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It is well-established that task-irrelevant sounds deviating from an otherwise predictable
auditory sequence capture attention and disrupt ongoing performance by delaying
responses in the ongoing task. In visual tasks, larger distraction by unexpected sounds
(deviance distraction) has been reported in older than in young adults. However, past
studies based this conclusion on the comparisons of absolute response times (RT)
and did not control for the general slowing typically observed in older adults. Hence,
it remains unclear whether this difference in deviance distraction between the two age
groups reflects a genuine effect of aging or a proportional effect of similar size in both
groups. We addressed this issue by using a proportional measure of distraction (PMD)
to reanalyze the data from four past studies and used Bayesian estimation to generate
credible estimates of the age-related difference in deviance distraction and its effect size.
The results were unambiguous: older adults exhibited greater deviance distraction than
young adults when controlling for baseline response speed (in each individual study and
in the combined data set). Bayesian estimation revealed a proportional lengthening of
RT by unexpected sounds that was about twice as large in older than in young adults
(corresponding to a large statistical effect size). A similar analysis was carried out on
the proportion of correct responses (PC) and produced converging results. Finally, an
additional Bayesian analysis comparing data from cross-modal and uni-modal studies
confirmed the selective effect of aging on distraction in the first and not the second.
Overall, our study shows that older adults performing a visual categorization task do
exhibit greater distraction by unexpected sounds than young adults and that this effect
is not explicable by age-related general slowing.

Keywords: deviance distraction, aging, auditory distraction, cross-modal attention, oddball, attention capture

INTRODUCTION

The ability to filter out task-irrelevant stimuli to concentrate on a task at hand plays a fundamental
role in efficient functioning. Yet, being entirely oblivious to task-irrelevant stimuli can be counter-
productive. For example, the reader of this article may be using selective attention to help process
the meaning of this text while filtering out nearby conversations, the noise of a passing car, or
other extraneous stimuli. However, should the fire alarm suddenly go off, detecting such unexpected
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auditory stimulus would be of paramount importance to
interrupt ongoing activities (reading) and modifying one’s
behavior in the service of a new goal (exiting the building). From
an attentional perspective, this example illustrates the balance
between selective attention (filtering out irrelevant stimuli)
and change detection (allowing unexpected stimuli to break
through attentional filters) mechanisms. Abundant research
has evidenced the existence and neurological underpinnings
of mechanisms capable of detecting the occurrence of stimuli
violating predictions and capturing our attention in an obligatory
manner (Schröger, 1996, 2007; Escera et al., 1998; Schröger
and Wolff, 1998; Winkler, 2007; Wessel and Aron, 2013;
Parmentier, 2014). While adaptive, such mechanisms present
one downside: the interruption of ongoing cognitive activities
yields a transient reduction in ongoing task performance
which, when attention-capturing stimuli are truly irrelevant,
amounts to distraction.

One class of stimuli repeatedly shown to grab attention are
sudden changes (oddball stimuli) in a sequence of otherwise
repeated or predictable (standard) sounds (see Parmentier, 2014,
for a review). At the center of the present study is the finding that
distraction by unexpected sounds is significantly greater in older
than in young adults when the task at hand is visual (Andrés et al.,
2006; Parmentier and Andrés, 2010; Leiva et al., 2015b, 2016), and
not when it is auditory (Leiva et al., 2015a,b). Here, our primary
aim was to re-evaluate the cross-modal studies to examine an
issue prominent in the field of aging research, but which has
been overlooked in past studies on aging and distraction by
unexpected sounds: the role of baseline response speed. We
used Bayesian statistics to re-analyze the data from four past
studies and establish whether their conclusions remain valid
when factoring out age-related variations in response speed. As
a secondary aim, for completeness, we also performed a similar
analysis on response accuracy. Finally, we contrasted these data
with those from two past studies using uni-modal oddball tasks
and confirmed that aging selectively affect distraction in the
cross-modal oddball task.

