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Abstract

This study provides a novel view on the interactions between the MS-KIF18A, a kinesin protein, and estrogen receptor alpha
(ERa) which were studied in vivo and in vitro. Additionally, the regulation of MS-KIF18A expression by estrogen was
investigated at the gene and protein levels. An association between recombinant proteins; ERa and MS-KIF18A was
demonstrated in vitro in a pull down assay. Such interactions were proven also for endogenous proteins in MBA-15 cells
were detected prominently in the cytoplasm and are up-regulated by estrogen. Additionally, an association between these
proteins and the transcription factor NF-kB was identified. MS-KIF18A mRNA expression was measured in vivo in relation to
age and estrogen level in mice and rats models. A decrease in MS-KIF18A mRNA level was measured in old and in OVX-
estrogen depleted rats as compared to young animals. The low MS-KIF18A mRNA expression in OVX rats was restored by
estrogen treatment. We studied the regulation of MS-KIF18A transcription by estrogen using the luciferase reporter gene
and chromatin immuno-percipitation (ChIP) assays. The luciferase reporter gene assay demonstrated an increase in MS-
KIF18A promoter activity in response to 1028 M estrogen and 1027M ICI-182,780. Complimentary, the ChIP assay quantified
the binding of ERa and pcJun to the MS-KIF18A promoter that was enhanced in cells treated by estrogen and ICI-182,780. In
addition, cells treated by estrogen expressed higher levels of MS-KIF18A mRNA and protein and the protein turnover in
MBA-15 cells was accelerated. Presented data demonstrated that ERa is a defined cargo of MS-KIF18A and added novel
insight on the role of estrogen in regulation of MS-KIF18A expression both in vivo and in vitro.
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Introduction

Kinesins are microtubule-dependent motor proteins, with more

than 45 members expressed in mammalian cells. Kinesins are

classified based on three structural and functional regions: (i) a

motor domain with microtubule binding site and a catalytic

ATPase domain; (ii) central alpha-helical-coiled coil region which

possesses protein-protein interactions and (iii) tail which interacts

with cargo [1]. Different kinesin proteins share high homology of

their motor domain but diverge considerably in the cargo-binding

tail. Structural heterogeneity of kinesins is the basis for their

diverse functions in various cellular processes including transport

of cargoes such as membranous organelles, macromolecular

complexes and mRNA [2–7]. It has been shown that kinesins

play a role in trafficking directed towards the cell periphery, for

example motility from the Golgi to the plasma membrane [8].

MS-KIF18A is a member of Kinesin-8 sub family [9] which was

cloned from the marrow stromal cells and characterized by

bioinformatic and biochemical means [10,11]. Estrogen receptor

alpha (ERa) was identified as a cargo for MS-KIF18A. We also

suggested a role for this kinesin in estrogen signaling pathway [12].

Estrogen has pivotal functions in both female and male physiology

and has been recognized as a regulator of bone remodeling in

maintaining of bone mass and keeping the balance between bone

formation and resorption [13–15]. Estrogen deficiency in vivo is

recognized during post-menopause or following ovariectomy and

associated with an increase of osteoclasto-genesis and decrease in

osteogenesis that lead to bone destruction [16–19]. Estrogen

hormone action affects cell proliferation and differentiation via the

estrogen receptors (ERs). The ERs are expressed in various cells

including osteoblasts [12,20–24], osteocytes [25] osteoclasts [26]

and mammary epithelial cells [27]. Specifically, ERa is identified

in two isoforms: 66 kDa and 46 kDa, the shorter form lacking a

ligand-independent activation function domain 1 (AF-1) [28,29].

Steroid hormone binding to the receptors leads to a rapid

(second – minutes) non-genomic signal transduction or to a

prolonged genomic signaling [30]. The non-genomic pathway is

mediated by activation of Mitogen Activated Protein Kinase

(MAPK) proteins such as p38 and ERK1/2 [31] and increase in

Ca2+ ion concentration [32,33] or Inositol 1, 4, 5-trisphosphate

(IP3) [34]. Such activation controls various cellular activities

including cell proliferation, response to inflammation mediated via

inhibition of NF-kB activation [35] and anti-apoptotic events [36–

38]. The prolong estrogen action occurs within 30–60 minutes

where the receptor is translocated to the nucleus and leads to

genomic response. The ERa binds directly to estrogen response

elements (EREs) [39] or indirectly via accessory proteins on AP-1

or Sp-1 binding sites [40] on promoters of target genes. The ERa
translocation to the nucleus is a dynamic process regulated by

ATP activity or by ligand-induced conformational changes and
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proteasome function. Depletion of ATP retards the intra-nuclear

mobility of un-liganded ERa and causes the receptor redistribu-

tion to the cytoplasm [41]. When cells’ treated with either 17bE2

or tamoxifen prior to ATP depletion the ERa was less mobile,

more prominent in the nucleus and reduced the shuttling to the

cytoplasm [42]. The ERa shuttling as ATP-dependent phenom-

ena implies a role of motor protein in this process; however, thus

far a candidate for such protein was not identified.

