
rsif.royalsocietypublishing.org
Research
Cite this article: Grun C, Werfel J, Zhang DY,

Yin P. 2015 DyNAMiC Workbench: an

integrated development environment for

dynamic DNA nanotechnology. J. R. Soc.

Interface 12: 20150580.

http://dx.doi.org/10.1098/rsif.2015.0580
Received: 30 June 2015

Accepted: 21 August 2015
Subject Areas:
nanotechnology, computational biology,

synthetic biology

Keywords:
DNA nanotechnology, molecular programming,

self-assembly, software, sequence design,

integrated development environment
Authors for correspondence:
Casey Grun

e-mail: casey.grun@wyss.harvard.edu

Peng Yin

e-mail: py@hms.harvard.edu
†Present Address: Department of

Bioengineering, Rice University.

Electronic supplementary material is available

at http://dx.doi.org/10.1098/rsif.2015.0580 or

via http://rsif.royalsocietypublishing.org.

& 2015 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
DyNAMiC Workbench: an integrated
development environment for dynamic
DNA nanotechnology

Casey Grun1, Justin Werfel1, David Yu Zhang1,† and Peng Yin1,2

1Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
2Department of Systems Biology, Harvard Medical School, Boston, MA, USA

CG, 0000-0002-4563-6358

Dynamic DNA nanotechnology provides a promising avenue for implementing

sophisticated assembly processes, mechanical behaviours, sensing and compu-

tation at the nanoscale. However, design of these systems is complex and

error-prone, because the need to control the kinetic pathway of a system greatly

increases the number of design constraints and possible failure modes for the

system. Previous tools have automated some parts of the design workflow,

but an integrated solution is lacking. Here, we present software implementing a

three ‘tier’ design process: a high-level visual programming language is used to

describe systems, a molecular compiler builds a DNA implementation and

nucleotide sequences are generated and optimized. Additionally, our software

includes tools for analysing and ‘debugging’ the designs in silico, and for

importing/exporting designs to other commonly used software systems.

The software we present is built on many existing pieces of software, but is

integrated into a single package—accessible using a Web-based interface at

http://molecular-systems.net/workbench. We hope that the deep integration

between tools and the flexibility of this design process will lead to better exper-

imental results, fewer experimental design iterations and the development of

more complex DNA nanosystems.
1. Introduction
DNA has been demonstrated to be a robust and versatile substrate for engineering

static nanostructures [1,2] and dynamic nanodevices [3,4]. The specificity of

Watson–Crick base pairing [5,6], combined with recent improvements in thermo-

dynamic predictive models [7,8] and rapidly decreasing costs for commercial

oligonucleotide synthesis [9], have resulted in an explosion of research in DNA

nanotechnology [10], in which hybridization interactions (rather than enzymatic

processes) are primarily used to implement the desired molecular behaviour.

Recently, the field has progressed beyond primarily demonstrations of static equili-

brium structure formation to the design of dynamic systems with kinetically

controlled, non-equilibrium dynamics [4]—including molecular machines [11,12],

motors [13,14], walkers [15–17], amplifiers [16,18,19], self-assembly processes

[16,20], logic circuits [21,22] and other sophisticated computational devices [23,24].

Design of dynamic nucleic acid systems—both at the high level of abstraction

and at the low level of sequence design—requires consideration of a different set

of design parameters and metrics from the design of static DNA nanostructures.

Static structures are designed to adopt a single, minimum free energy (MFE) struc-

ture; dynamic systems additionally require design of a kinetic pathway—a series of

reactions. Disruption of any of these intended reactions or prevalence of unintended

‘side’ reactions can disturb the intended behaviour. For instance, poor kinetics of

individual reactions can lead to slow performance for a molecular calculation; unan-

ticipated ‘leak’ reactions can cause unexpected product formation; and side reactions

that produce undesired products can result in low yields of the intended product.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2015.0580&domain=pdf&date_stamp=2015-09-30
mailto:casey.grun@wyss.harvard.edu
mailto:py@hms.harvard.edu
http://dx.doi.org/10.1098/rsif.2015.0580
http://dx.doi.org/10.1098/rsif.2015.0580
http://rsif.royalsocietypublishing.org
http://rsif.royalsocietypublishing.org
http://orcid.org/
http://orcid.org/0000-0002-4563-6358
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

behaviour-tier design

Nodal enumeration segment-tier enumeration thermodynamic analysis

tier 1 tier 2 tier 3

te
st

n0
n1

n2 n3

n1

n0

n1
n0

n1
n2n0

n1
n2 n3

n0n1

n2
n3

n0 n1 n2

n3

n0 n1

n1 n2n2

n3

n0 n1

n3

segment-tier design

n0 n1 n2

n3

n2
1

7 6 5
4*

8*
9*

5*6*7*

sequence-tier design

T C T C C T
G

A
A T A T

G
G

G

A

T
T

TGTG
T

G
AGGAGAde

si
gn

automatic
translation

sequence
design

testedit

* *

*

(future work)

segmentbehaviour sequence(a) (b) (c)

(d) (e) (f)
testedit testedit

Figure 1. Tiers of abstraction and the overview of the design workflow. The design process occurs at three ‘tiers’ of decreasing abstraction: at the level of (1)
behavioural description, (2) segment-level complementarity design and (3) nucleotide sequences. The design workflow involves two forms of tools: (a – c) describe
tools for creating dynamic nucleic acid systems, while panels (d – f) describe tools for analysing and testing these systems in silico. Box (d) is future work, not yet
incorporated by DyNAMiC Workbench; asterisks denote tools that use previously described software. Images in all panels except (d,f) were generated automatically
by DyNAMiC Workbench. (a) Users begin by describing an abstract behaviour, using a formalism such as the Nodal language of Yin et al. [16] (future extensions may
incorporate alternative behavioural designers). A built-in compiler automatically generates a segment-level representation (when possible) of a system of nucleic acid
strands which implements the desired behaviour, through a systematic labelling of segments corresponding to the nodes and connections specified (see §3.1). (b) A
segment-tier design (specifying the identity and complementarity relationships between all segments in the system) can be either generated from the behavioural
designer or assembled directly by the user (see §3.2). (c) From a segment-level design, nucleotide sequences can be generated with one of a variety of sequence
design packages. DyNAMiC Workbench allows users to interact with and modify systems at all three levels (see §3.3). (d,e) Reaction enumerators identify all possible
reaction paths, highlighting possible undesired interactions. Enumeration, in principle, can be performed at the behavioural tier among behavioural species, or at the
segment tier among molecular species. The results of both enumerations should be comparable, but the segment tier enumeration may reveal unintended side-
reactions or kinetic traps not prescribed by the behavioural enumeration (see §3.4.1). (f) Base-tier sequences can be analysed using thermodynamic methods to
identify unintended secondary structure in monomers [25], as well as some unintended interactions between species (see §3.4.2).

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150580

2

These problems are amplified in more complex systems, since the

number of possible unintended interactions grows at least quad-

ratically with the number of species. Recent demonstrations of

nucleic acid logic circuits now exceed over 100 different molecu-

lar species [23,24], motivating the need for novel software to

assist the design of complex systems.

To describe the design process for a dynamic DNA system,

we propose a system of three different ‘tiers’ of abstraction

(figure 1). The first tier describes desired system behaviour,

using a set of high-level abstractions that represent molecular

species and their interactions (figure 1a). The second tier gives

a set of idealized DNA strands and interactions (in terms of

prescribed regions of Watson–Crick complementarities) that

implement the first-tier behavioural species (figure 1b). The

lowest tier gives specific sequences of nucleotides to implement

the prescribed complementarities among the second-tier species

(figure 1c). In principle, one may begin the design process at any

of the tiers and software should automatically translate to lower

tiers; similarly, computer-aided verification at any tier should be

possible. In practice, the first two tiers are traditionally designed

by hand, and the final ‘sequence design’ step uses one of a

variety of computational sequence optimization [26–30] and

verification [25,31–33] packages; that is, only sequence-tier

design and analysis is automated.