Distraction by Unexpected Sounds
Task-irrelevant sounds unexpectedly deviating from a predictable
sequence induce an orienting response characterized by specific
electrophysiological responses and behavioral distraction
(Schröger, 1996, 2005; Escera et al., 1998; Berti and Schröger,
2001; Horváth et al., 2008; Parmentier et al., 2008; Berti, 2013;
Parmentier, 2014; Rosburg et al., 2018). This is typically studied
in simple forced-choice categorization tasks involving task-
irrelevant sounds (Escera et al., 1998; Pacheco-Unguetti and
Parmentier, 2014; Parmentier et al., 2014, 2018), though it is
not specific to that task and has been observed in others such
as duration judgment, go-no go, visual matching, serial recall,
or gap detection tasks (Berti and Schröger, 2001; Hughes et al.,
2005; Bendixen et al., 2010; Li et al., 2013; Röer et al., 2015,
2017, 2018; Pacheco-Unguetti and Parmentier, 2016; Körner
et al., 2017; Vachon et al., 2017; Volosin et al., 2017; Volosin and
Horváth, 2020).

In cross-modal oddball tasks, target stimuli are typically visual,
each preceded by a task-irrelevant sound which is repeated on

most trials and unexpectedly replaced by a different sound on
some trials. These unexpected changes typically entail longer
response times (RT) and sometimes a small reduction in response
accuracy (see Parmentier, 2014, for a review). This effect is
thought to reflect the transient inhibition of motor actions
(Wessel and Aron, 2013; Parmentier, 2016; Wessel, 2017; Vasilev
et al., 2019, 2021; Wessel and Huber, 2019) and the involuntary
shift of attention to and from the unexpected sound (Schröger,
1996; Parmentier et al., 2008). These behavioral manifestations
are thought to reflect an adaptive interruption of ongoing
actions, the assessment of whether a new action plan must
be selected and, if not, the reactivation of the relevant task
set (Corbetta and Shulman, 2002; Verbruggen et al., 2014;
Wessel and Aron, 2017). Importantly, unexpected sounds distract
because they violate the cognitive system’s predictions, not
because they are rare per se (Schröger et al., 2007; Parmentier
et al., 2011; Volosin and Horváth, 2014; Schröger and Roeber,
2021). Consequently, distraction lessens or disappears when
unexpected sounds are made predictable (e.g., Sussman et al.,
2003; Horváth and Bendixen, 2012; Parmentier and Hebrero,
2013), but it appears immune to the predictability of our own
behavior (Parmentier and Gallego, 2020).

Aging and Distraction by Unexpected
Sounds
Several studies have examined distraction by unexpected sounds
in young and older adults. In studies using uni-modal tasks, aging
does not appear to modulate deviance distraction. While one
study using an auditory duration discrimination task reported
an age-related increase in distraction by rare and unexpected
changes in pitch (Berti et al., 2013), a subsequent study using a
larger sample found no difference between the two age groups
(Leiva et al., 2015a). Using a similar task in children, young
and older adults, Horváth et al. (2009) found no difference
between young and older adults with respect to behavioral
deviance distraction. Similar degrees of behavioral distraction
were also observed in young and high-performing older adults
(Getzmann et al., 2013).

In contrast to uni-modal studies, cross-modal oddball studies
consistently show an age-related increase in distraction by
unexpected sounds. Using a visual digit categorization task,
Andrés et al. (2006); see Parmentier and Andrés, 2010, for a
replication) reported a twofold increase in distraction in older
compared to young adults as measured from RT. A study
comparing the two age groups in uni-modal and cross-modal
oddball tasks confirmed a selective effect of aging on distraction
in the cross-modal task (Leiva et al., 2015b). Converging findings
were also reported in a cross-sectional study comparing children,
young and older adults with respect to deviance distraction,
working memory capacity and response inhibition (Leiva et al.,
2016). The exact origin of the selective effect of aging on deviance
distraction in the cross-modal as opposed to uni-modal tasks
has not clearly been identified yet. The cross-modal task differs
from the uni-modal in that it involves attention crossing sensory
boundaries, which has been hypothesized as a one contributor
to the effect (Parmentier et al., 2008). Hence, one reasonable
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hypothesis is that aging selectively affects the deployment of
attention across sensory modalities while within-modality shifts
are relatively unscathed (Leiva et al., 2015b).