In this study, we presented two views on the MS-KIF18A - ERa
cross talk: one aspect investigated the complex formation between

MS-KIF18A and ERa and the second studied the regulation of

MS-KIF18A expression under estrogen paradigm. The nature of

interactions between ERa and MS-KIF18A was demonstrated

using recombinant and endogenous proteins by immunoprecipita-

tion (IP) and western blot (WB) assays. MS-KIF18A mRNA

expression was analyzed in vivo in bone marrow cells or in vitro in a

pre-osteogenic MBA-15 cells and breast carcinoma MCF-7 cells

that are estrogen responsive cells. Estrogen effects on the binding of

ERa and pcJun to MS-KIF18A promoter was studied by chromatin

immunoprecipitation (ChIP) and the activation of the promoter was

analyzed by luciferase reporter assay. The regulation of

MS-KIF18A protein expression and turnover was explored by

metabolic labeling and immunological analysis. The present

research provides a novel view on regulation of MS-KIF18A and

its’ association with ERa and significantly contributes to the

profound understanding of estrogen mediated activities.

Results

The association between MS-KIF18A and a putative cargo; ERa
was demonstrated in our laboratory in earlier study [12]. Currently,

we elaborated on the interactions between these proteins using an in

vitro pull down assay which applied recombinant proteins. We used

three recombinant isoforms of MS-KIF18A: full length of

MS-KIF18A (Figure 1A) and truncated forms: 1–635 AA that

includes the motor domain and the coiled-coil region (Figure 1B)

and 635–898 AA that contains the cargo binding domain

(Figure 1C). The protein association between the three MS-KIF18A

constructs and ERa was demonstrated by Co-IP and WB using

three antibodies: a polyclonal anti-MS-KIF18A which identifies an

epitope at the motor domain, a monoclonal anti-MS-KIF18A

which identifies an epitope at the cargo-binding domain and anti-

ERa (Figure 1D–1F). In addition, we previously demonstrated

interactions of endogenous proteins in MBA-15 cells and revealed

an association of MS-KIF18A with both 46 kDa and 66 kDa ERa
isoforms [12]. Herein, we analyzed the 17bE2 effect on this complex

formation in MBA-15 cells. Cells were pre-incubated in steroid-free

serum for 48 h and then challenged with 1028 M 17bE2 for 16 h

followed with IP using either anti-MS-KIF18A or anti-ERa and

analyzed by WB. In the treated cells, we detected a reduction in

ERa appearance and an increase in MS-KIF18A-46 kDa ERa
complex formation (Figure 2).

MS-KIF18A sub-cellular distribution and co-expression with

ERa was analyzed at the cytoplasm (C) and nuclear/membrane

(N/M) compartments. The ERa expression was identified at

higher level in the nucleus, while MS-KIF18A was prominently

localized in the cytoplasm (Figure 3A). IP with anti-MS-KIF18A

and WB analysis with anti-ERa detected the MS-KIF18A-ERa
complex mainly at the cytoplasm (Figure 3B). To elaborate on the

role of MS-KIF18A in ERa signaling pathway we analyzed the

interactions of ERa and MS-KIF18A with NF-kB (p65 and p50

subunits). Cell lysates were immunoprecipitied with antibodies

towards p65 and p50 subunites of NF-kB and follwed with WB

analysis using anti-MS-KIF18A. An association was found

between MS-KIF18A and p50, whereas no interactions with p65

was observed (Figure 4A). However, protein complex was noted

between ERa and both forms of NF-kB (Figure 4B).

The role of estrogen on MS-KIF18A mRNA expression was

analyzed in vivo and in cell culture. MS-KIF18A mRNA measured in

vivo on RNA isolated from bone marrow cells harvested from rats and

mice and correlated the expression levels in relation to animal age

(Figure 5A, 5B). Studying mice, we measured 6-folds higher mRNA

levels in young males then in old animals (p = 0.0019, Figure 5A). In

rats, the expression of the mRNA was 4-folds higher in young male

animals than in old ones (p = 0.0022, Figure 5B). In young female

OVX-rats the level of mRNA was 3-folds higher compared to old

ones (p = 0.0047, Figure 5B). All together, we noted a higher MS-

KIF18A mRNA levels in bone marrow of young animals that was

decreased with age. In addition, we analyzed sham rats that expressed

MS-KIF18A mRNA levels 3-folds higher as compared to OVX-rats

(p = 0.0084, Figure 5C). When OVX-rats were treated with 17bE2, a

12.5-folds increase in mRNA levels was detected (p = 0.0078,

Figure 5C). These results provide the in vivo evidence of estrogen

impact on the regulation of MS-KIF18A expression.

The stimulatory effect of 17bE2 on MS-KIF18A mRNA

expression led us to analyze the transcription regulation using a

reporter gene assay. We analyzed in silico, the 1500 bp upstream to

the TSS of the MS-KIF18A gene. This region was predicted as

putative promoter and mapped for transcription factors (TFs)

binding sites and regulatory elements. Bioinformatics analysis using

MatInspector software enables to identify the promoter region and

the TF binding sites and regulatory elements. Specifically, we

mapped a non-palindrome half-site ERE that binds ER directly and

AP-1 site that binds ER via accessory proteins such the pcJun. We

amplified this genomic region by PCR and cloned into pGLuc

vector upstream to luciferase reporter gene (pGluc-K) (Figure 6A).