Recent software packages have made impressive advances

in automating and integrating various parts of this design
process. Visual DSD [34,35] has been used to automate the

‘segment-level’ (tier 2) design and analysis of systems contain-

ing hundreds of distinct species [25,34]. However, Visual DSD

currently does not support the design and enumeration of

branched junction structures (used in many demonstrations

of self-assembly [16] and molecular computation [21]), nor

does it support enumeration of certain reaction types, such

as four-way branch migration or branch migration with

remote toeholds [36,37]. Qian & Winfree [22,23] have pre-

sented a compiler for their ‘seesaw gate’ systems, which has

been used in demonstrations of sophisticated molecular com-

putation; however, this abstraction is built around a single

structural motif (the seesaw gate) and is therefore of limited

use for applications in self-assembly that require a wider var-

iety of structural features (e.g. hairpins, branched junctions,

etc.). The NUPACK software package [8,25,30] integrates ther-

modynamic design and evaluation of nucleotide sequences;

however, it does not currently provide a programming

language for tier 1 (behavioural) design, nor does it allow for

analysis or evaluation at the segment tier. Therefore, no current

package integrates a full-featured DNA programming

language with sequence designers, as well as analysis and

verification tools at the segment and sequence tiers. See

table 1 for a detailed comparison.

Here, we present DyNAMiC Workbench (the Dynamic

Nucleic Acid Mechanism Compiler), which provides a tightly

Table 1. Comparison of currently available software packages for dynamic DNA nanotechnology. 3, feature is implemented by this package; �, feature is not
implemented by this package; and 3*, feature is provided by an external package with which this package directly interfaces.

DyNAMiC
Workbencha DSD [34]a

Seesaw
Compiler [22]a

NUPACK
[25]a

Mfold
[38]a

Vienna
RNAfold [32]a

Multistrand
[39]a

implementation behavioural 3 3 3 � � � �
segment 3 3 3 3 � � �
sequence 3* 3 3 3 � 3 �

reaction

enumeration

behavioural � � � � � � �
segment 3* 3 � � � � �
sequence � � � � � � 3

kinetic

simulation

behavioural � � � � � � �
segment � 3 3* � � � �
sequence � � � � � � 3

thermodynamic

simulation

structure

prediction

3* � � 3 3 3 �

partition

function

3* � � 3 3 3 �

aPackage is available as an online Web service at the time of publication.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150580

3

integrated graphical user interface for all three tiers of design,

as well as automated enumeration and analysis of potential

interactions at the segment and sequence tiers. Users may

begin by designing an abstract behaviour for a dynamic

system and are assisted in translating that behaviour first to

segments, then to nucleotide sequences. In this way, the

design process is hierarchical, progressing through several

layers of abstraction towards the ultimate implementation.

However, the user may easily enter or exit the software at

any stage of the design process, perform analysis in silico
and make changes to the design based on the results of

those tests. In this way, the design process can be iterative.

Furthermore, DyNAMiC Workbench supports integration

with a number of commonly used software packages for each

tier, allowing the user to ‘mix-and-match’ different aspects of

preferred software. Finally, the system also includes a pluggable

framework for expansion and inclusion of new tools and inter-

faces—for instance, a kinetic simulation package could be easily

added. The software is deployed as a free Web service, availa-

ble at http://molecular-systems.net/workbench, providing

a cross-platform graphical interface without requiring installa-

tion of new software; a downloadable version is also available

(at the same URL) to support local installations if preferred.

We believe that the inherent flexibility in this design process,

combined with the deep integration between the various

tools, will help eventually enable fully automated design of

dynamic systems. Expanded and improved in silico design

and analysis will allow better experimental results with fewer

experimental design iterations.
2. Designing a system with DyNAMiC Workbench
To illustrate the various features of DyNAMiC Workbench

and the tiers of a typical design process for a dynamic nucleic

acid system, we first present a sketch of the process for

designing a triggered, catalytic three-arm branched junction,

which has been experimentally demonstrated in [16]. We also
provide four additional design examples in the electronic

supplementary material.

We adapt the ‘Nodal’ formalism [16] to describe the design

procedure, following the three-tiered process outlined above.

The terminology and abstractions of the Nodal formalism are

summarized in figure 2. This formalism maps abstract behav-

ioural units (‘node types’, figure 3a) to concrete molecular

implementations (‘molecule types’, figure 3b)—DNA strands

or complexes of strands. Once a node type has been defined,

many ‘Nodal species’—instances of the node type—may be

created. The process that we wish to demonstrate—triggered

catalytic three-arm junction formation—is shown in figure 3c;

we will implement this process by instantiating node types

and composing Nodal species (figure 3d). The Nodal language

allows a complicated behavioural process to be described by

composing small, reusable modules, much like functions in a

programming language (tier 1). DyNAMiC Workbench can

then use the underlying node type definitions to automati-

cally generate a complete segment-level (tier 2) molecular

implementation (figure 3e). Ultimately, sequences are designed

for each of these molecular species (tier 3), and many DNA

molecules are produced for each species by commercial

oligonucleotide synthesis (figure 3f).
The connectivity of our target structure (the three-arm

junction)—along with our prescription that the assembly pro-

cess be stepwise, triggered and catalytic (see below)—suggests a

particular architecture of nodes. DyNAMiC Workbench cur-

rently provides a pool of approximately 20 pre-defined

node types, based on previous work [16,20,40] (electronic

supplementary material, figure S4); many of these node

types have tested DNA implementations. For this example,

we choose hairpins for the monomers and a linear strand

without secondary structure for the initiator (node types

m0 and m1). ‘Ports’ on the nodes represent ‘domains’ of

the underlying molecular implementation (see figure 2 for

terminology); the pattern of desired interactions between

domains of the molecular species is encoded in the connec-

tions between ports on the nodes. Each domain in turn is

http://molecular-systems.net/workbench
http://molecular-systems.net/workbench

(a) (b)

sequencesegment

domainnode

A

BA B

n1

(c) (d)

4

3 2 1
5*

6*
7*

1*2*3*

3 2 1
5*

6*

7*
1*2*3*

4

Figure 2. Abstractions and their definitions. (a) A strand or set of strands with a defined behaviour may be represented as a ‘node’, as described by Yin et al. [16].
In a node, domains are drawn as coloured ‘ports’. A triangle represents an ‘input port’, which can trigger opening of a circular ‘output port’. Output ports may in
turn bind to downstream input ports. (b) Nucleic acid strands may be drawn as lines; behaviourally relevant portions of the molecule are called ‘domains’ and
represented by capital letters; we have highlighted an input domain A in orange and an output domain B in blue—corresponding to the ports on the node pictured
in panel (a). (c) ‘Segments’ represent contiguous regions of several nucleotides that act as discrete units of complementarity and are labelled by numbers or
lowercase letters. For instance, segment 4 (highlighted in yellow in panel (d)) has the sequence ‘CAATCCAA’; each domain can comprise multiple segments.
(d) Bubbles represent individual nucleotides; hashes indicate base pairing, and an arrow indicates the 30 end of a strand.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150580

4

subdivided into several ‘segments’—continuous regions of

bases that are designed to act as discrete units. Figure 3g
shows the intended execution of the Nodal reaction graph

presented in figure 3d.

The target structure in this example, a three-arm junction

(figure 3c), is designed to be formed in a kinetically guided

pathway out of three monomer species and an initiator

species (figure 3e). In the absence of the initiator, the mono-

mers are to be metastable; this is indicated by drawing

their output ports in a closed state (filled circles). Since

the monomers are metastable, the initiator is required for

target structure formation (‘triggered’). The Nodal language

allows for two types of reactions: ‘assembly’ reactions occur

between an open input and an open output port, while ‘dis-

assembly’ reactions occur between an open output and a

closed input. In the intended reaction pathway (figure 3g),

the initiator n0 reacts with node n1 via an assembly reaction;

this binding causes the output port on n1 (circle) to be

switched from closed to open, reconfiguring n1 and allowing

it to react with node n2 via another assembly reaction. The

sequential opening of ports allows the assembly process for a

single species of the target to proceed via several steps in a pre-

scribed order (‘stepwise’). Once reacted with n2, a reconfigured

n3 can displace the initiator n0 through a disassembly reaction;

this reaction frees the initiator to react with another copy of

node n1, implementing multiple turnovers (‘catalytic’).