The Present Study: Controlling for
Age-Related Differences in Response
Speed
Evidence shows that, relative to a repeated and predictable
sound, unexpected sounds distract participants from the task
at hand and yield longer RT. Interestingly, when this task
is visual, distraction is significantly larger in older than in
young adults (Andrés et al., 2006; Parmentier and Andrés,
2010; Leiva et al., 2015b, 2016). However, one factor has been
overlooked in these studies: the general slowing exhibited by
older adults. Indeed, while these studies reported age-related
differences in RT between unexpected and standard sound
conditions, the baseline response speed of participants was not
considered. In other words, one cannot rule out the possibility
that this age-related increase of distraction may simply be a
proportional effect.

It is well-established that variations in cognitive and response
speed constitute a key general factor in accounting for age-related
changes in memory and cognition (Shimamura, 1994). Gradual
slowing is a well-documented hallmark of aging (Cerella, 1985;
Rogers and Fisk, 1990; Salthouse and Meinz, 1995; Salthouse,
1996, 2000). Not surprisingly, older adults were overall slower
than young adults in all four cross-modal studies reviewed above.
Hence, before concluding that unexpected sounds selectively
affect older adults in cross-modal oddball tasks, it is necessary
to examine whether the proportional increase in RT in the
unexpected sound condition relative to the standard condition
is greater for older than for young adults.

Here, we reanalyzed the data from the four cross-modal
oddball studies on aging (Andrés et al., 2006; Parmentier and
Andrés, 2010; Leiva et al., 2015b, 2016) to test for an age-
related increase in distraction while controlling for baseline
response speed. To examine this issue, we compared young
and older adults using a proportional metric of distraction
whereby distraction (RT unexpected – RT standard) was pitched
against baseline response speed (RT standard). We then used
Bayesian estimation on the combined data set to derive point-
estimates and 95% high density intervals (95% HDI) of the
mean difference in proportional distraction and its effect size.
The hypotheses were simple: If the age-related difference in RTs
between unexpected and standard sound trials reflect a genuine
increase in distraction, then (1) we should find significant
differences in proportional distraction effects between the two age
groups and (2) Bayesian estimation should reveal credible value
ranges for the age group difference in proportional distraction
and its effect size that exclude zero. In contrast, if the age-
related increase in distraction reported in previous studies is
a mere reflection of a proportional slowing of responses, then
(1) we should find no difference between the two age groups
when controlling for baseline response speed, and (2) Bayesian
estimation should highlight zero as a credible value for the mean
age-related difference in distraction and its effect size.

METHODS

We present here a brief description of the key methodological
aspects of the four cross-modal oddball studies (Andrés et al.,
2006; Parmentier and Andrés, 2010; Leiva et al., 2015b, 2016)
relevant to our purpose. Our focus was on the comparison of
the RT and response accuracy of young and older adults in
oddball tasks in which standard and unexpected sounds were
presented while participants performed a visual categorization
task. Hence, from the study by Leiva et al. (2015b), we used data
from the cross-modal condition, not the uni-modal condition.
From the study of Andrés et al. (2006), we used the data from
the sound blocks, not the silent blocks. From the study by Leiva
et al. (2016), we selected the data from young and older adults,
not that of children, in the cross-modal oddball task (not the
working memory or response inhibition tasks). In all cases, the
first standard trial after an unexpected sound trial was excluded
from the analysis, for past work demonstrated that this trial is
subject to residual distraction (Ahveninen et al., 2000; Roeber
et al., 2003; Berti, 2008).

Participants
The sample included a total of 204 participants (148 females
and 56 males) forming two age groups: 108 young adults (M
age = 21.62, SD = 3.68) and 96 older adults (M age = 67.11,
SD = 8.38). We present in Table 1 (Panel A) a descriptive
breakdown of age and sex per study. For an average effect size of
d = 0.963 (mean of the d values for the effect of aging on deviance
distraction in the four studies we are revisiting), the statistical
power of a t-test for this sample size, a Type I error of 0.05,
and a one-tailed hypothesis, the statistical power of our study
was >0.999. Put differently, given our sample size, the minimum
effect size affording a power of 0.95 was d = 0.463.