The cloned pGluc-K plasmid was co-transfected with b-galactosi-

dase (b-GAL) plasmid in MCF-7 cells that were treated with

1028 M 17bE2 or/and 1027 M ICI 182,780 for 1 h or 24 h. The

promoter activity was quantified by luciferase activity normalized to

b-GAL (which indicates the transfection efficiency). In 17bE2

treated cells’ we measured an increase in luciferase activity: 1.5-folds

after 1 h (p = 0.0001) and 1.7-folds after 24 h (p = 0.01) as

compared to control cells. Cells treated with ICI-182,780

demonstrated an increase of luciferase activity; 1.6-folds following

1 h (p = 0.02) and 1.5-folds after 24 h (p = 0.006) as compared to

untreated cells. The combined treatment of 17bE2/ICI-182,780

resulted with a similar increase of luciferase activity after 1 h

(p = 0.0012) and increase 2.5-folds after 24 h (p = 0.023) of

treatment (Figure 6C). No activity in transfected cells with

pGLuc-basic plasmid was detected (Figure 6B).

ChIP assay was applied to correlate the endogenous regulation

of promoter activity. We used antibodies to ERa and pcJun to

measure their binding to MS-KIF18A promoter in MCF-7 and

MBA-15 cells (Figure 7). In MCF-7 cells treated with 17bE2 for

60 min, we noted 4-folds increase in ERa binding (p = 0.0007,

Figure 7A) while no change in the level of pcJun binding

(Figure 7B) was observed. When the MCF-7 cells were treated

with ICI-182,780, binding of ERa was 9-folds higher (p = 0.0001,

Figure 7A) and the binding of pcJun was 2-folds higher (Figure 7B)

as compared to untreated cells. Treatment of MBA-15 cells with

17bE2 for 2 h then ChIPed with anti-ERa revealed a 2-folds

increase of ERa binding to the analyzed promoter (p = 0.0281,

Figure 7C) as compared to untreated cells.

The consequence of 17bE2 or ICI-182,780 regulation of ERa
and pcJun binding to MS-KIF18A promoter and its’ activation led

us to study the MS-KIF18A mRNA expression level under this

paradigm. The message expression level was quantified by

MSKIF18A Expression and Cargo
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comparative qRT-PCR (Figure 8). MCF-7 cells response to 17bE2

treatment for 1 h measured 2-folds increase (p = 0.0014) while

treatment with ICI-182,780 induced 34-folds increase (p = 0.014)

of MS-KIF18A mRNA expression (Figure 8A). MBA-15 cells

treatment with 17bE2 resulted with 1.3-folds elevation mRNA

levels after 2 h (p = 0.0001) and 1.8- folds after 24 h (p = 0.0053) as

compared to untreated control (Figure 8B).

Actinomycin D (ActD) is an inhibitor of RNA synthesis. We

measured the mRNA levels in cells treated by this drug in presence

or absence of 17bE2 and noted a 25-folds increase in mRNA levels

in ActD/E2 treated cells as compared to cells’ treated by ActD

only (p = 0.0001, Figure 8C) indicating mRNA stabilization in cells

treated with estrogen.

Additionally, we followed the MS-KIF18A protein in MBA-15

cells treated by 17bE2 for defined periods from 1 h to 20 h. The cell

lysates were separated on SDS-PAGE gel and analyzed by WB with

anti-MS-KIF18A. We noted an increase in MS-KIF18A protein

expression already after 1 h of treatment that was maintained until

20 h (Figure 9A). In addition, MS-KIF18A protein turnover was

analyzed in presence or absence of estrogen applying metabolic

labeling with Met/Cis-S35 on MBA-15 cells. The cells were

pretreated for 6 h, 24 h or 48 h with 17bE2, radio-labeled for 1 h

and then chased at 4 time points from 1 h to 36 h. At each time

Figure 1. Association between MS-KIF18A and ERa recombinant proteins. Schematic illustration of full length MS-KIF18A (A); truncated MS-
KIF18A construct 1–635 aa (B); truncated MS-KIF18A construct 635–898 aa (C). (D–F) Co-IP experiments of MS-KIF18A constucts with recombinant
ERa and WB with monoclonal anti-MS-KIF18A (1) and anti-ERa (2). Full length MS-KIF18A (D), MS-KIF18A constucts 1–635 aa (E), MS-KIF18A constucts
635–898 (F). Pull down with beads only (1); IP with anti-MS-KIF18A and WB with anti-ERa (2) (G). The results are representative from the set of at least
three independent experiences.
doi:10.1371/journal.pone.0006407.g001

Figure 2. Estrogen-dependent association between MS-KIF18A
and ERa. MBA-15 cell lysates were IPed with anti-ERa or anti-MS-
KIF18A, and analyzed by WB. Results are of representative experiment
of a series repeated five times.
doi:10.1371/journal.pone.0006407.g002

MSKIF18A Expression and Cargo
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point cell lysates were IPed with anti-MS-KIF18A, separated on

SDS-PAGE and exposed to developing film (Figure 9B). A 100 kDa

band was identified and confirmed by IP and WB analysis as

MS-KIF18A (Figure 9C). We have shown MS-KIF18A protein

degradation in period of 24 h to 36 h after cells’ labeling. The

estrogen treatment induced an increase of MS-KIF18A synthesis

(1 h chase), accelerated protein turnover (12 h chases) and

shortened its half-life (36 h chase). In addition, other prominent

proteins of 230 kDa and 45 kDa (earlier identified as actin [11])

were Co-IPed by anti-MS-KIF18A (Figure 9B).

