaker than the interspecific competitive response. Previous studies

have reported both positive correlations and no correlation between competitive effect and

response hierarchies among species [43, 44], and the potential functional links between these

two forms of competition are still unclear [10, 11]. The different competitive ability rank of the

Table 3. Analysis of treatment effects on total, above-ground and below-ground biomass.

Total biomass Above-ground biomass Below-ground biomass

W

df: 1

60.4 (0.001) 55.8 (0.002) 64.9 (0.001)

C

df: 1

1.2 (0.330) 0.7 (0.451) 1.6 (0.268)

SC

df: 4

3.2 (0.145) 7.7 (0.037) 1.3 (0.415)

W x C

df: 1

0.6 (0.492) 0.4 (0.572) 0.9 (0.396)

W x SC

df: 4

3.7 (0.013) 2.4 (0.068) 1.8 (0.141)

Values are F (P value) calculated using Mixed-effects ANOVA Analysis of Variance; Watering (W) and Culture (C)

are fixed factors; Species Combination (SC) is a random factor; df: degrees of freedom. Numbers in bold highlight

significant (p<0.05) effects; numbers in italics highlight marginally significant effects (p<0.1).

https://doi.org/10.1371/journal.pone.0221667.t003
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interacting species resulted in a gradient of competition asymmetry for the species pairs that

did not fully correspond with their functional dissimilarity. Thus, the most asymmetrical pair

was B. retusum–S. tenacissima, which exhibited intermediate dissimilarity, while the most

functionally dissimilar B. retusum–L. spartum pair showed intermediate competition

Fig 4. Net effect of species combination on culture biomass. Differences (net effect) in aboveground biomass (upper panel), belowground biomass (middle panel) and

total biomass (lower panel) per pot (g) between the three target bi-specific cultures (B. retusum—L. spartum; B. retusum—S. tenacissima; L. spartum—S. tenacissima)

and either the average of the respective monospecific cultures, i.e overyielding effect (Ovy), or the respective most productive monoculture, i.e transgressive overyielding

(T-Ovy), for both frequent (W++) and reduced (W+) watering. Asterisks and empty circles represent, respectively, significant and marginally significant deviations of

net effects from zero (two-tailed Student’s one-sample t-tests): p<0.01 (��), p<0.05 (�), and p<0.06 (˚).

https://doi.org/10.1371/journal.pone.0221667.g004
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asymmetry, as compared with the other two target pairs. These results differ from our initial

hypothesis, according to which we expected increased competition strength and symmetry

with increasing morfo-functional similarity between the interacting species, and point to the

importance of the hierarchy in competitive ability, and the plant traits that explain such a hier-

archy, as a control factor of competition asymmetry and thus of the overall competition

outcome.

Brachypodium retusum largely differs in its morpho-functional traits from the two other

species. While L. spartum and S. tenacissima are characterized by low vegetative colonization

ability (very short, almost inexistent spacing between ramets) and a dense tussock growth

form (phalanx strategy, sensu [45]), B. retusum exhibits an intermediate strategy between pha-

lanx and guerrilla [46] with longer spacing and higher capacity for colonizing space. These

contrasting growth forms can largely affect the competitive ability of clonal species [47].

Under a relatively low biomass of neighbors, as the initial condition of our experiment, the

higher colonization ability of B. retusum would confer a competitive advantage to this species

as compared with the other two. Furthermore, B. retusum was the most productive species in

the experiment, which must have contributed to a high level of relative crowding (sensu [48])

of B. retusum in bi-specific cultures, and therefore to a larger competitive ability, as compared

with the two tussock grasses. Despite S. tenacissima and L. spartum are morphologically quite

similar, there are also some important trait differences between them. For example, S. tenacis-
sima exhibits a more plastic response to environmental changes, resistance to drought, and

opportunistic growth than L. spartum, while L. spartum seems to be adapted to less dry condi-

tions and more saline and nutrient-poor soils [41, 49]. These differences explain that these two

species often appear segregated in space within the same community in response of microsite

variation, yet they both coexist for a wide range of environmental conditions [41]. Under the

conditions of the experiments, with relative water scarcity under reduced watering and no

stress due to soil salinity, the main trait differences between the two tussock species that may

have led to the higher competitive ability of L. spartum as compared with S. tenacissima are

probably related to the potential for a larger and deeper root system [10, 50], such as higher

rooting depth and root width in L. spartum (S1 Appendix).