Stimuli and Procedure
The cross-modal oddball task presented the same general
structure in all four studies, though with small variations
with respect to the exact stimuli, proportion of unexpected
sound trials, number of test trials, duration of stimuli, inter-
stimuli and inter-trial intervals. For clarity, we present a
descriptive comparison of the task characteristics in Table 1
(Panel B). In all cases, the participants’ task was to perform
a binary categorization of a visually presented stimulus (a
digit in three studies, a cartoon dog in one). A task-
irrelevant sound preceded each visual target. The duration of
the sounds, sound-to-target, target, and trial-to-trial intervals
was fixed within each study and varied slightly across studies.
In the majority trials (70–90%, depending on the study), a
600 Hz sinewave tone served as the standard sound while
unexpected sounds (white noise or environmental sounds) was
used in the remaining trials. Participants were instructed to
attend the visual task and endeavor to respond as quickly
as possible while trying to make no error. All participants
were tested individually in a sound attenuated laboratory.
Sounds were presented through headphones with a level of
approximately 75 dB SPL.
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TABLE 1 | (A) Demographic characteristics of the samples from the four studies we reanalyzed. (B) Key methodological characteristics of the tasks used in the four
studies we reanalyzed.

A

Older Young

n F/M M age (SD) n F/M M age (SD)

Participants characteristics

Andrés et al., 2006 22 6/16 67.95 (8.88) 22 7/15 22.26 (3.73)

Parmentier and Andrés, 2010 20 6/14 68.6 (9.05) 20 8/12 21.75 (3.28)

Leiva et al., 2015b 22 7/15 63.86 (5.61) 22 3/19 21.64 (4.51)

Leiva et al., 2016 32 8/24 64.17 (5.58) 44 11/33 20.66 (3.67)

Overall 96 69/27 67.11 (8.38) 108 79/29 21.62 (3.68)

B

Type of sound

Study Task N test trials Proportion
unexpected

sound

Standard Unexpected Sounds’
duration

(ms)

Sound to
target

interval (ms)

Target
duration

(ms)

Trial to trial
interval (ms)

Tasks characteristics

Andrés et al.,
2006

Visual digit
categorization

1,200 0.1 600 Hz
sinewave tone

60
environmental
sounds

200 100 200 1,500

Parmentier and
Andrés, 2010

Visual digit
categorization

1,200 0.1 600 Hz
sinewave tone

60
environmental
sounds

200 100 200 1,500

Leiva et al.,
2015b

Visual digit
categorization

1,440 0.2 600 Hz
sinewave tone

White noise 150 150 400 2,200

Leiva et al.,
2016

Left/right
categorization
of cartoon dog

480 0.3 600 Hz
sinewave tone

White noise 150 100 200 2,950

DATA ANALYSIS

The analysis was twofold. First, to test for the age-related
variation in distraction while controlling for performance in the
standard condition, we reanalyzed the data from four studies
(Andrés et al., 2006; Parmentier and Andrés, 2010; Leiva et al.,
2015b, 2016) using a proportional measure of distraction (PMD).
While our primary interest lied in the analysis of RT, we
also implemented this metric for the proportion of correct
responses (PC) for completeness. This measure simply consisted
in calculating the ratio between distraction (difference between
the standard and unexpected conditions) and performance in
the standard condition such that positive PMD values can be
interpreted as a proportional detrimental impact of unexpected
sounds on performance:

PMDRT =
(RTunexpected − RTstandard)

RTstandard

PMDPC =
(PCstandard − PCunexpected)