In summary, we demonstrated the association between MS-

KIF18A and ERa recombinant and endogenous proteins analyzed in

MBA-15 cells. These proteins’ association was regulated by 17bE2

and the complex appeared more prominent in cytoplasm. At the

molecular level, we demonstrated estrogen dependent activation of

MS-KIF18A promoter measured by luciferase assay and an

estrogenic increase in ERa and pcJun binding to the promoter.

The regulation of MS-KIF18A mRNA and protein expression by

estrogen was demonstrated in vivo in mice and rats as well as in cell

systems.

Discussion

MS-KIF18A is a member of kinesin family, which functions as

motor protein that binds to microtubule and uses the energy derived

from ATP hydrolysis to move along the cytoskeleton. Previous studies

analyzed the MS-KIF18A using bioinformatics and biochemical tools

suggested the estrogen receptor alpha (ERa) as a putative cargo [10–

12]. The present study elaborated on two aspects; one highlighted on

the interactions between MS-KIF18A and ERa and the second

studied the expression of MS-KIF18A under the paradigm of

estrogen which applied in vivo and in vitro models.

The complex formation between motor proteins and their cargo

comes from the motifs that play a role in protein-protein

interactions. Bioinformatics analysis of MS-KIF18A protein

sequence revealed several motifs of interaction with nuclear

receptors (NR-boxes and WXXWW-like motifs) and a region

homologous to ERa in the coiled coil and the cargo-binding

domains of the kinesin. Co-transfection of MS-KIF18A and ERa
in COS-7 null cells and also Co-IP of endogenous proteins in

MBA-15 cells demonstrated such association [10,12]. Here, we

elaborated on the nature of these proteins interactions in in vitro

assay using three constructs of recombinant MS-KIF18A and

ERa. We have shown that full length MS-KIF18A or its truncated

forms bind the ERa. Thus, we propose a putative function for the

NR motifs localized at the coiled-coil region and cargo-binding

domain of the MS-KIF18A, in mediating the proteins interactions.

Estrogen is recognized to activate numerous of transcriptional

events in many cell types. Estrogen receptor localization was noted

at various cell compartments that are down regulated in cells

treated by 17bE2 [43,44]. ERa shuttles between different cellular

compartments including cell membrane, cytoplasm and nucleus

[12,30,43]. A small portion of ERa is localized at the caveolar

fractions of the plasma membrane [12,45,46], however the

Figure 3. Sub-cellular distribution of ERa and MS-KIF18A in cells fractionated to cytoplasm (C) and nuclear/membrane (N/M)
compartments. Whole lysates (A) and IP (B) of fractionated cells were analyzed with anti-MS-KIF18A and anti-ERa. Results demonstrate a
representative experiment of four independent repeats.
doi:10.1371/journal.pone.0006407.g003

Figure 4. Interaction between NF-kB and MS-KIF18A or ERa. IP
with anti-p50 (1) with anti-p65 (2) WB performed with anti-MS-KIF18A
(A) with anti-ERa (B). Results revealed an association between MS-
KIF18A and p50, but not with p65 while ERa interacts with both forms
of NF-kB; p65 and p50. Results demonstrate a representative
experiment of three independent repeats.
doi:10.1371/journal.pone.0006407.g004

Figure 5. MS-KIF18A mRNA expression in vivo. Total RNA from bone marrow cells were harvested from mice (A) and rats (B, C) and analyzed
by qRT-PCR. (A) mRNA expression in bone marrow cells derived from young 4 month (white bars) and old 12 month (black bars) male mice; (B)
Young 3 month (white bars) and 14 month old (black bars) male and OVX female rats; (C) Sham, OVX and OVX+E2 female rats. MS-KIF18A mRNA
expression was normalized to G3PDH expression levels. Results are presented as mean values +/2 SD obtained from triplicates for each data point.
doi:10.1371/journal.pone.0006407.g005
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receptor is mostly localizes in the nucleus [21,42,47]. A connection

between ERa mobility and a putative cytoskeleton protein was

suggested, but no candidate protein has been identified thus far

[43]. Herein, we have shown that fractionated cells analyzed by

WB localizes the ERa is mainly at the nucleus/membrane

compartments, while MS-KIF18A is prevalent in cytoplasm

[11]. The association between MS-KIF18A and ERa is higher

in the cytoplasm, confirming the kinesins’ action in this

compartment. We have also shown that the complex formed

between these proteins is stimulated by 17bE2.

