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Bamboo mosaic virus (BaMV) has a 6.4-kb (+) sense RNA genome with a 5′ cap
and a 3′ poly(A) tail. ORF1 of this potexvirus encodes a 155-kDa replication protein
responsible for the viral RNA replication/transcription and 5′ cap formation. To learn
more about the replication complex of BaMV, a protein preparation enriched in the
155-kDa replication protein was obtained from Nicotiana benthamiana by a protocol
involving agroinfiltration and immunoprecipitation. Subsequent analysis by SDS-PAGE
and mass spectrometry identified a handful of host proteins that may participate in the
viral replication. Among them, the cytoplasmic exoribonuclease NbXRN4 particularly
caught our attention. NbXRN4 has been shown to have an antiviral activity against
Tomato bushy stunt virus and Tomato mosaic virus. In Arabidopsis, the enzyme could
reduce RNAi- and miRNA-mediated RNA decay. This study found that downregulation
of NbXRN4 greatly decreased BaMV accumulation, while overexpression of NbXRN4
resulted in an opposite effect. Mutations at the catalytically essential residues abolished
the function of NbXRN4 in the increase of BaMV accumulation. Nonetheless, NbXRN4
was still able to promote BaMV accumulation in the presence of the RNA silencing
suppressor P19. In summary, the replication efficiency of BaMV may be improved by
the exoribonuclease activity of NbXRN4.

Keywords: Bamboo mosaic virus, potexvirus, RNA replication, replicase, replication protein, host factors,
exonuclease, XRN4

INTRODUCTION

Replication proteins of positive-stranded RNA viruses form ribonucleoprotein complexes in
association with membranes derived from a variety of cytoplasmic organelles (Novoa et al.,
2005; Miller and Krijnse-Locker, 2008). The membrane structure may be modified or remodeled
dynamically during the RNA replication process. For example, the replication complex ofHepatitis
C virus resides in spherules derived from endoplasmic reticulum (Quinkert et al., 2005). Brome
mosaic virus (BMV) and Red clover necrotic mosaic virus (RCNMV) also form the viral replication
complexes by virtue of the endoplasmic reticulum membranes (Noueiry and Ahlquist, 2003;
Turner et al., 2004). Flock house virus replicates on the mitochondria membrane (Miller et al.,
2001), while Tomato bushy stunt virus (TBSV) replicates on the surfaces of peroxisomal membrane
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(McCartney et al., 2005). Formation of such membrane-derived
microenvironments benefits viruses to escape from proteolysis
and RNA hydrolysis imposed by the host defense systems.

Bamboo mosaic virus (BaMV) has a positive-sense single-
stranded RNA genome of approximately 6.4 kb in length, with
a 5′ cap structure and a 3′ poly(A) tail. The genome contains
five open reading frames (ORFs) plus a 5′ untranslated region
(UTR) of 94 nt and a 3′ UTR of 140 nt [without counting
the poly(A) tail] (Lin et al., 1994). ORF1 of the virus encodes
a ∼155-kDa replication protein consisting of an N-terminal
AdoMet-dependent guanylyltransferase (Li et al., 2001a), an RNA
5′-triphosphatase/NTPase (Li et al., 2001b), and a C-terminal
RNA-dependent RNA polymerase (RdRp) (Li et al., 1998). ORF2-
4, referred as triple gene block, encode three movement proteins
necessary for the virus movement in plants (Lin et al., 2004,
2006), and ORF5 directs the synthesis of the viral coat protein
(CP). The RNA 5′-triphosphatase/NTPase domain has a strong
affinity to the viral CP and this interaction is critical for BaMV to
move in plants (Lee et al., 2011). Occasionally, an 836-nt satellite
RNA (satBaMV) was found to associate with BaMV infection
(Lin and Hsu, 1994). The genome of satBaMV contains a 20-
kDa polypeptide-encoding ORF, flanked by a 5′ UTR of 159 nt
and a 3′ UTR of 129 nt. The replication of satBaMV is absolutely
dependent on BaMV.