This Nodal reaction pathway can be compiled to the more

detailed reaction mechanism—shown at the segment level in

figure 3h (compare each step to the Nodal mechanism in

figure 3g). The initiator n0 first binds to hairpin n1 via the inter-

action between the ‘toehold’ segments 4 and 4* (where x* is the

Watson–Crick complement of segment x). After n1 and n0 are

thus co-localized, the 3, 2 and 1 segments on n0 can displace

their analogues—hybridizing to the 3*, 2* and 1* segments—

via a process known as ‘toehold-mediated branch migration’

[41–44]. At the conclusion of branch migration, monomer n1

is reconfigured so that the toehold segment 1* is no longer

sequestered in the duplex and thus becomes available for a

similar downstream reaction with hairpin n2. This process

continues similarly for the remaining species.
The Nodal design can be easily constructed by the user via

a drag-and-drop graphical interface. After completing the

system design using the tier 1 Nodal formalism, the user invokes

the DyNAMiC Workbench compiler, which automatically gen-

erates a valid set of tier 2 segment labels in order to implement

the behaviour. The software can also identify potential inter-

actions between molecules due to complementary segment

interactions (‘reaction enumeration’)—including spurious reac-

tions that may necessitate a redesign (§3.4.1). The reaction

enumerator in DyNAMiC Workbench was used to generate

the mechanism shown in figure 3h. The segment-tier (tier 2)

descriptions capture all relevant structures and interactions of

the system, assuming that all non-complementary segments

have effectively orthogonal sequences (so as to not significantly

interact with one another).

In reality, some degree of spurious interaction between

segments is unavoidable, since real sequences are not perfectly

orthogonal; careful sequence design is needed in order for the

system to implement the behaviour as intended—both ensur-

ing desired interactions are favourable and minimizing

undesired side reactions that may occur between segments—

both within or across different molecules [27]. For this step,

DyNAMiC Workbench converts the segments generated in

the previous tier into poly-N sequences of the proper lengths.

The poly-N sequences are then mutated into a set of non-

interacting sequences (a tier 3 design) using one of several

existing software tools: Domain Design (DD) [29], NUPACK

[25,30] or Multisubjective [45] (§3.3).

Finally, DyNAMiC Workbench interfaces with tools

[25,32,38] to perform thermodynamic calculations as heuristic

tests to assess the quality of the final sequences. For instance,

we may compute the MFE structures of each of the strands or

complexes in our ensemble to verify that they adopt the

intended secondary structures in their monomeric form.

Additionally, DyNAMiC Workbench can be instructed to

look for strong pairwise interactions between species which

are intended to be non-interacting. Once the user is satisfied

that the sequences will implement the intended comple-

mentarity scheme, DyNAMiC Workbench can export the

sequences of all relevant DNA strands; these sequences can

manual
definition

automatic
translation

molecule type

molecular species

(a) (b)

(f)(e)(d)

DNA strands

A

B

4
3 2 1

5*

6*
7*

1*2*3*

n0 1* 2*

3*4*

n1
4

3 2 1 5*
6*

7*
1*2*3*

n2
1

7 6 5 4*
8*

9*
5*6*7*

n3
5

9 8 4 1*
2*

3*
4*8*9*

(h)

(g)

node type

Nodal species

n0 n1 n2

n3

n0 n1 n2

n3

n0 n1 n2

n3

n0 n1 n2

n3

n0 n1 n2

n3

n0 n1 n2

n3

n0 n1 n2

n3

n0 n1

n2 n3

4*

4

3*

2*
3 2 1

1* n1
n2 n3

n0

n1

n2

n3

n0
n1
n0 4*

4

3*
2*

3 2 1

1* n1

n0 4*
4

3*2*
3 2 5*

6*

n2
5671 n3

1
1*

7*
1*

n3 4895

n1
n2n0 5 6

5*6*7*1*
7 1

5*
9*

8*
4*

6*
5

7*

A B

strand
synthesis

(c)

sequence
design

1 2 3 4

1 2 3 4

2*
3*

Figure 3. Design example. The Nodal formalism [16] maps (a) simple behavioural units (nodes) to (b) molecular architectures. Commonly used molecular motifs, or
‘molecule types’, may be expressed as node types by describing the primary and secondary structure of the molecule type and then assigning functional roles
(e.g. input or output) to the molecule’s domains. (c) Our target process is the conversion of a set of metastable hairpins into a three-arm junction, with a
single-stranded initiator serving as a trigger. (d) Behavioural description of our catalytic three-arm branched junction, described by composing behavioural
nodes. Once a node type has been defined, multiple Nodal species with the given node type may be instantiated and connected together. Each species of a
given type will have the same basic structure, but will correspond to a distinct molecular species with a unique sequence identity. Connections between
Nodal species (arrows) represent desired behavioural interactions between their domains. (e) These behavioural interactions also thus imply Watson – Crick com-
plementarity relationships between the domains. DyNAMiC Workbench can use the node type definition to automatically map a set of Nodal species to a set of
molecular species whose sequence complementarity relationships implement the intended behavioural interactions. This panel shows the segment-level represen-
tation of the hairpin monomer and initiator species which will make up our system. (f) Sequences may be designed to implement the molecular species, and DNA
molecules may be produced by commercial oligonucleotide synthesis. (g) Intended ‘execution’ of the Nodal complementarity graph. (h) Segment-level enumeration
of possible reactions between four starting complexes. Short, single-stranded regions at the hairpin termini serve as nucleation sites—‘toeholds’ to prime branch
migration reactions. The opening of the hairpin by branch migration exposes new toeholds, implementing the cascade.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150580

5

then be directly provided to a commercial supplier of

oligonucleotides for synthesis.
3. Methods and implementation
We have developed and unified graphical tools for designing

and analysing systems at the three tiers of abstraction. Figure 1

describes the various tools we have implemented and/or inte-

grated, and several tools that could be implemented in the

future, as well as the intended workflow for a user developing

a system with DyNAMiC Workbench. This section describes

the input to, computation performed by, and output from

each of these tools in detail, as well as discussing important fea-

tures of the tools and their interfaces. Figure 4 shows screenshots

of various tools.
3.1. Tier 1: behavioural/Nodal design
As described above, the Nodal formalism maps abstract

behavioural units (node types) to known molecular implemen-

tations. The input to the Nodal compiler is a set of instances
(Nodal species) of these node types, along with a prescribed

connectivity between the ports of Nodal species. Input may

be constructed by a ‘drag-and-drop’ graphical interface

(figure 4a and electronic supplementary material, figure S1),

or by describing the system using a text-based language

called DyNAML (the Dynamic Nucleic Acid Markup

Language) [46]. The hairpin monomers and the single-stranded

initiator described above (§2) are two examples of molecule

types. In the example of the previous section, there were

three distinct ‘species’ of the hairpin monomer molecule

type. Like the three distinct hairpin monomers, each corre-

sponding Nodal species will have a unique identity, but will

behaviour(a) (b) (c)

(d)

tier 1 tier 2 tier 3
sequence

te
st

de
si

gn

segment

1

2

3

4

5

6

Figure 4. DyNAMiC Workbench screenshots. (High-resolution image—view PDF for details.) (a) Nodal (tier 1) design interface. Systems are composed by dragging-
and-dropping nodes from the palette on the left 1, then connecting nodes in the centre panel 2. The right panel shows a preview of the molecular implementation
3. See electronic supplementary material, figure S1, for details. (b) Segment-level (tier 2) design interface. Centre panel shows secondary structure view of each
complex in the system 4. Lower panel lists sequences and composition of strands in the system 5. Right panel shows name and sequence of each distinct segment in
the system 6. See electronic supplementary material, figure S2, for details. (c) Multisubjective sequence (tier 3) design interface. Similar to the tier 2 design inter-
face, different panels show complexes, strands and segments. The secondary structure view also highlights unintended interactions and shows bases flagged for
modification by the analysis. See electronic supplementary material, figure S3, for details and images of other sequence design interfaces. (d) Reaction enumerator
interface. Rectangular nodes represent complexes, joined by circular nodes representing reactions between intermediates. See figure 5 for details.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150580

6

share the same basic shape with the other species of the same

type. In the same way, generated molecular species of the

same type will have different sequences but similar dimensions

and secondary structures.