PCstandard

Since Shapiro-Wilk and Levene tests carried out on PMD for
RT and proportions of correct responses in each study revealed
numerous deviations from normality (which were not solved by
log-transforming the data) and homoscedasticity, we used the

non-parametric Mann-Whitney’s statistic. Effect size is reported
as the rank-biserial correlation (rB). For each comparison, we
also report the Bayes Factor (BF10) to assess the credibility of
the experimental hypothesis relative to that of the null hypothesis
given the data. Values below 1/3 or >3 are regarded as moderate
or substantial support for the null and experimental hypotheses,
respectively, while values below 1/10 and 10 are regarded as
strong evidence (Jeffreys, 1961; Lee and Wagenmakers, 2013;
Dienes, 2014; Quintana and Williams, 2018). Bayes factors were
computed using 1,000 iterations. The analysis was conducted
using JASP (JASP Team, 2019), using the default normal prior
(mean of zero, standard deviation of 0.707). In these analyses, the
a priori experimental hypothesis was that distraction is greater in
older than in young adults. For confirmation and examination of
the coherence of the pattern of results across the four studies, we
also conducted a 4 (Study)× 2 (Age Group) Bayesian Analysis of
variance (BANOVA) on PMDPC and PMDRT . Plots were created
using the ggstatsplot (Patil, 2021) and ggplot2 (Wickham, 2016)
packages in R (R Core Team, 2021).

Next, we analyzed the complete set of data using Bayesian
estimation (Kruschke, 2013, 2015) to provide credible parameters
estimates about the difference in PMD between young and older
adults (Kruschke, 2013, 2015). This analysis was carried in R
(R Core Team, 2021) using the BEST package (Kruschke and
Meredith, 2018). Bayesian estimation takes a different approach
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TABLE 2 | (A) Statistical effect of aging on distraction in each study (asterisks highlight significant effects). (B) Results of the Bayesian ANOVAs on response accuracy
and response times.

A

Study M young (SD) M older (SD) Older - Young W p rB 95% CI rB BF10

PMDPC

Andrés et al., 2006 0.004 (0.038) 0.031 (0.061) 0.027 305 0.072 0.260 [−0.023,∞] 1.920

Parmentier and Andrés, 2010 −0.001 (0.031) 0.027 (0.056) 0.028 265 0.040* 0.325 [0.033,∞] 3.023*

Leiva et al., 2015b 4.863 × 10−4 (0.045) 4.343 × 10−4 (0.043) −5.2 × 10−5 255 0.385 0.054 [−0.232,∞] 0.328

Leiva et al., 2016 −0.007 (0.017) 0.012 (0.040) 0.019 889 0.024* 0.263 [0.048,∞] 4.681*

PMDRT

Andrés et al., 2006 0.036 (0.035) 0.083 (0.067) 0.047 357 0.003* 0.475 [0.223,∞] 18.116*

Parmentier and Andrés, 2010 0.028 (0.033) 0.080 (0.056) 0.052 326 < 0.001* 0.630 [0.411,∞] 33.999*

Leiva et al., 2015b 0.022 (0.044) 0.059 (0.058) 0.037 331 0.018* 0.368 [0.096,∞] 3.601*

Leiva et al., 2016 0.030 (0.039) 0.054 (0.047) 0.024 931 0.008* 0.322 [0.112,∞] 3.455*

B

Models BF10 Error % Best M/M

PMDPC

Age Group 25.149 1.420E-07 Best

Study + Age Group 7.371 1.416 0.293

Study + Age Group + Study × Age Group 1.243 1.939 0.049

Study 0.346 1.636E-05 0.014

PMDRT

Age Group 236700 <0.001 Best

Study + Age Group 48004.861 1.405 0.203

Study + Age Group + Study × Age Group 7308.905 1.930 <0.001

Study 0.236 0.236 <0.001

BF values for the best model are high-lighted in bold.

to null hypothesis significance testing by calculating credible
ranges of values for model parameters in the light of the empirical
data (Kruschke, 2013; Kruschke and Liddell, 2018). The two
key posterior parameters of interest were the point-estimate for
the mean difference in PMD between the age groups and its
effect size. For completeness, we also report the other posterior
parameter (estimated standard deviation and normality of the
difference). We used BEST’s minimally informative default priors
(“so that the prior has minimal influence on the estimation,
and the data dominate the Bayesian inference,” Kruschke, 2013
p. 576). Bayesian estimation reallocates credibility to the model’s
parameter in a way that best accommodates the empirical
data. The posterior distribution’s parameters were approximated
using the Markov Chain Monte Carlo (MCMC) method, which
generates a large sample of credible parameter values from the
posterior distribution (using BEST’s default size for this sample,
or chain length, of 100,000). Credible intervals were calculated in
the form of 95% HDI.

