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Cardiac hypertrophy is a major risk for the progression of heart failure; however, the
underlying molecular mechanisms contributing to this process remain elusive. The
caveolae microdomain plays pivotal roles in various cellular processes such as lipid
homeostasis, signal transduction, and endocytosis, and also serves as a signaling
platform. Although the caveolae microdomain has been postulated to have a major
contribution to the development of cardiac pathologies, including cardiac hypertrophy,
recent evidence has placed this role into question. Lack of direct evidence and
appropriate methods for determining activation of caveolae-specific signaling has thus
far limited the ability to obtain a definite answer to the question. In this review,
we focus on the potential physiological and pathological roles of the multifunctional
kinase Ca2+/calmodulin-dependent kinase II and voltage-dependent L-type calcium
channel in the caveolae, toward gaining a better understanding of the contribution of
caveolae-based signaling in cardiac hypertrophy.

Keywords: caveolae, caveolin, CaMKII, L-type calcium channel, cardiac hypertrophy

INTRODUCTION

Caveolae are unique flask-like membrane invaginations of 50–80 nm in diameter, which are
enriched in cholesterol and sphingolipids (Shaul and Anderson, 1998; Parton and Simons, 2007).
Currently, caveolae are considered to be involved in various cellular functions such as lipid
homeostasis, signal transduction, endocytosis, and transcytosis (Cheng and Nichols, 2016). The
structure of caveolae is supported by two major component proteins: caveolins and cavins
(Rothberg et al., 1992; Hill et al., 2008). Owing to their specific lipid composition, caveolae are
highly concentrated in multiple signaling molecules, including receptors, kinases, and ion channels.
Those include endothelial nitric oxide synthase (Garcia-Cardena et al., 1997), insulin (Nystrom
et al., 1999), epidermal growth factor (Couet et al., 1997b), transforming growth factor-beta
(Strippoli et al., 2015), P2X7 receptor (Gangadharan et al., 2015), and G-protein coupling signaling
molecules (Insel et al., 2005). Thus, the caveolae are considered to function as a signaling platform
to facilitate efficient and specific cellular responses against stress (Razani et al., 2002; Cohen
et al., 2004; Harvey and Calaghan, 2012). However, determination of the specific physiological
properties of caveolae signaling has been challenging due to the lack of efficient tools for direct
visualization of kinase activation inside the caveolae. Understanding these signaling mechanisms
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of the caveolae can help to gain insight into their role
in pathological mechanisms, particularly with regard to
the contribution of cardiac hypertrophy, which remains
controversial. Here, we review recent evidence on the signaling
pathways and related molecules in the caveolae microdomain
and their relation to cardiac pathogenesis, with a particular
focus on Ca2+/calmodulin-dependent kinase II (CaMKII) and
voltage-dependent L-type calcium channel (LTCC). This review
can help to highlight targets of research focus and specific
questions to tackle toward gaining a better understanding of
the molecular mechanisms linking caveolae signaling and heart
health, toward establishing new therapeutic strategies.

CAVEOLAE MICRODOMAIN AND
SIGNAL TRANSDUCTION

There are two types of structural proteins in caveolae: caveolins
and cavins. Caveolin is comprised of three isoforms, caveolin-1,
caveolin-2, and caveolin-3 (Rothberg et al., 1992; Scherer et al.,
1996; Tang et al., 1996), with specific cellular distributions.
For instance, caveolin-1 is dominantly expressed in endothelial
cells, whereas caveolin-3 shows abundant expression in skeletal
muscle cells and cardiomyocytes (Tang et al., 1996). These
isoforms contain a common peptide sequence constituted
by eight amino acids localized in the N-terminal cytosolic
oligomerization domain (Tang et al., 1996). As a monomer,
caveolin is comprised of three domains, oligomerization domain
localized in N-terminus, caveolin scaffolding domain (CSD),
and intramembrane domain in C-terminal part of the protein.
Caveolin is inserted into the plasma membrane through
intramembrane domain and CSD. Caveolin monomers assemble
and form a oligomer, and contribute to caveolae formation
(Sonnino and Prinetti, 2009). The CSD directly binds to
a putative corresponding caveolin binding domain (CBD)
identified in a number of signaling effectors localized in caveolae
(Song et al., 1996; Nystrom et al., 1999; Kirkham et al., 2008; Taira
et al., 2011). Couet et al. (1997a) identified a peptide sequence
“RNVPPIFNDVYWIAF” as a CBD, which strongly binds to the
CSD of caveolin 1 or caveolin 3. Currently, the physiological
implication of the binding between CSD and CBD remains
controversial (Collins et al., 2012). However, it is considered
that CBD-fused protein binds to caveolin and demonstrates
a specific localization in caveolae (Makarewich et al., 2012).
Caveolin deficiency in a genetically engineered mouse model
results in loss of the caveolae structure, indicating that caveolin
is indispensable for the formation of caveolae (Park et al.,
2002). Cavin contains four isoforms comprised of cavin-1 or
polymerase I transcript factor (PTRF) (Hill et al., 2008), cavin-2
or serum deprivation protein response (SDPR) (Hansen et al.,
2009), cavin-3 or SDR-related gene product that binds to C kinase
(SRBC) (McMahon et al., 2009), and cavin-4 or muscle-related
coiled-coiled protein (MURC) (Bastiani et al., 2009). Similar
to caveolins, the cavin protein family shows a specific cellular
distribution, and cavin-4 is thought to be a muscle-specific
isoform. Cavin-1 is required for caveolae assembly and regulates
the functions of caveolae by determining the localization of