Viruses need to hijack host factors to proceed with the
infection process, including entry, replication, trafficking, virion
assembly, and release from the infected cells. On the other
hand, hosts may dispatch proteins to interrupt the viral life
cycle. To elucidate the interplay between plant viruses and
their hosts, genome-wide screens using Saccharomyces cerevisiae
as a surrogate host have identified diverse cellular factors
capable of affecting the accumulations of BMV (Kushner
et al., 2003) and TBSV (Panavas et al., 2005). In other
cases, biochemical methods of using the immunopurified
replication complex, followed by mass spectrometry, were
exploited to find important host components for the replication
of TBSV (Serva and Nagy, 2006) and RCNMV (Mine et al.,
2010). As for BaMV, UV-induced crosslinking using the
radiolabeled 3′ UTR of BaMV as a probe has identified
several 3′ UTR-interacting proteins, including chloroplast
phosphoglycerate kinase (PGK), cytosolic glyceraldehyde 3-
phosphate dehydrogenase (GAPDH), and heat shock protein
90 homolog (NbHsp90). PGK promotes BaMV accumulation
presumably by facilitating BaMV targeting to chloroplasts
(Lin et al., 2007; Cheng et al., 2013a). GAPDH reduces
BaMV accumulation principally by inhibiting the synthesis
of the viral negative-strand RNA (Prasanth et al., 2011).
NbHsp90, which also interacts with BaMV replication protein,
selectively enhances the replication initiation of BaMV but not
satBaMV (Huang et al., 2012). Yeast two-hybrid screen hunted
out an uncharacterized AdoMet-dependent methyltransferase
(PNbMTS) from N. benthamiana cDNA library by using BaMV
RdRp as bait (Cheng et al., 2009). PNbMTS is a suppressor
for BaMV replication. The technique of cDNA-amplified
fragment length polymorphism (cDNA-AFLP) has been adopted
to analyze the transcript profiling of N. benthamiana upon
BaMV infection and successfully identified 49 up-regulated

genes and 41 down-regulated genes (Cheng et al., 2010). Of
those factors, a glutathione transferase (NbGSTU4) promotes
BaMV accumulation presumably by providing a more suitable
redox environment for BaMV replication (Chen et al., 2013).
A serine/threonine kinase-like protein (NbSTKL) is involved
in the cell-to-cell movement of BaMV (Cheng et al., 2013b),
while a putative Rab-GTPase activation protein (NbRabGAP1)
is important for the viral intercellular movement (Huang et al.,
2013).

Limited expression of BaMV replication protein in plants
has been a bottleneck toward understanding the viral
replication complex. A protocol involving agroinfiltration
and immunoprecipitation was established in this study to isolate
the BaMV replication protein-enriched fraction, from which a
handful of N. benthamiana proteins were selectively identified
by mass spectrometry. Screen based on the expression of green
fluorescent protein (GFP) by GFP-carrying BaMV in the selected
protein-downregulated plants suggested several potential
host factors, including cytoplasmic 5′→3′ exoribonuclease
(NbXRN4), S-adenosylmethionine synthetase, a ripening-
related protein, a respiratory burst oxidase homolog, a MAP
kinase phosphatase-like protein, and NADP+-dependent
isocitrate dehydrogenase. The involvement of NbXRN4
in BaMV accumulation was characterized in detail in this
study.

MATERIALS AND METHODS

Plasmids
A pEpyon-based binary plasmid, pERep, was constructed
previously in an attempt to overexpress BaMV replication
protein, fused with a hemagglutinin (HA) tag at the C terminus,
in N. benthamiana (Lee et al., 2011). pKSF4, a pKn-based binary
plasmid, was also created at that time to produce the SF4 variant
of satBaMV. For gene-silencing experiments, each of the selected
cDNA fragments of the target genes was inserted into the cloning
site of pTRV2 (Ratcliff et al., 2001) via restriction sites EcoRI
and XhoI. The pTRV2 derivatives that carry luciferase gene
(pTRV2-Luc) and phytoene desaturase gene (pTRV2-PDS)
were used as the negative and positive controls in the silencing
experiments, respectively. pCBG is a BaMV infectious clone,
in which an engineered cDNA copy of BaMV is positioned
downstream of the CaMV 35S promoter (Lin et al., 2004). This
clone contains a GFP-expression cassette in the BaMVgenome so
that the expression of GFP could be used as an index for BaMV
accumulation. The full-length cDNA of NbXRN4 was amplified
from a cDNA library of 6-week-old N. benthamiana by PCR
using primers (5′-GGGATGGGAGTACCAGCATTTTATA-3′
and 5′-ATGCGAGCTCTTATTGATGTGTTCCTGTTTCTT-
3′) and inserted into the transient protein expression vector
pBI221 by using SmaI and SacI sites. This construct, pBI-
XRN4, was used to overexpress NbXRN4 in protoplasts
of N. benthamiana. Mutagenesis to substitute alanine for
Asp55 and Glu206 of NbXRN4 on pBI-XRN4 was performed
according to the protocol of the QuikChange site-directed
mutagenesis kit (Stratagene). The pairs of divergent primers
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5′-GCCATGAATGGTATCATTCACCCT-3′/ 5′-CAAGTAC
ATGTTATCAAATTCCAT-3′ and 5′-GCTGGAGTGGCTC
CTAGAGCT-3′/ 5′-AATAGCCATATAGAGGAGTTTTCTTG-
3′ were used for D55A and E206A mutations,
respectively.