The Nodal compiler uses the definition of each node type

(the mapping to a known molecular implementation), as well

as the network of connections between Nodal species, to pro-

duce a segment-level representation of the system—such that

connections between nodes are implemented as appropriate

Watson–Crick complementarity relationships between seg-

ments. To do this, the Nodal compiler first creates an

instance of each molecular species (one for each Nodal species

in the system), then labels the segments in the molecular

species such that they satisfy the prescribed connections

between nodes. The compiler begins with an initiator node,

then traverses the network of connected nodes in a breadth-

first search until all segments are labelled. The compiler will

return an error if two complementarity statements are in con-

flict and cannot be fulfilled (e.g. if one connection requires a

segment be labelled 7 and another connection requires that it

be labelled 7*), or if a complementarity statement exists

between domains of incompatible shape (e.g. if a domain A,
comprising an 8-nt segment, is to be complementary to a

domain B which contains an 8-nt segment and a 2-nt segment).

The output from the Nodal compiler is a segment-level

(tier 2) representation of the system, encoded in the

DyNAML Intermediate Language (DIL) [46]. This represen-

tation can be further edited by the user or converted to a

sequence-level (tier 3) representation.

The Nodal language and compiler are highly general—

rather than enforcing specific invariants on the form or structure

of the underlying molecular primitives, or supporting only

specific, pre-defined molecular motifs, our compiler allows

the inclusion of systems with arbitrary nucleic acid secon-

dary structures and behaviours. This flexibility is essential to

supporting the previously discussed hairpin motifs, as well

as more complex multi-stranded motifs (such as branched

junctions)—both of which are important for structure formation

applications. The language also allows arbitrary new motifs

to be developed. DyNAMiC Workbench contains a collection

of built-in node types with DNA implementations based

on published literature (electronic supplementary material,

figure S4), but also supports definition of new node types.

A new node type can be defined by the following procedure:

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150580

7
the segment-wise primary and secondary structure of the under-

lying molecule type are described, the molecule’s segments are

grouped into domains and the domains are assigned functional

roles such as ‘input’ and ‘output’. New node types can also be

defined from portions of existing systems. The ability to create

‘composite node types’ allows designed systems to be extended

and re-used, by easily abstracting portions of an existing system

into reusable components.

The software environment is built to be intuitive and easily

usable, but also to provide detailed information to advanced

users if necessary. A graphical interface (electronic supple-

mentary material, figure S1a) reduces the barrier to entry for

those unfamiliar with computer programming. Users construct

Nodal species by dragging and dropping from a palette of pre-

defined and custom node types. New node types with new

molecular implementations can be defined by using a graphical

interface (electronic supplementary material, figure S1b) or by

selecting components of a Nodal program and exposing rel-

evant domains on the nodes (electronic supplementary

material, figure S1). For example, to define a reusable three-

arm junction node type, the user could first define a three-arm

junction system by composing nodes, then ‘wrap’ that system

to define a new motif, exposing one input port. New node

types can also be defined using DyNAML. The interface pro-

vides real-time feedback, generating interactive previews of

the compiled molecular species and highlighting errors (as

described above).

The Nodal language, compiler and design interface are

described in detail in [46].
3.2. Tier 2: segment design
A tier 2 design comprises a description of each of the strands in

a system, a division of the strands into segments, a statement of

which segments should be complementary (or equal) to one

another and an intended initial secondary structure for each

of the strands. Essentially, a tier 2 design captures all of the

desired inter-molecular and intra-molecular interactions

between species in the system without assigning specific

nucleotide sequences to segments. If the user has described

their initial behavioural design using the Nodal formalism,

DyNAMiC Workbench can automatically generate a tier 2

design as discussed above. The user may also choose to

begin the design process at the segment tier and use DyNAMiC

Workbench primarily for sequence design (§3.3); in this case,

the user can input a tier 2 design directly using a graphi-

cal interface (figure 4b), or using a number of standard

text-based input formats.

DyNAMiC Workbench uses the DIL as a common inter-

mediate format for the tier 2 design; a graphical interface

allows the user to modify the design at this tier and to transfer

the design to various other tools (electronic supplementary

material, figure S2). The user may change the number

of nucleotides in existing segments, or impose specific con-

straints on the segments to be generated in tier 3. The user

may inspect and modify the primary and secondary structures

of the complexes in the system. The user may send the tier 2

design to in silico analysis tools, such as a segment-level reaction

enumerator (§3.4.1). Similarly, the tier 2 design may be trans-

ferred to a sequence designer (tier 3) to generate specific

nucleotide sequences that implement the design; this process

is described next.
3.3. Tier 3: sequence design
The input to each of the ‘sequence designers’ is a segment-level

(tier 2) representation of the system, along with any constraints

or restrictions specified by the user (for instance, the user may

want to hold the sequence of some particular segment fixed in

order to incorporate a restriction enzyme cutting site).

Sequence design is the process of generating sequences of

nucleotides to implement a particular set of complementarity

and orthogonality relationships between nucleic acid strands.

Several sequence design methodologies exist [27]. One

approach uses calculations of the partition function [47–50]

for an ensemble based on a detailed thermodynamic model

of nucleic acid secondary structure [51]. This method attempts

to maximize the probability that the ensemble adopts

the intended secondary structure(s), while minimizing the

chance that unintended interactions occur [27]. Recent work

has extended this paradigm to entire test tubes of complexes

[52]. It should be noted that these thermodynamic designers

do not explicitly consider kinetic behaviour and that sequences

with desirable thermodynamics may have undesirable kinetic

properties [29]. One objective of future work is to explicitly

incorporate kinetic models in sequence design.

Earlier methods focused on minimizing sub-sequence

repeats or maintaining a minimum edit distance between

non-complementary sequences in an ensemble—an approach

known as ‘sequence symmetry minimization’ [26,53]. Evol-

utions of this approach [28,29] combine sequence symmetry

minimization with some insights from thermodynamic

models, as well as various heuristic methods, to produce

sequences that meet additional criteria desirable for dyna-

mic systems. These recent heuristic approaches may have

favourable computational complexity compared to the thermo-

dynamic approaches (scaling quadratically with the number of

segments or strands, rather than cubically with the number

of bases), but the actual computation time depends on the

algorithm and the implementation. Finally, recent software

combines these two approaches by passing limited subsets of

a system between various designers—while independently

analysing sequences according to a variety of criteria (e.g.

attempting to explicitly eliminate secondary structure in key

‘toehold’ regions) [45].

Rather than selecting a single design methodology, our soft-

ware incorporates and provides interfaces to various software

tools that implement these different approaches (figure 4c and

electronic supplementary material, figure S3). First, we have

extended the core algorithms of Zhang’s DD package, which

performs heuristic, ‘segment-based sequence design’ [29], to

add flexible stopping conditions and increase sequence diver-

sity. Segment-based sequence design uses an approach similar

to sequence symmetry minimization to design individual

segments, which are then ‘threaded’ together to form full

strands. In DD, a scoring function/hill-climbing algorithm is

used to combine this technique with heuristic metrics of features

believed to be important for dynamic systems. We have also

developed a graphical interface to DD (electronic supplemen-

tary material, figure S3a). This interface allows the user to

graphically add, remove and edit segments, as well as to

thread these segments into strands. The individual segments

and the full design can be visualized in real time as DD

automatically tunes segments.

Additionally, we provide a direct interface to the NUPACK

multi-objective thermodynamic sequence design [25] Web

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150580

8
service (electronic supplementary material, figure S3b). Several

tools in our package generate input scripts for the NUPACK

designer, which can then be readily submitted to the

NUPACK Web server.

Finally, we have developed an interface to the ‘Multisubjec-

tive’ sequence design package [45] (electronic supplementary

material, figure S3c). Multisubjective uses several sequence

design packages (the NUPACK multi-objective designer and

DD) to eliminate unintended secondary structure from key

regions of strands in dynamic systems. This is an iterative

process—sequence design is initially performed with another

sequence designer (DD or NUPACK), then sequences are

evaluated by Multisubjective. Multisubjective identifies

unintended secondary structure, long regions of repeated

nucleotides, etc. and proposes mutations to the designed

sequences. The sequences, with mutations, are then re-

submitted to the primary sequence designer and the process

is repeated. Our interface allows the user to inspect the

analysis performed by Multisubjective and edit the suggested

modifications before redesigning.