ERa signaling involves activation of MAPKs such as p38 and

ERK1/2 [31], resulting with various cell response. pERK protein

was earlier detected in association with ERa and MS-KIF18A,

suggesting a role for the MS-KIF18A in non-genomic activation of

ERa through the MAPK pathway [12]. Herein, we elaborated on

the protein complex between MS-KIF18A and ERa revealing it

regulation by estrogen. It is recognized that ERa binds NF-kB in

various cells affecting cellular process such as inhibition of

inflammatory or during cell apoptosis [35]. NF-kB transcription

factor dimerize the p65 and p50 subunits to hetero-complex [48].

We detected an association between both NF-kB subunits and

ERa, while MS-KIF18A binds only the p50 subunit.

Estrogen regulates numerous cellular functions including the

remodeling of the cytoskeleton proteins and their composition. The

cytoskeleton is a dynamic network of proteins that undergoes

restructuring during cell division, formation of cell-cell or cell-ECM

interactions and cell migration. Cytoskeleton plays a role in

controlling of cells shape and influences gene expression

[22,49,50]. We earlier reported that 17bE2 affects the composition

of cytoskeleton proteins, such as thropomyosin and tubulin and

reorganization of actin fibers in MBA-15 cells [22]. Estrogen

induces the remodeling of both the F-actin and the intermediate

filament [50]. It was shown also in vivo, in OVX-estrogen depleted

rats an up-regulation of tropomyosin 2b and tropomyosin 1a
expression by 17bE2 [51]. Earlier we have shown the association

between MS-KIF18A and cytoskeleton proteins tubulin and actin

[11]. The current study provides new insights on the impact of

estrogen on the complex formed between ERa and MS-KIF18A.

The expression of MS-KIF18A mRNA and its’ regulation by

estrogen was analyzed in vivo in rats and mice. We have noticed an

age difference in MS-KIF18A expression: mRNA was higher

expressed in young animals then in old ones. Such differences may

account for the decrease in estrogen levels with aging [17,52,53]

suggesting a hormonal role in regulation of MS-KIF18A expression

in vivo. This observation was strengthened using OVX-estrogen

depleted rats which measured a decline in MS-KIF18A message as

compared to sham rats. When the OVX-rats were treated with

17bE2 we have shown the restoration of MS-KIF18A mRNA levels.

To unravel the mechanism of estrogen effects on MS-KIF18A

expression we analyzed the kinesin promoter activity by luciferase

reporter gene and ChIP assays. It is known that ERa activates

promoters when binds directly to palindrome ERE or half-site ERE

[39,54,55] or indirectly via accessory proteins (such as Fos and Jun)

at AP-1 binding sites or to GC-rich sequences via complex with Sp1

[40,56]. ERa also stimulates gene expression via interaction with

nuclear receptor NF-kB and this complex binding to promoters of

Figure 6. Luciferase measurements of MS-KIF18A promoter activity. (A) Schematic illustration of MS-KIF18A promoter-luciferase reporter
constructs. MCF-7 cells transfection with MS-KIF18A promoter cloned in luciferase reporter plasmid (pGLuc-K) or promoter less pGL3-basic along with
b-galactosidase vector. (B) Cells treated (black bars) or not (white bars) with 17bE2 (1028 M) for 24 h; (C) 17bE2 (1028 M) or/and ICI-182,780 (1027 M)
were added to the cultures for 1 h (white bars) or 24 h (gray bars). Promoter activities are expressed as luciferase values normalized for b-
galactosidase levels. A value of 100% was given to the basal promoter activity elicited by the pGLuc-K construct in the absence of any treatment.
Results are mean6SD of 3 independent experiments, performed in duplicates.
doi:10.1371/journal.pone.0006407.g006
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target genes [48]. Herein, we used the cloned promoter of MS-

KIF18A that contains non-palindromic half-site ERE, AP-1 and

NF-kB binding sites. The MS-KIF18A promoter was cloned under

luciferase reporter and transfected to MCF-7 cells. When these cells

were treated with either 17bE2 or ICI-182,780 we have noted a

similar inducible effect of the promoter activity while the combined

17bE2/ICI-182,780 treatment had an additive effect. MS-KIF18A

mRNA levels were quantified by qPCR and have shown an increase

in cells treated with either 17bE2 or ICI-182,780. The rational for

the ICI-182,780 effect shown here lies in the fact that this drug is no

more considered as an estrogen antagonist and reports present a

role for its agonistic action. The agonist property of ICI-182,780

was observed in vivo on bone growth [57]. Cells derived from human

breast tumor tissues were analyzed on HTS affymetrix gene chip

resulted with an up-regulation of gene expression when treated by

estrogen and even more by ICI-182,780 [58]. Modulation by ICI-

182,780 resulted with up regulation of quinine reductase in MCF-7

cells [59], ERRa in SKBR3 cells [60] and spinophilin in

hippocampus neurons [61]. The promoter activation by ICI-

182,780 is proposed to act via ER binding on AP-1 sites, but not via

ERE [62]. Moreover, the ERa-ICI-182,780 complexes that

sequester transcriptional repressors away from AP-1 sites allow an

unrestricted transcription [63,64]. From the current study the

indication is that binding of 17bE2 and ICI-182,780 to ERa
increases the receptor binding to MS-KIF18A promoter and allows

its activation, leading to an increase in message transcription. Using

the ChIP analysis we have shown that ERa and pcJun bind to MS-

KIF18A promoter in MCF-7 and MBA-15 cells that are regulated

by 17bE2 and by ICI-182,780. In another study, we have shown

that ERa and cJun are differentially regulated when bind to SVEP1

promoter. In cells treated by 17bE2 it was shown an increase of the

TF binding but not when treated by ICI-182,780 [65].