Agrobacterium Infiltration
pERep and pKSF4 were co-infiltrated into leaves of
N. benthamiana to produce BaMV replication protein.
Agrobacterium tumefaciens C58C1 strain that harbors each of
the binary plasmids was cultivated in LB medium supplemented
with kanamycin at 28◦C, 200 rpm, for 2 days. The harvested
cells after centrifugation were suspended in buffer that contained
10 mM MES [pH 5.5] and 10 mM MgCl2 to an OD600 of 0.5.
Equal volumes of the two cells were mixed and infiltrated into
the undersides of leaves of 4-week-old N. benthamiana. In gene
silencing experiments, A. tumefaciens C58C1 that carry pTRV1
or pTRV2 derivative was grown, and the mixed cells at 1:1 ratio
was used in the infiltration as the protocol described above.

Virus Inoculation
In general, the effect of gene silencing started to appear within
4–5 weeks after agroinfiltration as evidenced by the emergence of
white spotted regions on leaves of plants that had received pTRV1
and pTRV2-PDS. At the time, 0.5 μg virion of the indicated
virus was mechanically inoculated into the corresponding leaves
of the other silencing plants. The virus-infected leaves were
harvested for protein and RNA analysis 4 days post-inoculation.
The expression of GFP in leaves by GFP-carrying BaMVwas also
recorded with the Fujifilm LAS-4000 imager.

Protoplast Transfection
Protoplasts were prepared from 5-week-old N. benthamiana
leaves according to the protocol of Sheen (2001) with
slight modifications. Polyethylene glycol (PEG) 4000-mediated
transfection was used to introduce the indicated plasmids
into 1 ×105 protoplasts according to the protocol described
previously (Cheng et al., 2009). The transfected protoplasts
were cultivated at room temperature in growth buffer (0.55 M
mannitol-MES [pH 5.7], 1 μM CuSO4, 1 μM KI, 1 mM MgSO4,
0.2 mM K2HPO4, 1 mMKNO3, 10 mM CaCl2, and 30 μg/ml
cefatoxime) for the indicated periods of time under a constant
light.

Preparation of the BaMV Replication
Protein-Enriched Fraction
Approximately 10 g leaves co-infiltrated with A. tumefaciens
carrying pERep and pKSF4 were harvested on day 2 after
infiltration and homogenized in 20 μl cold extraction buffer,
which contained 50 mM Tris [pH 8.0], 120 mM KCl, 15 mM
MgCl2, 0.1% (v/v) β-mercaptoethanol, 20% (v/v) glycerol, and
0.1 mM phenylmethanesulphonyl fluoride, with a handheld
polytron homogenizer (Kinematica). After removal of the debris
with cloth filters, the crude extract was centrifuged at 500 × g
for 10 min. The supernatant was centrifuged again at 30,000 × g
for 45min. After wash once with extraction buffer, the pellet (P30)

was thoroughly suspended in 1.5 ml TSG buffer (50 mMTris [pH
8.0], 0.3% (v/v) Sarkosyl, 2.5% (v/v) glycerol, 10 mM NaCl, and
1X complete EDTA-free protease inhibitor cocktail) and briefly
disintegrated with a sonication probe (Misonix Sonicators-
Microson XL-2000, BEK Ultrasonics, USA). The sample was
centrifuged again at 30,000 × g for 45 min and the supernatant
(S30Sark) was collected. To 1 ml S30Sark, 50 μl anti-HA agarose
beads (Abcam, USA) was added, and the mixture was gently
shaken overnight. The beads were washed with five 1-ml volumes
of TSG buffer and saved at − 80◦C. The sample collected by
the beads is regarded as the BaMV replication protein-enriched
fraction. All the steps of the procedure were performed at 4◦C.