We note briefly that, though our focus is on DNA, the design

considerations are essentially identical for RNA (though ther-

modynamic designers will use different sets of parameters

[51,54,55]). All three packages discussed also support the

design of RNA sequences. Design and evaluation of mixed

DNA/RNA sequences is outside the scope of current work.

The output of each of these sequence designers is a set of

nucleotide sequences for each of the complete strands in the

system. These sequences can be exported to a text file or a

spreadsheet, which can be used to order sequences from

a commercial oligonucleotide synthesis provider.

3.4. Analysis tools
3.4.1. Enumerator
Reaction enumeration is the process of predicting the net-

work of possible reactions between a given set of starting

complexes. For dynamic nucleic acid systems, a reaction

enumeration at the level of segments (rather than individual

nucleotides) can provide valuable insights into the behaviour

of the system (by culling much of the detail of a sequence-

level enumeration and focusing on larger interactions).

Results of a segment-level enumeration could also be used

to perform stochastic or analytical mass-action kinetic simu-

lations of the reaction networks in order to predict physical

behaviours of systems in vitro. Finally, segment-level reac-

tion enumeration could be used for formal verification of

system behaviour.

We have built an interface for performing segment-level

reaction enumeration [56] and visualizing the results

(figures 4d and 5). Our interface displays a graph of starting,

intermediate and resting/end-state complexes, connected by

the reactions between these complexes. The interface automati-

cally colours fast versus slow reactions, transient/short-lived

versus resting/long-lived complexes and initial complexes

versus enumerated complexes. The graph can be readily tra-

versed by zooming and panning, and the interface highlights

relevant substrates or reactions proximal to a complex of interest

(for instance, all reactions producing or consuming a given com-

plex can be highlighted). The graph can be re-arranged by

dragging and dropping to aid visualization. Each complex or

reaction can also be isolated and visualized as an interactive

secondary structure diagram.
The reaction enumerator is described in greater detail in

ref. [56], as well as in an upcoming publication.

3.4.2. Sequence-level analysis
Once system-level behaviour has been designed and analysed,

and nucleotide sequences have been generated, sequences

can be analysed to determine experimental suitability. A var-

iety of analyses can be performed. For small self-assembly

systems, the MFE structure and base pair probabilities of the

entire ensemble can be determined using a full physical

model which computes the partition function for the system

[49,50]. For larger dynamic systems (beyond tens of species

or hundreds of bases), this exhaustive computation becomes

impractical. However, the MFE structure and base pair prob-

abilities of individual strands or small subsets of strands may

still be examined to discover unintended secondary structure

within strands or spurious interactions between strands.

Many packages exist which can perform these compu-

tations. Our software integrates directly with several publicly

available Web services for sequence-level analysis. The

NUPACK Web server can perform full partition function and

pair probability calculation [25]. The Mfold and DINAmelt

Web servers provide several types of analysis [31,38]. The

TBI Vienna RNAfold Web server allows computation of

the MFE structure and partition function [32]. These software

tools provide a wide range of options and allow the use of var-

ious available thermodynamic parameter sets for both DNA

and RNA. DyNAMiC Workbench allows users to easily

submit any sequence displayed within the software to these

Web servers for analysis through a simple, unified interface.

3.5. Utilities
3.5.1. Structure visualization
DyNAMiC Workbench includes a flexible system for visualizing

arbitrary unpseudoknotted nucleic acid secondary structures,

which was used to generate all images of secondary structure

that appear in this paper. The basic visualization combines

a traditional tree-based ‘planar graph’ [57,58] layout with a

linear representation (allowing branched structures to be more

easily visualized) and an interactive colouring scheme. This visu-

alization is used throughout the software to display secondary

structures, and can also be accessed as a separate utility.

3.5.2. Sequence manipulation
Finally, a suite of utilities is provided in DyNAMiC Workbench

to perform various common transformations on nucleic acid

sequence strings. These range from Watson–Crick complemen-

tation to Levenshtein distance calculation [59] to threading

segments into strands. The user can also quickly perform

sequence-level thermodynamic analysis (through the interfaces

described above). Finally, sequences can be exported to/

imported from various standard formats (FASTA, CSV, etc.)

These utilities are available in context anywhere the user may

interact with sequences.
4. Architecture
The software is deployed as a Web service—software tools are

installed on a server and managed by a supervisor layer, which

is tightly connected to a Web server (figure 6). The Web server

exposes a rich client-side interface. The supervisor manages

(a)

(b)

1

2

3

4

6

5

7

Figure 5. Graphical interface to a reaction enumerator [56]. (High-resolution image—view PDF for details.) (a) The enumerator calculates a network of possible reactions 1
between the starting complexes, as well as the possible intermediate complexes formed. The user can pan and zoom throughout the network to view intermediate complexes.
Double-clicking a complex 2 or reaction 3 allows its structure to be inspected. The reaction network shown here is the execution of the three-arm junction system—a detailed
version of the schematic in figure 3h. (b) The user can hover over components of the graph to highlight connections to neighbouring components—in this case, arrows showing the
reactants 4, 5 of a bimolecular association reaction (red dot, 6) are highlighted in blue and purple, while the arrow showing the product 7 is highlighted in red. Additionally, the
graph layout can be re-arranged by dragging-and-dropping complexes, reactions and arrows. These interactive features allow larger reaction graphs to be explored and interpreted.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150580

9

client-side applications

Nodal DDenumerator Multisubjective analysis utils

Web client (InfoMachine)

HTTP

file/computation supervisor

Web server (Node Js)

computational tools

formal verifiers

Nodal Compiler enumerators

simulators

sequence designers utils

files

.nodal .dil .np .dd

.dynaml .sbml

.domain

.seq.enum

.json .svg .ms

remote
services

NUPACK

Mfold

TBI Vienna RNAfold

SBML Verifier

(a)

(b)

(c)

(d)

Figure 6. Software architecture. (a) The architecture supports a rich set of high-level, client-side applications. These applications are presented graphically to the
user. (b) A Web server exposes this interface and handles requests from the client-side applications, dispatching those requests to the computational tools and the
file system. (c) A wide variety of file formats are supported, and many conversions between related formats can be performed automatically. These files are then
consumed by computational tools, which may run on the same machine as the Web server/supervisor, or be located remotely (e.g. run on a cluster). (d) The Web
interface interacts directly with tools that are provided independently as Web services. For instance, the Web interface is capable of submitting requests directly to
various sequence analysis servers [25,31,32,38].

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150580

10
user files, converting between different formats and launching

computational tools. Examples of server-side computational

tools include the Nodal compiler and the segment-level enu-

merator. The core Web server and supervisor layers are

written in JavaScript and are executed by NodeJS—an evented,

asynchronous runtime and Web server based on Google’s V8

JavaScript engine.

A benefit of the client–server architecture is that server-

side tools can be written in any language, compiled or

deployed for a single architecture (that of the server), and

made available to clients running on many platforms through

the Web interface. Various server tools are currently written

in JavaScript, Python, C and Cþþ.

The client-side interface comprises a file manager and

many applications that provide graphical interfaces to the

underlying server tools. Examples of client-side applications

include the Nodal designer, DD and the enumerator interface.

The client-side interface is written in JavaScript and uses a var-

iety of open-source user interface toolkits. User registration

allows designs and other user files to be saved on the server

across multiple sessions.

5. Discussion
We have presented software that facilitates a design process that

is hierarchical and iterative. A user designs an abstract behaviour
which can be compiled into segments and then sequences. The

ability to easily enter the design process, to perform analysis,

and to make edits to the design at any tier of abstraction (behav-

ioural, segment or sequence) makes DyNAMiC Workbench an

effective platform for iterative design. The goal of this flexible

design process is to allow for fewer experimental design iter-

ations, by moving in silico much of the testing and ‘debugging’

that would have been done by costly and time-consuming lab-

oratory experiments. We have shown an example system

designed using the software, and we present four additional

designs in the electronic supplementary material—a larger,

six-arm junction (electronic supplementary material, §S2.1); a

bounded dendrimeric structure (electronic supplementary

material, §S2.2); an exponentially-amplifying catalytic circuit

(electronic supplementary material, §S2.3); and a self-assem-

bling three-dimensional tetrahedron (electronic supplementary

material, §S2.4). With these designs, we discuss in greater

detail the practical challenges of implementing large systems

using the software.