The large morpho-functional contrast between the short grass B. retusum and the two (sim-

ilar) tussock grasses did not appear to drive the pairwise competition outcome. Lifeform-inde-

pendent traits that favored either above-ground (B. retusum) or below-ground (L. spartum)

productivity under the experimental conditions seem to have played the most relevant role in

modulating their competitive ability hierarchy and competition outcomes. Thus, while SLA is

much larger for B. retusum than for L. spartum, rooting depth and root diameter are much

larger for L. spartum than for B. retusum (S1 Appendix). These results highlight the impor-

tance of trait specific and context specific contributions to the overall variance in the relative

competitive performance of the interacting species. In this regard, the timing of seed germina-

tion could be of particular relevance, as very short delays in seedling emergence can entail high

differences in final biomass and reproduction, especially under competitive conditions [51–

53]. For instance, when interspecific competition for light is intense as seedling density

increases, early emergence and establishment might be critical [54]. In our experiment, S. tena-
cissima germinated slightly later and grew slightly slower than B. retusum and L. spartum,

which appeared to have consequences in its competitive ability.

Effects of pair-wise species combinations on culture biomass

Comparison of the performance of species mixtures with monocultures is an essential tool in

the evaluation of biodiversity effects [55]. We found overyielding (i.e. higher biomass for the
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species mixtures than the average biomass of the respective monocultures) for the cultures that

combined the short grass B. retusum with any of the two tussock grasses, whereas the combina-

tion L. spartum—S. tenacissima, which exhibited the lowest competition asymmetry and the

highest morpho-functional similarity, did not show any significant overyielding. The observed

pattern of overyielding, associated to the higher inherent productivity of B. retusum, pointed

to sampling effect as the main mechanism underlying a higher productivity in bi-specific cul-

tures [55]. This suggests that functional contrast between the species mostly resulted in the

advantage of the best competitor. However, we found transgressive overyielding (bi-specific

culture performing better than the best monoculture of the combination) in the case of B. retu-
sum—L. spartum under frequent watering, which suggests improved resource use through

complementarity [56, 57]. The fact that these species showed contrasting growth patterns, with

B. retusum producing higher above-ground and lower below-ground biomass than L. spartum
in their respective monocultures, could explain a complementary resource use. This comple-

mentary use would have fully operated under frequent watering, which particularly promoted

root growth in L. spartum. It could also explain that this species combination exhibited less

competition asymmetry than the highly asymmetric B. retusum–S. tenacissima pair, as the

respective dominance of the aboveground and belowground compartments by B. retusum and

L. spartum could have partly counterbalanced the morpho-functional differences between

short-grass and tussock-grass life forms. Strong facilitative interactions may be required to

generate consistent transgressive overyielding and overall positive effects of diversity on pro-

ductivity [56, 58]. However, we found a neutral effect of B. retusum on L. spartum perfor-

mance, and just a slightly positive effect of L. spartum on the number of leaves of B. retusum as

compared with the effects of equal density of conspecifics, which supports resource partition-

ing over facilitation as the mechanism driving the observed complementarity effect [59, 60].

The combinations including the two tussock grasses were the least productive, exhibiting no

overyielding and quite symmetrical competition between the two species, despite the delay in

the germination of S. tenacissima. Given the apparently small niche differentiation between

these two species, their coexistence would also require small competitive asymmetry [7].

Armas and Pugnaire [61] found no differences between intraspecific and interspecific compe-

tition with L. spartum on S. tenacissima biomass under abundant resource supply, while com-

petition of S. tenacissima was stronger than intraspecific competition for L. spartum. Under

reduced watering, we found the opposite trend, yet in both studies differences between intra

and interspecific competition for these two species were small. Overall, the results suggest

that relatively small variations in the competitive asymmetry of the interacting species could

shift the outcome of plant-plant interactions from resource partitioning, associated to interme-

diate asymmetries, to dominance and competitive exclusion when asymmetries are strong

enough.