RESULTS

Re-analysis of Past Studies Using PMD
For clarity, we present the full list of statistical results for our
first analysis in Table 2 (Panel A). As visible from these results,
both non-parametric and Bayesian statistics supported our
experimental hypothesis. Deviance distraction was significantly

and credibly greater in older adults in all four studies for
RT, and in two studies for the PC (while in the remaining
two, the results were inconclusive). As visible in Table 2
(Panel B), the BANOVAs carried out on the combined sets
of data provided strong (PMDPC) and extreme (PMDRT)
evidence of the effect of aging on our proportional measures
of distraction. While the evidence favored the conclusion
that PMDPC did not vary across studies, the BF10 of 0.346
was inconclusive. In contrast, extreme evidence supported the
absence of variation of PMDRT across studies (BF10 = 0.003).
Importantly, the results supported the absence of interaction
between Study and Age Group: BF10 = 1.243/7.371 = 0.169, and
BF10 = 7308.905/48004.861 = 0.152, for PMDPC and PDMRT ,
respectively. The PMDPC and PMDRT values for participants
in each age group are presented in Figure 1. The results can
be summarized as follows. The strength of the evidence of the
impact of aging on PMDPC varied across individual studies but
was strong in the combined data set. More importantly, the data
clearly supported the hypothesis that aging increases PMDRT ,
with moderate to strong evidence in individual studies, and
extreme evidence in the combined data set.

Bayesian Estimation of Age-Related
Difference in Deviance Distraction
Bayesian estimation was carried out on PMDRT and PMDPC
to generate credible posterior parameters given our data. All
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FIGURE 1 | Violin plots of the proportional distraction effect for young and older adults. Colored dots represent individual data point. Black dots indicate group
means.

Gelman-Rubin diagnostic values were equal to 1 (confirming
that convergence was reached), and the effective sample sizes
varied between 18,579 and 62,535 (i.e., superior to 10,000, the
recommended value for accurate and stable estimates of the 95%
HDI bounds, Kruschke, 2015).

We report the complete set of results for every parameter in
Table 3 and focus here on the key relevant findings. For PMDRT ,
the point estimate for the mean difference between young and
older adults was 0.035 (95% HDI: 0.022–0.076), indicating that
unexpected sounds produce a proportional increase of RT that is
3.5% greater in older than in young adults. The point estimate
of the mean effect size for this difference was 0.8 (95% HDI:

0.496–1.114), a large effect (Cohen, 1988; Lakens, 2013). Of
importance, neither of the 95% HDIs included the zero value. It
is worth pointing out that this 95% HDI does not overlap with
a Region Of Practical Equivalence (ROPE) corresponding to a
small effect size (d = 0.2) centered around zero (Kruschke, 2011,
2018). Hence, we can be confident that the effect of aging on
PMDRT is not equivalent to a null or a small effect.

The analysis of PMDPC revealed results in the same direction
as PMDRT . The point estimate for the mean difference between
the two age groups was 0.010, suggesting that, relative to their
performance in the standard condition, older adults see their PC
decrease by 1% more than young adults (95% HDI: 0.002–0.019).
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TABLE 3 | Posterior parameters of the Bayesian Estimation of the effect of
aging on distraction.