We have chosen to incorporate several existing tools for each

stage of the design process. For instance, when designing

sequences, users can easily choose one of the several tools dis-

cussed above, or can combine the results of several tools. The

availability and interoperability between multiple tools, even

for the same task, provides two benefits. First, different tools

may be better suited to perform a given task under different

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150580

11
circumstances; for instance, DD may be more useful for design

of large kinetic systems, while a thermodynamic designer such

as NUPACK may provide a more rigorous design for smaller

systems. Second, easy rapid switching between different tools

will allow for better comparison of tools’ performance and

improved characterization of tools’ strengths and weaknesses

for different tasks.

Our software is deployed as a publicly available Web

service. This design decision was motivated by several obser-

vations. First, installation of software (especially software

which requires the user to build an executable from source

code, or to use the command line) can be a significant barrier

to adoption. Second, use within the field of a variety of file for-

mats can require tedious manual juggling when working in

traditional command-line or desktop interfaces. Third, many

software tools in the field require significant computational

resources; providing these tools as a Web service allows users

to use or at least experiment with these tools without making

the significant upfront investment in computational resources.

The Web-based interface allows the user to access a graphical

interface to the service, using any device with a modern Web

browser. This makes the service truly cross-platform and also

obviates the need for the user to install any software or to main-

tain an updated version of the software—updates to both the

interface and the tools themselves can be centrally managed.

For users who manage their own research computing facilities,

the software is also available as a downloadable package.

The software has been designed with extensibility in mind;

while we have worked to integrate many existing tools, this is

only a starting point. Many excellent packages exist which have

not yet been integrated. To this end, the architecture allows

new server-side tools to be added and new client-side appli-

cations to be easily developed. We intend this software and

the associated service to serve as a ‘clearinghouse’ for dynamic

DNA/RNA nanotechnology software development and

deployment. We have taken several steps towards this goal:

first, the entire source code for the project is to be released

under the GNU General Public License. We hope this will

encourage users to modify and contribute to the software, in

addition to encouraging usage of the public Web server.

Second, we have developed and provided extensive documen-

tation of the application programming interface (API) for the

software, to facilitate development of third party extensions;

this API documentation is linked to from within DyNAMiC

Workbench’s built-in user manual, and can be accessed from

the main ‘Help’ page within the software.

As summarized in table 1, there are many possible features

that are yet to be implemented. Reaction enumeration could be
performed at the behavioural tier, so that the intended reaction

pathway can be compared directly to the expected reaction path-

way at the segment tier. The behavioural- and segment-tier

reaction enumerations could also be used to perform kinetic

simulations and determine the time-evolution of concentrations

of intermediate complexes. Electronic supplementary material,

figure S5, demonstrates some of these possible extensions.

In future work, we intend to improve capabilities for in silico
analysis, as well as provide higher level design tools for self-

assembling systems. Specifically, we intend to incorporate

various simulation tools based on the segment-level enumer-

ator—for instance, ODE-based or stochastic kinetic

simulators—as well as separate, base-level kinetic simulation

tools [39]. It would be interesting to develop tools for higher

level design of self-assembly processes; for instance, a two- or

three-dimensional ‘molecular canvas’, which would eventually

allow users to quickly and easily translate two-dimensional

images and three-dimensional structures to molecular imple-

mentations. Expanding individual tools to better handle more

diverse structural motifs (for instance, pseudoknots, which are

currently prohibited by the compiler and enumerator) and

reaction types is another area for future work. Finally, in the

Nodal compiler included with DyNAMiC Workbench, there

is a one-to-one mapping between pre-defined node types

and corresponding molecular implementations. However, this

need not be the case forevery behavioural designer. For instance,

a future behavioural designer could operate on abstract chemical

reaction networks, adopting one of several translation schemes

[60,61] to convert the behaviour into a molecular structure. We

anticipate many such future designers are possible.

Finally, an ongoing goal will also be to seek out and integrate

valuable existing tools; we hope this will be a collaborative effort

embraced by the entire community.
Authors’ contributions. C.G. wrote the software, with contributions from
J.W. and D.Y.Z. All authors contributed to the preparation of the
manuscript.

Funding. Office of Naval Research (ONR) Young Investigator Program
Award N000141110914, ONR grants N000141010827, N000141310593
and N000141410610, NIH Director’s New Innovator Award
1DP2OD007292, NSF Faculty Early Career Development Award
CCF1054898, NSF Expedition in Computing Award CCF1317291,
NSF grants CCF1162459 and Wyss Institute funding to P.Y.

Competing interests. We declare no competing interests.

Acknowledgements. The authors thank John Sadowski and Erik Winfree for
allowing integration and incorporation of their software; we also thank
them, as well as Niles Pierce, Radhika Nagpal, William Shih, and Jocelyn
Kishi for comments on the manuscript and testing of the software.
References
1. Seeman NC. 2010 Nanomaterials based
on DNA. Annu. Rev. Biochem. 79,
65 – 87. (doi:10.1146/annurev-biochem-060308-
102244)

2. Pinheiro AV, Han D, Shih WM, Yan H. 2011
Challenges and opportunities for structural DNA
nanotechnology. Nat. Nanotech. 6, 763 – 772.
(doi:10.1038/nnano.2011.187)

3. Krishnan Y, Simmel FC. 2011 Nucleic acid
based molecular devices. Angew. Chem.
Int. Ed. 50, 3124 – 3156. (doi:10.1002/anie.
200907223)

4. Zhang DY, Seelig G. 2011 Dynamic DNA
nanotechnology using strand-displacement
reactions. Nat. Chem. 3, 103 – 113. (doi:10.1038/
nchem.957)

5. SantaLucia J. 1998 A unified view of polymer,
dumbbell, and oligonucleotide DNA nearest-
neighbor thermodynamics. Proc. Natl Acad. Sci. USA
95, 1460 – 1465. (doi:10.1073/pnas.95.4.1460)
6. SantaLucia J, Hicks D. 2004 The thermodynamics of
DNA structural motifs. Annu. Rev. Biophys. Biomol.
Struct. 33, 415 – 440. (doi:10.1146/annurev.biophys.
32.110601.141800)

7. Mathews DH, Turner DH. 2006 Prediction of RNA
secondary structure by free energy minimization.
Curr. Opin. Struct. Biol. 16, 270 – 278. (doi:10.1016/
j.sbi.2006.05.010)

8. Dirks RM, Bois JS, Schaeffer JM, Winfree E, Pierce
NA. 2007 Thermodynamic analysis of interacting

http://dx.doi.org/10.1146/annurev-biochem-060308-102244
http://dx.doi.org/10.1146/annurev-biochem-060308-102244
http://dx.doi.org/10.1038/nnano.2011.187
http://dx.doi.org/10.1002/anie.200907223
http://dx.doi.org/10.1002/anie.200907223
http://dx.doi.org/10.1038/nchem.957
http://dx.doi.org/10.1038/nchem.957
http://dx.doi.org/10.1073/pnas.95.4.1460
http://dx.doi.org/10.1146/annurev.biophys.32.110601.141800
http://dx.doi.org/10.1146/annurev.biophys.32.110601.141800
http://dx.doi.org/10.1016/j.sbi.2006.05.010
http://dx.doi.org/10.1016/j.sbi.2006.05.010

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150580

12
nucleic acid strands. SIAM Rev. 49, 65 – 88. (doi:10.
1137/060651100)

9. Carlson R. 2009 The changing economics of DNA
synthesis. Nat. Biotechnol. 27, 1091 – 1094. (doi:10.
1038/nbt1209-1091)

10. Service RF. 2011 DNA nanotechnology grows up.
Science 332, 1140 – 1143. (doi:10.1126/science.332.
6034.1140)

11. Yurke B, Turberfield AJ, Mills AP, Simmel FC,
Neumann JL. 2000 A DNA-fuelled molecular
machine made of DNA. Nature 406, 605 – 608.
(doi:10.1038/35020524)

12. Turberfield AJ, Mitchell JC, Yurke B, Mills AP, Blakey
MI, Simmel FC. 2003 DNA fuel for free-running
nanomachines. Phys. Rev. Lett. 90, 118102. (doi:10.
1103/PhysRevLett.90.118102)