The effect of water availability on the competition outcome

Water availability was crucial for the productivity of the cultures, which overall doubled yield

from reduced to frequent watering. This indicates that water was limiting under the experimen-

tal conditions, even more as plants aged, as watering treatments were not changed throughout

the study period, and therefore the share of water per biomass unit decreased with time. Water

availability also changed the relative order of culture productivity. Thus, while monocultures of

S. tenacissima were less productive than monocultures of L. spartum under frequent watering,

the opposite pattern was found for the most stressful conditions of reduced watering. Similarly,

the highest belowground biomass was produced by B. retusum–L. spartum under frequent

watering and by B. retusum–S. tenacissima under reduced watering. These changes may reflect
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the higher resistance to drought and opportunistic growth of S. tenacissima, better suited than

L. spartum to use pulses of resources in water-stressed environments [41].

Abiotic stress due to limiting resource availability is expected to modify the sign and inten-

sity of plant-plant interactions, yet the direction of the changes is still unclear [5, 62–64] In our

case, the effects of manipulating water availability were not consistent across pairwise species

combinations and variables measured. For example, higher water availability increased the

negative impact of L. spartum on S. tenacissima height, but reduced the negative effect of B.

retusum and L. spartum on S. tenacissima number of leaves. Our results neither support nor

contradict that competitive interactions increase in strength under more benign conditions

[5]. They highlight, however, that changes in resource availability can drive shifts from

resource partitioning to dominance. Thus, bispecific cultures of B. retusum and L. spartum
exhibited transgressive overyielding for frequent watering and non-transgressive overyielding

for reduced watering, indicating that complementarity in resource use was enhanced by

increased water availability.

Conclusions

For three common Mediterranean perennial grasses, we found a clear competitive ability

hierarchy that in turn resulted in a gradient of pair-wise competitive asymmetry, with B. retu-
sum and S. tenacissima being the best and worst competitor, respectively, and the combination

of the two tussock grasses S. tenacissima and L. spartum being the most symmetrical pair in

terms of competitive ability. The strength of pairwise competition and the degree of com-

petitive asymmetry did not fully correspond with the morpho-functional dissimilarity of the

interacting species, as the species did not always compete more intensely and symmetrically

with the most functionally similar neighbor species. However, both morpho-functional dis-

similarity and competitive asymmetry could have jointly determined the productivity of the

species mixtures. While the most functionally similar and competitively symmetrical pair S.

tenacissima and L. spartum did not result in overyielding, the most dissimilar yet moderately

asymmetrical B. retusum–L. spartum pair resulted in transgressive overyielding through com-

plementarity, and the moderately dissimilar yet highly asymmetrical B. retusum and S. tenacis-
sima pair increased productivity through the dominance of B. retusum. Water availability

modulated the outcome of pairwise interactions, with higher water supply enhancing produc-

tivity and increasing the probability of either transgressive or non-transgressive overyielding,

depending on the species combination. Our results suggest that small variations in the func-

tional traits and the conditions that modulate the competitive ability of the species could shift

the interaction outcome and eventually lead to either dominance or resource partitioning,

which adds plasticity and overall variance to plant-plant interactions.
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(and standard deviation), and references for the traits used to calculate the pairwise functional

dissimilarity.

(DOCX)

S1 Dataset. Supporting data. Mean and standard error values for height, number of leaves,

and biomass data for the target species and culture types and treatment combination.

(XLSX)

Functional similarity and competitive symmetry control productivity in grass mixtures

PLOS ONE | https://doi.org/10.1371/journal.pone.0221667 August 23, 2019 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221667.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0221667.s002
https://doi.org/10.1371/journal.pone.0221667


Acknowledgments

We thank Diana Turrión and Manuel Ruiz for their help with the experiment, Paco Rodrı́guez

for statistical advice, and the Spanish Ministry of Science, Innovation and Universities (proj-

ects CGL2014-59074-R and CGL2017-89804-R) for financial support. The CEAM Foundation

is supported by Generalitat Valenciana.

Author Contributions

Conceptualization: Luna Morcillo, Susana Bautista.

Data curation: Azucena Camacho-Garzón, Juan Sebastián Calderón.

Formal analysis: Luna Morcillo, Azucena Camacho-Garzón, Juan Sebastián Calderón, Susana

Bautista.

Funding acquisition: Susana Bautista.

Investigation: Luna Morcillo, Susana Bautista.

Methodology: Luna Morcillo, Susana Bautista.