Posterior parameter Mean 95% HDI lower 95% HDI upper

PMDPC

µOlder 0.005 −0.002 0.012

µYoung −0.005 −0.010 0.000

σOlder 0.026 0.019 0.034

σYoung 0.022 0.017 0.027

Older - Young

µ 0.010 0.002 0.019

σ 0.004 −0.003 0.012

Normality (log10ν) 0.441 0.240 0.643

Effect size 0.419 0.074 0.760

PMDRT

µOlder 0.065 0.053 0.076

µYoung 0.029 0.022 0.037

σOlder 0.051 0.040 0.062

σYoung 0.036 0.030 0.042

Older - Young

µ 0.035 0.022 0.048

σ 0.015 0.004 0.026

Normality (log10ν) 1.183 0.621 1.837

Effect size 0.800 0.496 1.114

While this difference is small in absolute terms, its statistical
effect size estimate was small to medium (0.419). The percentage
overlap between the 95% HDI (0.074–0.760) and ROPE (as
defined as above) was 3.214, suggesting that the probability that
the effect size estimate is equivalent to a small effect is 0.032.

Supplementary Analysis: Effect of Aging
on Cross-Modal vs. Uni-Modal Deviance
Distraction
The evidence above shows that aging increases deviance
distraction in cross-modal tasks. As we pointed out earlier, past
work using uni-modal auditory tasks contrasts with cross-modal
studies in reporting no effect of age on deviance distraction.
However, these conclusions were based on absolute differences
in RT and did not consider age-related variations in response
speed. Hence, as a supplementary analysis, we sought to confirm
the selective effect of aging on deviance distraction by using
PMDRT to compare cross-modal and uni-modal (auditory)
tasks. We included data from three of our cross-modal oddball
studies (Andrés et al., 2006; Parmentier and Andrés, 2010;
Leiva et al., 2016) and two past studies using an auditory
uni-modal task (Leiva et al., 2015a,b). The uni-modal tasks of
Leiva et al. (2015b) was identical to its cross-modal version but
involved the parity categorization of an auditory (as opposed
to a visual) digit. Note that because the study by Leiva et al.
(2015b) compared cross-modal and uni-modal tasks within-
participants, we could not include both in our analysis and
opted to include the uni-modal data set. From the study by
Leiva et al. (2015a), we used the data from the auditory task
in which 84 participants (42 young adults, Mage = 20.9, and 42
older adults, Mage = 62.8) performed a binary tone duration
judgment task in which 88% of trials involved a standard

1,000 Hz tone, and the remaining 12% involved a deviant tone.
The sample included in our analysis comprised of 150 young
and 138 older adults. We conducted a 2 (Age group) × 2
(task type: cross- vs. uni-modal) BANOVA on PMDRT . The
results revealed strong evidence for the main effects of age
group (BF10 = 12.087) and task type (BF10 = 13.927). More
importantly, extreme support was found for the interaction
between these factors (BF10 = 2454.720). Bayesian Mann-
Whitney tests were carried out to analyze this interaction
(under the hypothesis of greater distraction in older than in
young adults). In line with the results reported in the sections
above, older adults exhibited greater PMDRT than young adults
(W = 4,601, BF10 = 1127.591) in cross-modal tasks. In contrast,
we found strong support for the absence of a difference between
the two age groups in the uni-modal tasks (W = 1,714,
BF10 = 0.090).

DISCUSSION

Past research suggested that older adults exhibit greater
distraction by unexpected sounds than young adults in visual
tasks, an effect particularly salient in RT (Andrés et al., 2006;
Parmentier and Andrés, 2010; Leiva et al., 2015b, 2016). However,
these studies did not control for age-related variations in response
speed as a potential explanatory factor (Shimamura, 1994;
Salthouse and Meinz, 1995; Salthouse, 1996). We addressed
that issue by revisiting these studies using a PMD. The results
from the analysis of RT were unambiguous: older adults
exhibited greater deviance distraction than young adults when
controlling for baseline response speed (in each individual
study and in the combined data set). Bayesian estimation
revealed a proportional lengthening of RT by unexpected
sounds that was about twice as large in older than in young
adults (0.069 vs. 0.029, respectively, a statistically large effect).
The analysis of the PC produced similar results, though the
effect was statistically smaller overall and somewhat variable
across studies. Overall, for both dependent measures, aging
increased distraction, thereby ruling out a speed-accuracy trade-
off. Finally, an additional analysis confirmed the selective effect
of aging on distraction in cross-modal as opposed to uni-
modal tasks.