Complementary with reporter gene and ChIP assays we analyzed

the role of estrogen on MS-KIF18A mRNA and protein expression.

It was noted that MS-KIF18A mRNA expression increased after

cells were challenged with 17bE2 or ICI-182,780. Furthermore,

inhibition of transcription with ActD and 17bE2 stabilized MS-

KIF18A mRNA and decreased its’ degradation. MS-KIF18A

protein levels also increased following 17bE2 treatment. Metabolic

labeling assay confirmed that 17bE2 accelerates MS-KIF18A

turnover. Taken together, the results elaborated on the effect of

estrogen on MS-KIF18A expression, lifetime and degradation.

In summary, we have shown the interaction between MS-KIF18A

and ERa as its cargo in in vitro and in vivo assays using different

biochemical and molecular approaches. Moreover, the involvement of

kinesin in ERa signaling was demonstrated. Furthermore, we have

shown for the first time regulation of MS-KIF18A mRNA expression

and protein turnover by estrogen, implying the kinesins’ function in

estrogen-dependent manner. These results can lead to further

investigation of metabolic regulation in the mesenchymal stem cells

that play a role in estrogen regulated maintenance of bone in

metabolic diseases or in cancer.

Materials and Methods

Animals and Experimental Design
ICR mice age 4-month (young) and 12-month (old) old (n = 10 in

each group). Fischer 344 male and female rats age 90-day (young)

and 11-month (old) old (n = 13–18 rats in each group from both sex).

Female rats were subdivided into a control sham group (abdominal

Figure 7. Chip assay of ERa and AP-1 binding to MS-KIF18A promoter. A-C Bar histogram of qPCR analysis of amplified MS-KIF18A promoter
in MCF-7 ChIPed by anti-ERa (A) or by anti-pcJun (B), and in MBA-15 cells were ChIPed by anti-ERa (C). All the results presented as mean values +/2
SD obtained from three different experiments each performed in triplicates for each data point.
doi:10.1371/journal.pone.0006407.g007
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midline incision), ovariectomized (OVX) rats or OVX rats that were

implanted with 90-day slow-release pellets of 17b-E2 [17]. Animals

were maintained and treated according to the Institutional Animal

Care and Use Committee at the Tel Aviv University.

Cell culture
We used two cell lines known for their response to estrogen:

MBA-15, a pre-osteogenic stromal cell line [22] and MCF-7 breast

carcinoma cell line. Both were cultured in growth medium;

Dulbecco’s Modified Essential Medium (DMEM) (Gibco, USA)

with the addition of 10% heat-inactivated fetal calf serum (FCS)

(Biological Industries, Israel), supplemented with 1% glutamine

and 1% penicillin/streptomycin in a humidified atmosphere of 5%

CO2 at 37uC. Before cells’ were treatment with 1028 M 17bE2 or

1027 M ICI-182,780, they were incubated in 3% serum stripped

medium for 48 h. Where specified, cells were treated with 5 mg/

ml actinomycin D (Sigma, USA) a transcription inhibitor.

Bioinformatics analysis
60 kb of genomic sequence at 59-flanking upstream the

transcription start site (TSS) of MS-KIF18A gene was analyzed

to identify the gene-putative promoter. The analysis applied

Promoter 2.0 Prediction Server (http://www.cbs.dtu.dk/services/

Promoter) for promoter definition and MatInspector software

(http://www.genomatix.de) for transcription factor binding sites

identification. All primers were constricted using Primer3 Software

(http://frodo.wi.mit.edu/cgi-bin/primer3).

Putative MS-KIF18A promoter cloning and activity
1.5-kb 59-flanking upstream the transcription start site (TSS)

promoter sequence segment was amplified from genomic DNA

using the 59 TACCAAGACCAGCAGCACAC and 39 TAAG-

GAGATCCCTGCCCTTC primers. The PCR fragment was

verified by sequencing then restricted by Bgl II and Bcl I and a

1.3-kb segment was cloned upstream of a luciferase reporter gene

into pGLuc-basic vector (New England BioLabs, USA). The MS-

KIF18A promoter reporter plasmids named pGLuc-K.