Project administration: Susana Bautista.

Supervision: Susana Bautista.

Writing – original draft: Luna Morcillo.

Writing – review & editing: Luna Morcillo, Susana Bautista.

References
1. Gaudet CL, Keddy PA. Plant competition. Nature. 1989; 337, 123. https://doi.org/10.1038/337123b0

2. Grace JB, Tilman D. Perspectives on plant competition. Academic Press. San Diego, California: 1990.

3. Connell JH, Slatyer RO. Mechanisms of succession in natural communities and their role in community

stability and organisation. Am Nat. 1977; 111: 1119–44.

4. Tilman D, Isbell F, Cowles JM. Biodiversity and ecosystem functioning. Annu Rev Ecol Evol Syst. 2014;

45: 471–93.

5. Maestre FT, Callaway RM, Valladares F, Lortie CJ. Refining the stress-gradient hypothesis for competi-

tion and facilitation in plant communities. J Ecol. 2009; 97: 199–205.

6. Kunstler G, Falster D, Coomes DA, Hui F, Kooyman RM, Laughlin DC, et al. Plant functional traits have

globally consistent effects on competition. Nature 2016; 529: 204–207. https://doi.org/10.1038/

nature16476 PMID: 26700807

7. Mayfield MM, Levine JM. Opposing effects of competitive exclusion on the phylogenetic structure of

communities. Ecol Lett. 2010; 13: 1085–93. https://doi.org/10.1111/j.1461-0248.2010.01509.x PMID:

20576030

8. Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes

DA. Competitive interactions between forest trees are driven by species’ trait hierarchy, not phyloge-

netic or functional similarity: implications for forest community assembly. Ecol Lett. 2012; 15: 831–840.

https://doi.org/10.1111/j.1461-0248.2012.01803.x PMID: 22625657

9. Goldberg DE. Competitive ability: definitions, contingency, and correlated traits. Philos Trans R Soc

Lond B Biol Sci. 1996; 351: 1377–85.

10. Wang P, Stieglitz T, Zhou DW, Cahill JF. Are competitive effect and response two sides of the same

coin, or fundamentally different? Funct Ecol. 2010; 24:196–207.

11. Aschehoug ET, Brooker R, Atwater DZ, Maron JL, Callaway RM. The mechanisms and consequences

of interspecific competition in plants. Annu Rev Ecol Evol Syst. 2016; 47: 263–81.

12. Johansson ME, Keddy PA. Intensity and asymmetry of competition between plant pairs of different

degrees of similarity-an experimental study on two guilds of wetland plants. Oikos.1991; 60: 27–34.

13. MacArthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species. Am

Nat 1967; 101: 377–385.

Functional similarity and competitive symmetry control productivity in grass mixtures

PLOS ONE | https://doi.org/10.1371/journal.pone.0221667 August 23, 2019 15 / 17

https://doi.org/10.1038/337123b0
https://doi.org/10.1038/nature16476
https://doi.org/10.1038/nature16476
http://www.ncbi.nlm.nih.gov/pubmed/26700807
https://doi.org/10.1111/j.1461-0248.2010.01509.x
http://www.ncbi.nlm.nih.gov/pubmed/20576030
https://doi.org/10.1111/j.1461-0248.2012.01803.x
http://www.ncbi.nlm.nih.gov/pubmed/22625657
https://doi.org/10.1371/journal.pone.0221667


14. Chesson P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Evol. Syst. 2000; 31:

343–366.

15. Tilman D, Lehman CL, Thomson KT. Plant diversity and ecosystem productivity: theoretical consider-

ations. Proc Natl Acad Sci U S A. 1997; 94: 1857–61. https://doi.org/10.1073/pnas.94.5.1857 PMID:

11038606

16. Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, et al. Plant diversity

and productivity experiments in European grasslands. Science. 1999; 286:1123–27. https://doi.org/10.

1126/science.286.5442.1123 PMID: 10550043

17. Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, et al. Effects of biodiversity on eco-

system functioning: a consensus of current knowledge. Ecol Monogr. 2005; 75:3–35.

18. Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, et al. The functional role of pro-

ducer diversity in ecosystems. Am J Bot. 2011; 98: 572–92. https://doi.org/10.3732/ajb.1000364 PMID:

21613148
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