The results summarized above bolster the view that aging is
associated with a greater sensitivity to distraction by unexpected
sounds when participants are performing a visual task. This
contrasts with the absence of age-related difference in uni-
modal oddball studies (Mager et al., 2005; Horváth et al.,
2009; Getzmann et al., 2013; Leiva et al., 2015a,b). In these
studies, unexpected sounds yielded distraction to similar levels
in young and older adults. While the two sets of studies yield
divergent findings regarding the impact of aging on distraction,
they converge in dismissing general slowing as a key variable.
Indeed, uni-modal oddball tasks generated similar results despite
diverging with respect to overall age-related differences in
response latencies: Two studies observed overall slower responses
in older than in young adults (Leiva et al., 2015b), while three
did not (Mager et al., 2005; Horváth et al., 2009; Getzmann et al.,
2013). Though difficult to pinpoint the factor(s) underpinning
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this discrepancy, it may relate to the more demanding nature of
the task used in the first two (parity judgment applied to a set
of six possible stimuli) compared to the other three (short/long
duration judgment). In any case, the fact that all five studies
reported equivalent levels of distraction in the two age groups
strongly suggests that distraction was not a function of baseline
response speed. Hence, our results and the findings from uni-
modal studies converge in distinguishing deviance distraction
from age-related slowing.

One possible explanation for the selective effect of aging on
distraction observed in cross-modal tasks may relate to the nature
of the attentional shift entailed by unexpected sounds. Parmentier
et al. (2008) suggested that deviance distraction may in part
originate from a shift of attention between sensory modalities.
That is, the unexpected sound, by virtue of violating sensory
predictions, triggers a shift of attention from the visual modality
to the auditory modality, and back to the visual modality when
the target stimulus is presented. The notion of a time penalty
associated with cross-modal attention shifts is consistent with
evidence that shifting attention between two stimuli takes longer
when these are presented in distinct sensory modalities vs. in the
same modality (Turatto et al., 2002, 2004; Shomstein and Yantis,
2004; Rodway, 2005; Miles et al., 2011). Such findings support
the reasonable assumption that cross-modal shifts of attention
may summon greater control than within-modality shifts and
invoke specific higher-levels mechanisms. Furthermore, evidence
also indicates that while within-modality shifts appear to mostly
mobilize primary sensory cortices, cross-modal shifts involve
more extensive frontal networks (Eimer et al., 2001; Talsma
et al., 2008; Salmi et al., 2009). For example, some authors
have proposed that frontal alpha oscillations reflect the origin
of intersensory re-orienting (Misselhorn et al., 2019). Generally,
this view fits well with the hierarchical organization of control
in the prefrontal cortex (Koechlin et al., 2003; Koechlin and
Summerfield, 2007). Of interest, aging is associated with a
proportionally greater neural deterioration in prefrontal regions
(West, 1996; Raz, 2000) while posterior attentional networks
are relatively spared (Greenwood et al., 1993; Hartley, 1993).
Hence, we posit that the locus of the age difference in distraction
by unexpected sounds in visual oddball tasks may lie in the
selective alteration of frontal networks underpinning the control
of attention across sensory modalities. The proposition that the
effect of aging unravels in relatively late stages of processing,
after the initial detection of change, fits well with EEG findings
indicating that aging does not modulate early markers of the
orienting response in active tasks (Berti et al., 2017).

CONCLUSION

In conclusion, our study provided evidence that distraction
by unexpected sounds in visual tasks is greater in older than
in young adults, and that this effect cannot be accounted by
variations in baseline performance between the two age groups.
The results of Bayesian estimation indicate that the proportional
lengthening of RT following an unexpected sound is about twice
as large for older than for young adults. Interpreted in a wider
context, our results point to differences in the mechanisms
underpinning cross-modal shifts of attention as the possible locus
of the age-related effect.
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