13. Ding B, Seeman NC. 2006 Operation of a DNA robot
arm inserted into a 2D DNA crystalline substrate.
Science 314, 1583 – 1585. (doi:10.1126/science.
1131372)

14. Venkataraman S, Dirks RM, Rothemund PWK,
Winfree E, Pierce NA. 2007 An autonomous
polymerization motor powered by DNA
hybridization. Nat. Nanotech. 2, 490 – 494. (doi:10.
1038/nnano.2007.225)

15. Shin J-S, Pierce NA. 2004 A synthetic DNA walker for
molecular transport. J. Am. Chem. Soc. 126,
10 834 – 10 835. (doi:10.1021/ja047543j)

16. Yin P, Choi HMT, Calvert CR, Pierce NA. 2008
Programming biomolecular self-assembly pathways.
Nature 451, 318 – 322. (doi:10.1038/nature06451)

17. Omabegho T, Sha R, Seeman NC. 2009 A bipedal
DNA Brownian motor with coordinated legs.
Science 324, 67 – 71. (doi:10.1126/science.
1170336)

18. Dirks RM, Pierce NA. 2004 Triggered amplification
by hybridization chain reaction. Proc. Natl Acad. Sci.
USA 101, 15 275 – 15 278. (doi:10.1073/pnas.
0407024101)

19. Zhang DY, Turberfield AJ, Yurke B, Winfree E. 2007
Engineering entropy-driven reactions and networks
catalyzed by DNA. Science 318, 1121 – 1125.
(doi:10.1126/science.1148532)

20. Sadowski JP, Calvert CR, Zhang DY, Pierce NA, Yin P.
2014 Developmental self-assembly of a DNA
tetrahedron. ACS Nano 8, 3251 – 3259. (doi:10.1021/
nn4038223)

21. Seelig G, Soloveichik D, Zhang DY, Winfree E. 2006
Enzyme-free nucleic acid logic circuits. Science 314,
1585 – 1588. (doi:10.1126/science.1132493)

22. Qian L, Winfree E. 2011 A simple DNA gate motif for
synthesizing large-scale circuits. J. R. Soc. Interface 8,
1281 – 1297. (doi:10.1098/rsif.2010.0729)

23. Qian L, Winfree E. 2011 Scaling up digital circuit
computation with DNA strand displacement
cascades. Science 332, 1196 – 1201. (doi:10.1126/
science.1200520)

24. Qian L, Winfree E, Bruck J. 2011 Neural network
computation with DNA strand displacement
cascades. Nature 475, 368 – 372. (doi:10.1038/
nature10262)

25. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce
MB, Khan AR, Dirks RM, Pierce NA. 2011 NUPACK:
analysis and design of nucleic acid systems.
J. Comput. Chem. 32, 170 – 173. (doi:10.1002/
jcc.21596)

26. Seeman NC. 1990 De novo design of sequences for
nucleic acid structural engineering. J. Biomol. Struct.
Dyn. 8, 573 – 581. (doi:10.1080/07391102.1990.
10507829)

27. Dirks RM, Lin M, Winfree E, Pierce NA. 2004
Paradigms for computational nucleic acid design.
Nucleic Acids Res. 32, 1392 – 1403. (doi:10.1093/
nar/gkh291)

28. Tulpan D, Andronescu M, Chang SB, Shortreed MR,
Condon A, Hoos HH, Smith LM. 2005
Thermodynamically based DNA strand design. Nucleic
Acids Res. 33, 4951 – 4964. (doi:10.1093/nar/gki773)

29. Zhang DY. 2011 Towards domain-based sequence
design for DNA strand displacement reactions. In
DNA Computing and Molecular Programming: 16th
Int. Conf., DNA 16, Hong Kong, China, 14 –17 June
(eds Y Sakakibara, Y Mi). Lecture Notes in Comput.
Sci. 6518, 162 – 175. (doi:10.1007/978-3-642-
18305-8_15)

30. Zadeh JN, Wolfe BR, Pierce NA. 2011 Nucleic acid
sequence design via efficient ensemble defect
optimization. J. Comput. Chem. 32, 439 – 452.
(doi:10.1002/jcc.21633)

31. Markham NR, Zuker M. 2005 DINAMelt web server
for nucleic acid melting prediction. Nucleic Acids
Res. 33, W577 – W581. (doi:10.1093/nar/gki591)

32. Gruber AR, Lorenz R, Bernhart SH, Neuböck R,
Hofacker IL. 2008 The Vienna RNA websuite. Nucleic
Acids Res. 36, W70 – W74. (doi:10.1093/nar/gkn188)

33. Lorenz R, Bernhart SH, Höner Zu Siederdissen C,
Tafer H, Flamm C, Stadler PF, Hofacker IL. 2011
Vienna RNA Package 2.0. Algorithms Mol. Biol. 6,
26. (doi:10.1186/1748-7188-6-26)

34. Lakin MR, Youssef S, Polo F, Emmott S, Phillips A.
2011 Visual DSD: a design and analysis tool for DNA
strand displacement systems. Bioinformatics 27,
3211 – 3213. (doi:10.1093/bioinformatics/btr543)

35. Lakin MR, Youssef S, Cardelli L, Phillips A. 2012
Abstractions for DNA circuit design. J. R. Soc.
Interface 9, 470 – 486. (doi:10.1098/rsif.2011.0343)

36. Dabby NL. 2013 The kinetics of toehold-mediated
four-way branch migration. In Synthetic molecular
machines for active self-assembly: prototype
algorithms, designs, and experimental study. PhD
thesis, California Institute of Technology Pasadena,
CA.

37. Genot AJ, Zhang DY, Bath J, Turberfield AJ. 2011
Remote toehold: a mechanism for flexible control of
DNA hybridization kinetics. J. Am. Chem. Soc. 133,
2177 – 2182. (doi:10.1021/ja1073239)

38. Zuker M. 2003 Mfold web server for nucleic acid
folding and hybridization prediction. Nucleic Acids
Res. 31, 3406 – 3415. (doi:10.1093/nar/gkg595)

39. Schaeffer JM, Thachuk C, Winfree E. 2015 Stochastic
simulation of the kinetics of multiple interacting nucleic
acid strands. In DNA Computing and Molecular
Programming: 21st Int. Conf., DNA 21, Boston and
Cambridge, MA, 17 – 21 August (eds A Phillips, P Yin).
Lecture Notes in Comput. Sci. 9211, 194– 211.
(doi:10.1007/978-3-319-21999-8_13)
40. Zhang DY. 2011 Cooperative hybridization
of oligonucleotides. J. Am. Chem. Soc. 133,
1077 – 1086. (doi:10.1021/ja109089q)

41. Radding CM, Beattie KL, Holloman WK, Wiegand
RC. 1977 Uptake of homologous single-
stranded fragments by superhelical DNA. J. Mol.
Biol. 116, 825 – 839. (doi:10.1016/0022-2836(77)
90273-X)

42. Green C, Tibbetts C. 1981 Reassociation rate limited
displacement of DNA strands by branch migration.
Nucleic Acids Res. 9, 1905 – 1918. (doi:10.1093/nar/
9.8.1905)

43. Biswas I, Yamamoto A, Hsieh P. 1998 Branch
migration through DNA sequence heterology.
J. Mol. Biol. 279, 795 – 806. (doi:10.1006/jmbi.
1998.1769)

44. Panyutin IG, Hsieh P. 1994 The kinetics of
spontaneous DNA branch migration. Proc. Natl
Acad. Sci. USA 91, 2021 – 2025. (doi:10.1073/pnas.
91.6.2021)

45. Sadowski JP. In preparation. Multisubjective: better
nucleic acid design through fast removal of
undesired secondary structure.

46. Grun C. 2014 Automated design of dynamic
nucleic acid systems. BA thesis, School of
Engineering and Applied Sciences, Harvard University,
Boston, MA.