Host Factor Identification by Mass
Spectrometry
To the anti-HA agarose precipitate, 30 μl protein sample buffer
(0.2 M Tris [pH 6.8], 10% glycerol, 4 mM DTT, 4% SDS,
0.025% bromophenol blue, and 1.6 M urea) was added. After
incubation at 95◦C for 10 min, the proteins in the supernatant
were electrophoresed on a Tricine-SDS-polyacrylamide (4–13%)
gel. The protein bands on the gel were stained with the Bio-
Rad Silver Stain Plus kit. Proteins in the selected region of the
gel were digested with trypsin and identified by tandem mass
spectrometry using an Applied Biosystems QStar LC-MS/MS
spectrometer (Life Technologies Corp., Carlsbad, CA, USA). The
obtained spectrometry information was analyzed with Mascot
software (Matrix Science Ltd., London, UK) using the NCBI
non-redundant database. The important parameter settings for
Mascot analysis were as follows: mass values, monoisotopic;
protein mass, unrestricted; peptide mass tolerance, ±0.5 Dalton;
fragment mass tolerance, ±0.5 Dalton; and maximal missed
cleavages, 2.

In Vitro RdRp Activity Assay
The polymerase activity assay using the RNAmolecule embedded
within the BaMV replication complex as the template was
carried out according to the previous description (Cheng et al.,
2001) with slight modification. Briefly, 25 μl P30 suspension
or S30Sark was included in a final 35 μl reaction solution that
also contained 30 mM Tris [pH8.8], 10 mM MgCl2, 50 mM
NaCl, 20 mM dithiothreitol, 2 mM ATP, 2 mM CTP, 2 mM
GTP, 2 μM UTP, 1.5 μl [α-32P]UTP (6000Ci/mmol, Perkin
Elmer), and 1.5 μl RNase inhibitor. After incubation at 26◦C
for 3 h, the reaction solution was extracted twice with an equal
volume of phenol/chloroform (pH 4.5), and the nucleic acids
within were precipitated with ethanol. The radiolabeled RNA
products were separated on a 1% agarose gel and analyzed with
a phosphoimager (Fujifilm BAS-2500).

Protein Analysis
Leaves (∼0.1 g) or protoplasts (∼1.5 × 104) were homogenized
in buffer that contained 50 mM Tris [pH 7.9], 100 mM KCl,
1 mM EDTA, and 20% glycerol with a handheld polytron
in 200 μl cold extraction buffer. The clarified extract after
centrifugation at 16200 × g for 10 min was used for protein
analysis. The bicinchoninic acid reagent (Pierce) was used to
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determine the total protein concentration of the samples by using
bovine serum albumin as the standard. The relative amounts of
the large subunit of ribulose-1,5-bisphosphate carboxylase (L-
RuBisCo) in samples were estimated by the intensity of the
Coomassie blue-stained protein bands on a 12% SDS-PAGEusing
Multigauge imaging analysis software (Fujifilm). Viral CPs, GFP,
and the HA-tagged protein were detected by western blot analysis
using specific CP antisera, GFP antisera, and anti-HA antibodies
(Sigma), respectively. The resulting data were processed using
Image Station 2000 MM (Kodak).

RNA Analysis
Leaves (∼0.1 g) were homogenized using 1 ml TriPure Isolation
Reagent (Promega, USA). The extracted RNA was dissolved in
50 μl diethyl pyrocarbonate (DEPC)-treated water. The RNA
concentration was estimated with a micro-spectrophotometer
(NanoDrop Technologies, Wilmington, DE, USA). For genomic
and subgenomic RNA analysis, each RNA sample (∼6 μg)
was treated with 1.2 M glyoxal and separated on a 1%
agarose gel. After transfer and fixation onto a Hybond-N nylon
membrane, the samples were hybridized with a DIG-labeled
probe complementary to the 3′ UTR of BaMV. The bands
hybridized with the probe were visualized by incubating the