activated receptors (Li et al., 2014; Moon et al., 2014). In contrast,
cavin-4 is dispensable for caveolae formation in cardiomyocytes,
whereas it facilitates ERK1/2 recruitment to the caveolae and
supports effective α1-andrenic receptor (AR) signaling activation
in the development of cardiomyocyte hypertrophy (Ogata et al.,
2014).

MICRODOMAIN SIGNALING AND
CARDIAC HYPERTROPHY

Cardiac hypertrophy is one of the predominant risks of
heart failure (Lloyd-Jones et al., 2002). The development of
cardiac hypertrophy is governed by multiple intracellular protein
signaling cascades from the plasma membrane to nuclei (Heineke
and Molkentin, 2006). Subcellular compartmentalization
is considered to allow signaling-related proteins to carry
out multiple biological functions using a relatively small
number of membrane receptors. However, the precise
contribution of microdomain signaling in cardiomyocyte
hypertrophy remains elusive. Horikawa et al. (2011) reported
that caveolin-3 overexpression in the mouse heart attenuates
cardiac hypertrophy via upregulation of natriuretic peptide,
suggesting the involvement of caveolin-dependent signaling
in the development of myocyte hypertrophy. Balijepalli et al.
(2006) reported that ARs and a component of the LTCC
exist in caveolae microdomains. Ca2+-dependent signaling
molecules such as calcineurin and CaMKII play vital roles in
the development of cardiac hypertrophy, and activation of
these molecules is associated with LTCC activity (Anderson
et al., 2011; Chen et al., 2011). Makarewich et al. (2012) further
demonstrated that caveolae-targeted inhibition of the LTCC
mediates the attenuation of calcineurin activation induced by
pacing stimulation without affecting Ca2+ influxes and transient
in whole cells (Makarewich et al., 2012). To inhibit Ca2+ influxes
in caveolae, they generated a fusion protein comprised of the
caveolin-binding domain and Rem protein, which specifically
inhibits LTCC activity. They found that caveolae-localized
LTCCs are not involved in excitation-contraction coupling or
the regulation of Ca2+, which governs contractility in isolated
cardiomyocytes. However, the same group failed to demonstrate
similar effects in the mouse heart in which pressure-overload
was applied to a genetically engineered model expressing the
fused Rem protein with the caveolin-binding domain (Correll
et al., 2017). These results indicated that caveolae-related
calcineurin/NFAT signaling alone is not sufficient for the
development of cardiac hypertrophy.

CaMKII IN THE HEART

CaMKII is a serine-threonine (Ser/Thr) kinase that is activated
in a Ca2+/calmodulin-dependent manner. The activation of
CaMKII is also regulated by autophosphorylation (Hudmon
and Schulman, 2002), oxidation (Erickson et al., 2011), and
glycosylation (Erickson et al., 2013). CaMKII phosphorylates a
vast number of substrates such as ion channels, calcium handling

Frontiers in Physiology | www.frontiersin.org 2 August 2018 | Volume 9 | Article 1081

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01081 August 4, 2018 Time: 17:57 # 3