47. McCaskill JS. 1990 The equilibrium partition
function and base pair binding probabilities for RNA
secondary structure. Biopolymers 29, 1105 – 1119.
(doi:10.1002/bip.360290621)

48. Hofacker IL, Fontana W, Stadler PF, Bonhoeffer LS,
Tacker M, Schuster P. 1994 Fast folding and
comparison of RNA secondary structures. Mon.hefte
Chem. Chem. Mon. 125, 167 – 188. (doi:10.1007/
BF00818163)

49. Dirks RM, Pierce NA. 2003 A partition function
algorithm for nucleic acid secondary structure
including pseudoknots. J. Comput. Chem. 24,
1664 – 1677. (doi:10.1002/jcc.10296)

50. Dirks RM, Pierce NA. 2004 An algorithm for
computing nucleic acid base-pairing
probabilities including pseudoknots.
J. Comput. Chem. 25, 1295 – 1304. (doi:10.1002/jcc.
20057)

51. Mathews DH, Sabina J, Zuker M, Turner DH. 1999
Expanded sequence dependence of thermodynamic
parameters improves prediction of RNA secondary
structure. J. Mol. Biol. 288, 911 – 940. (doi:10.1006/
jmbi.1999.2700)

52. Wolfe BR, Pierce NA. 2014 Sequence design for a
test tube of interacting nucleic acid strands. ACS
Synth. Biol. (doi:10.1021/sb5002196)

53. Seiffert J, Huhle A. 2008 A full-automatic sequence
design algorithm for branched DNA structures.
J. Biomol. Struct. Dyn. 25, 453 – 466. (doi:10.1080/
07391102.2008.10507193)

54. SantaLucia J, Allawi HT, Seneviratne PA. 1996
Improved nearest-neighbor parameters for
predicting DNA duplex stability. Biochemistry 35,
3555 – 3562. (doi:10.1021/bi951907q)

55. Tinoco I, Uhlenbeck OC, Levine MD. 1971
Estimation of secondary structure in ribonucleic

http://dx.doi.org/10.1137/060651100
http://dx.doi.org/10.1137/060651100
http://dx.doi.org/10.1038/nbt1209-1091
http://dx.doi.org/10.1038/nbt1209-1091
http://dx.doi.org/10.1126/science.332.6034.1140
http://dx.doi.org/10.1126/science.332.6034.1140
http://dx.doi.org/10.1038/35020524
http://dx.doi.org/10.1103/PhysRevLett.90.118102
http://dx.doi.org/10.1103/PhysRevLett.90.118102
http://dx.doi.org/10.1126/science.1131372
http://dx.doi.org/10.1126/science.1131372
http://dx.doi.org/10.1038/nnano.2007.225
http://dx.doi.org/10.1038/nnano.2007.225
http://dx.doi.org/10.1021/ja047543j
http://dx.doi.org/10.1038/nature06451
http://dx.doi.org/10.1126/science.1170336
http://dx.doi.org/10.1126/science.1170336
http://dx.doi.org/10.1073/pnas.0407024101
http://dx.doi.org/10.1073/pnas.0407024101
http://dx.doi.org/10.1126/science.1148532
http://dx.doi.org/10.1021/nn4038223
http://dx.doi.org/10.1021/nn4038223
http://dx.doi.org/10.1126/science.1132493
http://dx.doi.org/10.1098/rsif.2010.0729
http://dx.doi.org/10.1126/science.1200520
http://dx.doi.org/10.1126/science.1200520
http://dx.doi.org/10.1038/nature10262
http://dx.doi.org/10.1038/nature10262
http://dx.doi.org/10.1002/jcc.21596
http://dx.doi.org/10.1002/jcc.21596
http://dx.doi.org/10.1080/07391102.1990.10507829
http://dx.doi.org/10.1080/07391102.1990.10507829
http://dx.doi.org/10.1093/nar/gkh291
http://dx.doi.org/10.1093/nar/gkh291
http://dx.doi.org/10.1093/nar/gki773
http://dx.doi.org/10.1007/978-3-642-18305-8_15
http://dx.doi.org/10.1007/978-3-642-18305-8_15
http://dx.doi.org/10.1002/jcc.21633
http://dx.doi.org/10.1093/nar/gki591
http://dx.doi.org/10.1093/nar/gkn188
http://dx.doi.org/10.1186/1748-7188-6-26
http://dx.doi.org/10.1093/bioinformatics/btr543
http://dx.doi.org/10.1098/rsif.2011.0343
http://dx.doi.org/10.1021/ja1073239
http://dx.doi.org/10.1093/nar/gkg595
http://dx.doi.org/10.1007/978-3-319-21999-8_13
http://dx.doi.org/10.1021/ja109089q
http://dx.doi.org/10.1016/0022-2836(77)90273-X
http://dx.doi.org/10.1016/0022-2836(77)90273-X
http://dx.doi.org/10.1093/nar/9.8.1905
http://dx.doi.org/10.1093/nar/9.8.1905
http://dx.doi.org/10.1006/jmbi.1998.1769
http://dx.doi.org/10.1006/jmbi.1998.1769
http://dx.doi.org/10.1073/pnas.91.6.2021
http://dx.doi.org/10.1073/pnas.91.6.2021
http://dx.doi.org/10.1002/bip.360290621
http://dx.doi.org/10.1007/BF00818163
http://dx.doi.org/10.1007/BF00818163
http://dx.doi.org/10.1002/jcc.10296
http://dx.doi.org/10.1002/jcc.20057
http://dx.doi.org/10.1002/jcc.20057
http://dx.doi.org/10.1006/jmbi.1999.2700
http://dx.doi.org/10.1006/jmbi.1999.2700
http://dx.doi.org/10.1021/sb5002196
http://dx.doi.org/10.1080/07391102.2008.10507193
http://dx.doi.org/10.1080/07391102.2008.10507193
http://dx.doi.org/10.1021/bi951907q

rsif.royalsocietypublishing.org

13
acids. Nature 230, 362 – 367. (doi:10.1038/
230362a0)

56. Grun C, Sarma K, Wolfe BR, Shin SW, Winfree E.
2014 A domain-level DNA strand displacement
reaction enumerator allowing arbitrary non-
pseudoknotted secondary structures. In Verification
of Engineered Molecular Devices and Programs
(VEMDP), 17 July, Vienna, Austria (eds
M Kwiatkowska, A Phillips, C Thachuk), pp. 1 – 29.
See http://arxiv.org/abs/1505.03738.
57. Shapiro BA, Maizel J, Lipkin LE, Currey K,
Whitney C. 1984 Generating non-overlapping
displays of nucleic acid secondary structure.
Nucleic Acids Res. 12, 75 – 88. (doi:10.1093/nar/
12.1Part1.75)

58. Bruccoleri RE, Heinrich G. 1988 An
improved algorithm for nucleic acid
secondary structure display. Comput.
Appl. Biosci. 4, 167 – 173. (doi:10.1093/
bioinformatics/4.1.167)
59. Levenshtein VI. 1966 Binary codes capable of
correcting deletions, insertions and reversals. Sov.
Phys. Dokl. 10, 707 – 710.

60. Soloveichik D, Seelig G, Winfree E. 2010 DNA as a
universal substrate for chemical kinetics. Proc. Natl
Acad. Sci. USA 107, 5393 – 5398. (doi:10.1073/pnas.
0909380107)

61. Cardelli L. 2013 Two-domain DNA strand
displacement. Math. Struct. Comput. Sci. 23,
247 – 271. (doi:10.1017/S0960129512000102)
J.
R.Soc.Interface
12:20150580

http://dx.doi.org/10.1038/230362a0
http://dx.doi.org/10.1038/230362a0
http://arxiv.org/abs/1505.03738
http://dx.doi.org/10.1093/nar/12.1Part1.75
http://dx.doi.org/10.1093/nar/12.1Part1.75
http://dx.doi.org/10.1093/bioinformatics/4.1.167
http://dx.doi.org/10.1093/bioinformatics/4.1.167
http://dx.doi.org/10.1073/pnas.0909380107
http://dx.doi.org/10.1073/pnas.0909380107
http://dx.doi.org/10.1017/S0960129512000102

	DyNAMiC Workbench: an integrated development environment for dynamic DNA nanotechnology
	Introduction
	Designing a system with DyNAMiC Workbench
	Methods and implementation
	Tier 1: behavioural/Nodal design
	Tier 2: segment design
	Tier 3: sequence design
	Analysis tools
	Enumerator
	Sequence-level analysis

	Utilities
	Structure visualization
	Sequence manipulation

	Architecture
	Discussion
	Authors’ contributions
	Funding
	Competing interests
	Acknowledgements
	References