FIGURE 1 | satBaMV SF4-assisted accumulation of BaMV replication
protein. Leaves of 4-week-old Nicotiana benthamiana were agroinfiltrated
with the indicated binary plasmids. The P30 fraction of the leaves collected on
days 2 (A) or days 1, 2, and 3 (B) after agroinfiltration was isolated, and the
presence of BaMV replication protein was examined by western blotting using
anti-HA tag antibody. The plasmids and the condition for agroinfiltration are
described in Section “Materials and Methods”.

membrane with anti-digoxigenin-AP Fab fragments and CSPD
(Amersham Biosciences, UK). The probe was produced from
an in vitro transcription reaction that contained 1 μg HindIII-
cleaved pBaHB (Lin et al., 1993), 50 mMDTT, 1 mM ATP, 1 mM
CTP, 1 mMGTP, 0.35 mMDIG-UTP, 20 U RNasin, and 40 U SP6
polymerase in 20μl 1× SP6 transcription buffer. After incubation
at 37◦C for 2 h, pBaHB was removed by RNase-free DNase, and
the DIG-labeled probe was recovered by ethanol precipitation.

For siRNA analysis, the total RNA extracted from leaves was
incubated with 10% PEG-8000 and 1.5 M NaCl on ice for 1 h.
The supernatant after centrifugation at 12000×g for 15 min
was further incubated with an equal volume of isopropanol and
glycogen (5 μg per ml) at− 20◦C for at least 2 h. The precipitated
RNA after centrifugation was dissolved in DEPC-treated water
and electrophoresed on a 15% polyacrylamide-8 M urea gel. After
transfer and fixation onto a Zeta-probe blotting membrane (Bio-
RAD, USA), the sample was hybridized with a 32P-labeled probe

FIGURE 2 | Exhibition of an endogenous RNA polymerase activity by
BaMV replication protein. P30 and S30Sark fractions were prepared from
N. benthamiana leaves on day 2 after agroinfiltration with the indicated binary
plasmids. The reaction condition for the activity assay is described in Section
“Materials and Methods”. The radiolabeled RNA products were separated on
a 1% agarose gel and visualized with a phosphoimager.
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FIGURE 3 | Analysis of proteins bound to anti-HA agarose beads by
SDS-PAGE. S30Sark was prepared from N. benthamiana leaves on day 2 after
agroinfiltration with the indicated binary plasmids, and incubated with anti-HA
agarose beads. The immuno-precipitate was analyzed by SDS-PAGE.
H-chain and L-chain denote the heavy and light chains of the antibody,
respectively. The gel region subjected to LC-M/M analysis is indicated with the
close bracket.

that was prepared by an in vitro transcription reaction, similar
to that for the DIG-labeled probe, except DIG-UTP was replaced
with 2 μM UTP and 100 μCi [α-32P]UTP (6,000 Ci/mmol). The
signal on the membrane was detected with the Fujifilm BAS-2500
phosphorimager.

For semi-quantitative RT-PCR, the total RNA extracted
from leaves was primed to synthesize cDNA using an
oligo(dT) primer and MMLV high performance reverse
transcriptase (Epicenter, USA). A cDNA fragment of
NbXRN4, located 179 bp downstream of the fragment
that was cloned into pTRV2, was amplified by PCR
using primers 5′-GTTTTGCCTGTGGTCAGGTT-3′ and
5′-CTGCCGCCTGAATAAAATGT-3′, while a fragment
of b-actin cDNA was amplified using primers 5′-
GATGAAGATACTCACAGAAAGA-3′ and 5′-GTGGTTT
CATGAATGCCAGCA-3′. PCR was performed under the
condition: 5 min at 95◦C, 32 cycles of 20 s at 98◦C, 15 s at 60◦C,
and 15 s at 72◦C, followed by 5 min at 72◦C.

RESULTS
BaMV Replication Complex
The P30 membrane fraction isolated from BaMV-infected leaves
has long been known to exhibit an in vitro polymerase activity
specific for BaMVRNAs, by which the critical cis-acting elements
on both positive and negative strands of BaMV genome have