MCF-7 cells seeded in 6-well plates, after 48 h cells were

transfected with 1.3 mg of the pGLuc-K or promoterless pGL3-

basic along with 0.3 mg of b-galactosidase expression plasmid

(pCMVb; Clontech, Palo Alto, CA), using the jetPEITM

transfection reagent (Polyplus Transfection, Illkirch, France). After

24 hrs media was changed to 3% serum stripped medium

supplemented with 1028 M 17b-E2 and 1027 M ICI-182,780

for 1 h or 24 h then medium was collected and cells were

harvested for luciferase activity (New England BioLabs, USA) and

b-galactosidase activity [66]. Promoter activities are expressed as

luciferase values normalized to b-galactosidase levels.

mRNA and gene expression analysis by real-time
quantitative PCR

Total RNA was extracted from cells (EZ RNA kit, Biological

Industries, Beit Haemek, Israel) and reverse transcribed to cDNA

using Reverse-iT 1st Strand Synthesis Kit (ABgene House, AB-

0789) and oligo-dT primer (Takara Shuzo Co. Ltd., Seta, Japan).

The cDNA used as template for polymerase chain reaction (PCR),

using primers for MS-KIF18A from human, rat and mouse

(Table 1). Amplified PCR products were detected by SYBR Green

(ABgene House, USA). Verification of a single product amplified

was checked for each primer pair by analysis of product melt curves

on (MxProTM QPCR Software, Stratagene, USA). MS-KIF18A

cDNA PCR products were subjected to dissociation curve analysis

resulting with fluorescence peak corresponding to the MS-KIF18A

product centered at 80uC in rats and at 82uC in mice and humans.

Primer-dimmers were distinguishable at 76uC. Level of expression

for PCR products was normalized to G3PDH gene expression.

Experiments were performed with triplicates for each data point.

Chromatin immunoprecipitation (ChIP) analysis of
regulatory factor binding to putative MS-KIF18A
promoter in human and mouse cells [67]

For assay, DNA was extracted from input chromatin fractions

and complex was immunopercipitated with anti-ERa (Stressgen,

Figure 8. MS-KIF18A mRNA expression presented by bar
histogram of qPCR analysis from (A) MCF-7 cells treated or
untreated for 60 min with 1028 M 17bE2 (E2) or 1027 M ICI-
182,780 (ICI) (B) MBA-15 cells treated with 17bE2 for 2 h and
24 h. (C) Effect of Act D on the stability of MS-KIF18A mRNA in MBA-15
cells treated in presence of 17bE2 for 6 h. The MS-KIF18A mRNA is
samples were normalized to G3PDH for each data point. Results are
presented as mean values +/2 SD obtained from three different
experiments each performed in triplicates for each data point.
doi:10.1371/journal.pone.0006407.g008
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Canada) or with anti-pcJun (Santa Cruz Biotechnology, USA).

DNA served a template to amplify promoter of MS-KIF18A gene,

with specific primers (Table 2) using real-time quantitative PCR.

Input DNA was used as a positive control and for standard curve.

The fluorescence peak dissociation corresponding to PCR product

centered at 85uC and was distinguishable from the peak of primer-

dimmer centered around 79–80uC.

Immunological methods
Cells’ were collected for immunoprecipitation (IP) or whole lysate

(WL) analysis; SDS-PAGE gel and Western blot (WB). Cells were

washed twice with ice-cold PBS and collected in presence of

protease inhibitors (phenylmethylsulfonyl fluoride, PMSF, 1 mM;

1-chloro-3-tosylamido-4-phenyl-2-butanone, TPCK, 10 mg/ml;

aprotinin, 10 mg/ml and phosphatase inhibitors cocktails I and II

(Sigma, USA). Samples were spin down at 1500 rpm for 4 min,

lysed in lyses buffer consisting of 50 mM Tris pH 7.5, 150 mM

NaCl, 1% NP-40; protease and phosphatase inhibitors; incubated

for 20 min at 4uC and centrifuged at 16,0006g for 5 min. For WL

the samples were resuspended in Lamelli sample buffer and boiled

Figure 9. Estrogen effects on MS-KIF18A protein expression and turnover. (A) Lysates of MBA-15 cells challenged with 1028 M 17bE2 for
1 h, 2 h, 4 h and 20 h were analyzed by WB with anti-MS-KIF18A and compared to the untreated control at 1 h (C 1 h) and 20 h (C 20 h). (B) MBA-15
cells were pretreated with 1028 M 17bE2 for duration of 6 h, 24 h or 48 h, metabolic labeled with Met/Cis-S35, chased for various time periods from
1 h to 36 h, lysed, IPed with anti-MS-KIF18A and loaded on SDS-PAGE gel. (C) A 100 kDa protein confirmed as MS-KIF18A by IP and WB with anti-MS-
KIF18A. Results are of representative experiment of a series repeated three times.
doi:10.1371/journal.pone.0006407.g009

Table 1. Primers used for mRNA expression analyzed by PCR.

Gene Sequence

MS-KIF18A Mouse cDNA sense 59 TCAATCAAAATGTCCGTAT 39

antisense 59 GGCTTTCTGTTCTTCATAGG 39

MS-KIF18A Human cDNA sense 59 GTGCCATCCTACATGGCAATG 39

antisense 59 TGTCGAACACGTTTGGCAAA 39

MS-KIF18A Rat cDNA sense 59 CAAAATGGTGATATTCCCGAGG 39

antisense 59 CAGCCAGAGTCATCATGTGTCC 39

G3PDH sense 59 ACCACAGTCCATGCCATCAC 39

antisense 59 TCCACCACCCTGTTGCTGTA 39

doi:10.1371/journal.pone.0006407.t001

Table 2. Primers used for ChIP analysis.