Tanaka et al. CaMKII Signaling in Caveolae

proteins, and transcription factors (Anderson et al., 2011).
Activation of CaMKII in the heart has been observed in both
experimental models of cardiac hypertrophy and dysfunction
as well as in patients suffering from heart failure (Zhang
et al., 2003; Sossalla et al., 2010). Genetic ablation of dominant
CaMKII isoforms in the heart attenuates cardiac hypertrophy
or the transition to cardiac dysfunction after pressure overload
(Zhang et al., 2003; Backs et al., 2009; Ling et al., 2009).
Thus, CaMKII is considered to play a pivotal role in the
development of cardiac hypertrophy and in the transition from
the adaptive responses to heart failure (Swaminathan et al., 2012).
In addition, the location of CaMKII activation is critical for its
biological effects (Mishra et al., 2011). Two isoforms of CaMKII,
CaMKIIδ, and CaMKIIγ, are mainly expressed in the heart,
and the splicing isoform CaMKIIδ shows a unique subcellular
localization. Such differential localization of CaMKII activation
has been demonstrated to lead to a distinct intracellular function
and cardiac phenotype (Zhang et al., 2002, 2003). Moreover,
the cardiac overexpression of the cytosolic CaMKIIδC isoform
in mice impairs excitation-contraction coupling (Zhang et al.,
2003), whereas activation of the nuclear isoform CaMKIIδB
mediates hypertrophic gene induction (Zhang et al., 2002).
Further, the mitochondrial inhibition of CaMKII was shown to
attenuate necrotic cell death (Joiner et al., 2012). Collectively,
these findings indicate that the subcellular localization of CaMKII
determines its biological effect based on the availability of
substrate molecules, and is closely related to cardiac pathogenesis
(Mishra et al., 2011). However, the specific biological role of
CaMKII in the caveolae microdomain remains to be elucidated.

In particular, deciphering its role in the membrane, as central
platform for signal transduction, is required to gain a better
understanding of its contribution to cardiac hypertrophy.

ASSESSMENT OF CaMKII ACTIVATION
IN THE CAVEOLAE MICRODOMAIN
USING A PHOSPHOR-PEPTIDE TAG

One of the major obstacles in determining the precise
pathophysiological role of CaMKII in the caveolae microdomain
is the lack of efficient and simple methodology to assess
microdomain-specific activation of the kinase. Conventionally,
the activation of a kinase is determined biochemically by
detecting the phosphorylation of its specific substrate using
a radioisotope or fluorescence from a whole cell lysate.
However, these methods are not suitable for the assessment
of microdomain-specific signaling, since fraction preparation is
complicated and time-consuming. Alternatively, the detection of
phosphorylation using a phosphor-specific antibody is a simple,
useful, and reliable method. The detection of mitogen-activated
protein kinases (MAPKs) such as ERK and p38 MAPK is a
representative example of the application of phosphor-specific
antibodies for assessing signaling pathway activation.

We recently developed a novel tool to examine the caveolae-
specific activation of CaMKII using a fusion protein comprising
22 amino acids of the cytosolic domain of phospholamban (PLN)
fused to caveolin-3 (Figure 1) (Tonegawa et al., 2017). PLN
is a 52-amino acid phospho-protein anchoring the membrane

FIGURE 1 | Caveolae-specific CaMKII activation was detectable using phosphor-peptide tags. (A) Schematic diagram of a fusion protein comprised of the cytosolic
domain of phospholamban (cPLN) and caveolin-3 (Cav3). (B) Phosphorylation at threonine 17 of the cytosolic domain of phospholamban in the fusion protein and
endogenous phospholamban. The fusion protein comprised of cPLN and caveolin-3 (cPLN-Cav3) was expressed by adenoviral gene transfer in neonatal rat
cardiomyocytes (NRCMs). After 15 min of β-adrenergic stimulation with isoproterenol (ISO) at the indicated concentration, cells were harvested and their protein
extracts were prepared. The phosphorylation of phospholamban at threonine 17 (Thr17), the CaMKII-specific phosphorylation site, was assessed using a
phospho-specific antibody for Thr17 of PLN, and its level was enhanced in a dose-dependent manner in both cPLN-Cav3 (upper arrow) and endogenous PLN
(lower arrow). The membrane was re-probed using an anti-PLN antibody. (C) Schema of the proposed method for caveolae-specific CaMKII activation using a fusion
protein and phospho-specific antibody. CaMKII activation induced by β-adrenergic stimulation provokes phosphorylation of cPLN-Cav3, which is localized in
caveolae.
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of the sarcoplasmic reticulum, which is comprised of a flexible
cytosolic domain and an intramembrane domain (Tonegawa
et al., 2017). The cytosolic domain of PLN contains two distinct
phosphorylation sites: Ser16, which is mainly phosphorylated
by cAMP-dependent kinase (PKA), and Thr17, which is
specifically phosphorylated by CaMKII (Simmerman et al., 1986;
Wegener et al., 1989; Hagemann and Xiao, 2002). Notably,
each phosphorylation is detectable using the corresponding
phospho-specific antibody, and the phosphorylation state is
considered to represent activation of the corresponding kinases
in the cytosol (Drago and Colyer, 1994). Therefore, we took
advantage of these properties of PLN to develop a novel tool
for determining the caveolae-specific activation of CaMKII.
Indeed, phosphorylation of Thr17 in tagged cPLN localized in
the caveolae was successfully detected using the phospho-specific
antibody. Moreover, the phosphorylation level was enhanced by
caveolae-specific activation or was suppressed by the caveolae-
specific inhibition of CaMKII, indicating the reliability of this
method (Tonegawa et al., 2017).