Gene Sequence

MS-KIF18A Mouse promoter sense 59 TTTTACAGGCCCGCAGACTC 39

antisense 59 GAAGCAGCCACCTGGGATATT 39

MS-KIF18A Human promoter sense 59 ACGTGATGACATCACGCGAG 39

antisense 59 CTTTAATGTCCGCCTCCCAG 39

doi:10.1371/journal.pone.0006407.t002
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for 3 min. For IP the 1 ml of the antibody of interest and 25 ml

Protein-A sepharose beads (RepliGen, USA) were added to lysates

and samples were incubated overnight at 4uC. Immunocomplexes

were precipitated at 16,0006g for 1 min and washed four times with

lyses buffer. The washed beads were resuspended in Lamelli sample

buffer and boiled for 3 min. The proteins were separated on 8%

SDS-PAGE for 2 h 30 min and transferred to nitrocellulose for 1 h

30 min. For Western blot, the membranes were blocked with 5%

BSA in TBST (50 mM Tris, pH 7.5, 150 mM NaCl, 0.1% Tween-

20, Sigma, USA) for 1 h at RT or overnight at 4uC and then

incubated with primary antibody. The membranes were washed

with TBST and incubated with goat anti-rabbit or goat anti-mouse

conjugated to biotin (Dako, Denmark) for 40 min at RT and with

extravidin-peroxidase for 30 min at RT (Sigma, USA) for detection

with chemiluminescent substrate (Pierce, USA).

Antibodies
Polyclonal anti-MS-KIF18A (1:1300) [10,12]; monoclonal anti-

MS-KIF18A (1:500) [11]; anti-ERa (1:800) (SRA-1010, Stressgen,

Canada), anti-p65 and anti-p50 (Santa Cruz, USA).

Metabolic Labeling and Immunoprecipitation
MBA-15 cells were grown to 70% confluence in 100 mm dishes,

cells were pretreated with 1028 M 17bE2 for 6 h, 24 h and 48 h.

The medium was replaced with medium depleted of serum for 1 h

and cells were metabolically labeled in the presence or absence of

17bE2 for 1 h at 37uC using Redivue promix S35 label (200 mCi/

sample; Amersham) in methionine and cysteine-free Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 3%

stripped FCS. At the end of each time point, cells were washed

twice with PBS and with DMEM supplemented with 3% stripped

FCS with or without 17bE2 for variable periods of time. Cells were

lysed in 50 mM Tris, pH 7.5, 150 mM NaCl, 1% NP40 and

protease and phosphatase inhibitors and MS-KIF18A was

immunoprecipitated overnight at 4uC using anti-MS-KIF18A

antibody and protein A sepharose beads (RepliGen, USA). The

immunocomplex was washed three time with lysis buffer, resolved

in 8% SDS-PAGE, and detected using Kodak BioMax MS Film.

Cell fractionation
Cells (16107) were washed twice with 3 ml of cold PBS,

resuspended in 100 ml Buffer A (10 mM HEPES, pH 7.4, 10 mM

KCl, 1.5 mM MgCl2, 0.5 mM DTT, 0.025% NP-40) with

protease inhibitors (1 mg/ml aprotinin, 1 mg/ml TPCK, 1 mg/

ml pepstatin A, 0.2 mM PMSF) and incubated on ice for 20 min

followed with centrifugation at 7500 rpm for 10 min at 4uC and

the cytoplasm extract was removed, frozen and stored at 280uC.

The pellet was resuspended in 50 ml Buffer B (20 mM HEPES,

pH 7.4, 420 mM NaCl, 1.5 mM MgCl2, 0.5 mM DTT, 0.2 mM

EDTA, 25% Glycerol) with protease inhibitors. The nuclear

suspension was stirred vigorously on ice for 30 min. The sample

was centrifuged at 15 000 rpm for 12 min at 4uC, and the

nuclear/membrane extract was frozen and stored at 280uC. The

protein concentration of cytoplasm and nuclear/membrane

extracts was determined by the NanoDrop (ND-1000 Spectro-

photometer, NanoDrop Technologies, Inc., USA).

Binding assay for recombinant proteins
MS-KIF18A recombinant proteins were expressed at the

Structural Proteomics Center, Weizmann Institute of Science, Israel.

Recombinant ERa was purchased (Sigma, USA). For experiments

we used 0.25 mg of protein and pull down was performed in presence

of either poly or monoclonal anti-MS-KIF18A, anti-ERa with 25 ml

Protein-A sepharose beads (RepliGen, USA) overnight at 4uC. Then

beads were spanned down, re-suspended with loading buffer and

protein complex was analyzed by western blot.

Statistical analysis
Statistical analyses were carried out by Student’s t-test, where

values of p,0.05 are statistically significant. * is p-value#0.05, **

is p-value#0.01, *** is p-value#0.001.
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