LTCC AND CARDIAC HYPERTROPHY

The LTCC is a multi-protein complex composed of a pore-
forming α-subunit and accessory subunits, including β-subunit
proteins (Catterall, 2000). The β-subunits play important roles in
regulation of channel activity as well as in channel membrane
trafficking via interaction with the I-II intracellular loop of
α-subunits (Catterall, 2000). Among the multiple splice variants
of β-subunits, β2a is the dominant isoform in the heart. The
LTCC serves as the primary source of Ca2+ influx for inducing
contractions by triggering Ca2+-induced Ca2+ release (Bers,
2008). However, enhanced Ca2+ influxes caused by the targeted
expression of the cardiac α1 or β2a subunit mediates or enhances
cardiac hypertrophy (Muth et al., 2001; Chen et al., 2011).
In addition, increased Ca2+ influxes caused by overexpression
of the β2a subunit in feline cardiomyocytes or in the mouse
heart driven by adenoviral expression or transgenesis induced
pronounced myocardial Ca2+ overload that resulted in myocyte
death (Chen et al., 2005; Nakayama et al., 2007). Therefore,
functional sequestration of the LTCC subpopulation could be an
important strategy to regulate cardiac pathogenesis. The LTCC
has been shown to localize not only in the T-tubules but also in
the plasma membrane microdomains such as the caveolae, and
its localization is assumed to contribute to the distinct biological
roles of the channel (Balijepalli et al., 2006; Best and Kamp, 2012;
Shaw and Colecraft, 2013).

CaMKII AND LTCC IN THE CAVEOLAE
MICRODOMAIN MEDIATE CARDIAC
HYPERTROPHY

Besides cardiomyocytes, several reports suggested the
involvement of CaMK in caveolae-related biological effects,
such as 1α,25(OH)2D3-dependent signaling or P2X3 receptor-
mediated Ca2+ influx (Chen et al., 2014; Doroudi et al., 2015). In

cardiomyocytes, voltage-gated LTCC complex is a well-known
substrate of CaMKII (Buraei and Yang, 2010). Phosphorylation
of the β2 subunit by PKA or CaMKII has been proposed as
an activation mechanism of LTCC mediated by extracellular
stimuli (Bunemann et al., 1999; Koval et al., 2010). Several
studies have also shown that the CaMKII- and PKA-mediated
phosphorylation of the α1C subunit of LTCC facilitates its
activity (Buraei and Yang, 2010; Weiss et al., 2013). However,
the physiological importance of phosphorylation of the β2
subunit remains controversial. Mutant mice with a truncated
β2 subunit lacking the phosphorylatable domain failed to show
alteration of LTCC activity under physiological conditions
(Brandmayr et al., 2012). By contrast, overexpression of a
mutated β2 subunit resistant to CaMKII binding (L493A) and
phosphorylation (T498A) resulted in attenuation of the cell
death induced by delayed rapid-pacing (Koval et al., 2010).
Therefore, upregulation of β2 subunit phosphorylation is
thought to play a role in cardiac pathogenesis. In support of
this hypothesis, increased expression of the LTCC β2a subunit
and enhanced CaMKII activation are frequently observed in
cases of human heart failure (Hullin et al., 2007; Anderson
et al., 2011). Thus, sustained, excessive CaMKII activation is
considered to be an upstream signaling event for increased
LTCC opening probability, which is involved in excitation-
contraction coupling dysfunction, myocardial hypertrophy,
heart failure, and lethal arrhythmia (Wu et al., 1999; Rokita
and Anderson, 2012; Zhu et al., 2016). However, whether the
increased β2 subunit is phosphorylated by CaMKII and the
subcellular location in which this critical event occurs remained
unclear. Using our phospho-specific antibody, we demonstrated
that the LTCC β2 subunit is phosphorylated by CaMKII in
the caveolae to further induce CaMKII activation, possibly
by increased Ca2+ influxes through the channel (Figure 2,
Tonegawa et al., 2017). This suggested the possibility of a
positive feedback loop between the β2 subunit and CaMKII
that specifically occurs in the caveolae microdomain. This
activation mechanism would contribute to the promotion of
cardiac hypertrophy caused by chronic α1 adrenergic stimulation
in vivo, since overexpression of the non-phosphorylated
mutant of the β2a subunit failed to display enhancement
of cardiac hypertrophy (Tonegawa et al., 2017). However,
further investigation is required to clarify the direct link
between caveolae-specific CaMKII signaling and cardiac
hypertrophy in vivo, using genetically engineered mouse models
such as caveolae-specific expression of constitutive active
CaMKII (activation) or a CaMKII-specific inhibitory peptide
(inhibition).

CONCLUSION AND PROSPECTS

We have here summarized the current knowledge on the effects of
caveolae-specific signal activation in relation to the pathogenesis
of cardiac hypertrophy. The related molecules such as CaMKII
and LTCC have multiple cellular functions that seem to depend
on the corresponding subcellular localization of the molecules,
including intracellular organelles and microdomains. Thus,
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FIGURE 2 | Inhibition of CaMKII specifically in caveolae abolished phosphorylation of the β2a subunit of the L-type calcium channel. (A) Schematic diagram of a
fusion protein comprised of green fluorescent protein (GFP) tagged with caveolae-binding domain (CBD) and autocamtide-2-related inhibitory peptide (AIP), a
CaMKII-specific inhibitory molecule. (B) Phosphorylation of the β2a subunit of the L-type calcium channel at threonine 498, a CaMKII phosphorylation site, in
NRCMs expressing the β2a subunit or β-galactosidase (β-gal) as a control by adenoviral gene transfer. The additional adenoviral expression of a fusion protein, either
CBD-GFP or CBD-GFP-AIP, was induced, and phosphorylation or expression levels were assessed by immunoblot analysis using the indicated antibodies.
Phosphorylation of the overexpressed β2a subunit was substantially attenuated by CBD-GFP-AIP expression, indicating that phosphorylation of this protein occurs
exclusively in caveolae. (C) Schema of the proposed mechanism based on immunoblot analysis. Phosphorylation of the β2a subunit by CaMKII induces a Ca2+

influx, which in turn elicits CaMKII activation to develop a positive feedback loop between the two molecules in the caveolae microdomain of NRCMs. Expression of
CBD-GFP-AIP, which binds to caveolin-3, inhibits caveolae-specific CaMKII activation to terminate the positive feedback loop and abolish phosphorylation of the β2a
subunit. MOI: multiplicity of infection. These figures were prepared with minor modifications from Tonegawa et al. (2017).

regulation of location-dependent signal activation is a potential
therapeutic target for heart failure. For instance, inhibition
of the specific population of CaMKII or LTCC, those which
are involved in the development of cardiac hypertrophy or
induction of cell death, could potentially improve the prognosis
of patients with heart failure without disturbance of excitation-
contraction coupling. However, several questions remain to be
answered regarding the role of microdomain-specific signaling
in the development of cardiac hypertrophy and heart failure.
First, the contribution of other microdomains such as lipid
rafts (Dodelet-Devillers et al., 2009) or couplons (Chopra and
Knollmann, 2013) needs to be determined, which requires
the development of novel and simple tools to assess these
microdomain signals. Second, the physiological relevance of
the regulation of these microdomain-specific signaling pathways
should be determined in vivo. Third, the methodology for
assessing signals other than CaMKII needs to be developed.
Finally, the role of the specific activation of these signals in
subcellular organelles such as the mitochondrion should be
determined. Methods based on a phosphorylatable peptide-
tag have great potential to help tackle these questions. Taken
together, the evidence accumulated to date indicates that selective

inhibition of target molecules involved in caveolae-specific
signaling based on their subcellular location could be a promising
therapeutic tool to treat cardiac hypertrophy and heart failure in
the future.
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