been determined (Chen et al., 2003, 2005, 2010; Lin et al., 2005).
Nonetheless, the BaMV replication protein per se could not
be detected by western blotting in such a protein preparation,
and this limitation has been a hurdle to the characterization of
BaMV replication complex in terms of its composition, assembly
mechanism, and intracellular localization. In a recent experiment
aiming to produce a discernible level of BaMV replication
protein in plants, a binary plasmid pERep that harbors the
cDNA of BaMV ORF1 in fusion with a HA-coding sequence
at the 3′ end was introduced into N. benthamiana leaves via
A. tumefaciens infiltration (Lee et al., 2011). Of the trials, we
found that the viral replication protein in P30 can be greatly
increased if the leaves are co-infiltrated with A. tumefaciens
that carries pKSF4, an expression vector to produce the SF4
variant of satBaMV (Figure 1A). It is noteworthy that co-
infiltration with pK(−)SF4, a plasmid for the transcription of
the complementary strand of SF4, did not show a similar
effect. The accumulation of BaMV replication protein in the
infiltrated leaves was monitored as a function of time. The
viral protein in P30 was discernible on day 1 and reached
maximum on day 2 after infiltration (Figure 1B). To know
whether the viral replication protein in P30 is functionally active,
an RNA polymerase activity assay using the endogenous RNA
embedded in the putative replication complex as the template
was performed (Figure 2). The P30 prepared from leaves co-
infiltrated with pERep and pKSF4 was able to generate a RNA
product with a size consistent with that of SF4. By contrast,
no RNA was produced by the P30 from leaves infiltrated with
only pKSF4. Based on these results, we propose that the satellite
RNA molecule transcribed from pKSF4 acts as a scaffold to
promote the correct folding of BaMV replication protein or/and

TABLE 1 | Plant proteins differentially present in the BaMV replication
protein-enriched fraction.

GI number1 Protein Mascot score

Nucleic acid processing enzymes:

gi| 359490274 DEAD-box ATP dependent RNA helicase 7-like 72

gi| 357113938 ATP-dependent DNA helicase Q-like 2-like 69

gi| 3776009 RNA helicase 67

gi| 242037819 Exoribonuclease (XRN4) 43

Disease resistance-associated proteins:

gi| 356540231 MAP kinase phosphatase-like protein 20

gi| 255563929 Disease resistance protein RGA2 49

gi| 359754963 Ripening-related protein 97

gi| 20522008 Pleiotropic drug resistance like protein 89

Development/remodeling-related proteins:

gi| 30694805 Scarecrow-like protein 5 83

gi| 7576225 ClpA regulatory subunit of Clp protease complex 72

gi| 6715512 Vacuolar H+-ATPase B subunit 89

Metabolic enzymes:

gi| 7573308 NADP+-dependent isocitrate dehydrogenase 72

gi| 193290730 S-adenosylmethionine synthetase 43

gi| 28268680 Respiratory burst oxidase homolog 69

1The best hit based on the mapped sequences obtained from mass spectrometry.
Most of the hit proteins are from plants whose genomes have been sequenced.
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TABLE 2 | Sequence number of the EST in Nicotiana benthamiana corresponding to the targeted proteins and the primers used in the construction of
TRV2 derivatives.

Targeted protein EST ID1 Primers for pTRV2-based construct (5′→3′)2 PCR product (bp)

DEAD-box ATP dependent RNA helicase 7-like CN748199 FP: TTCCGGAATTCCGATAGTGTCATACCCGCATTTA
RP: TTCCGCTCGAGCAAGTCCTCAGCAGATACATCAA

319

GO608259 FP: TTCCGGAATTCCATTTGTTTTGCCCATATTAGAGTC
RP: TTCGGCTCGAGACTGAAAAGAATTGTTTGAACTTGG

419

ATP-dependent DNA helicase Q-like 2-like GO601475 FP: TTCCGGAATTCAATTCTCAACAAACTCCCTCACA
RP: TTCCGCTCGAGGTCTATAATCCGGTCGAAAATCA

459

CK283590 FP: TTCCGGAATTCCCAGCATGTGGAAATTGTCTCG
RP: TTCGGCTCGAGAGCATTCGCAGCGGTAAAGTAG

403

RNA helicase CK286108 FP: TTCCGGAATTCTGATTGTTTATTTAGCATGGGATTT
RP: TTCCGCTCGAGAAACAGAAGGTTCAATACCCTCTTC

354

CK282547 FP: TTCCGGAATTCGACAGCTTATTAAGATCCTTCAGCA
RP: TTCCGCTCGAGAGCTAGCAAGAACAACAAACATTCT

317

Exoribonuclease (XRN4) EH369301 FP: TTCCGGAATTCGCTATTGATGGAGTGGCTCCTAGA
RP: TTCGGCTCGAGACCCTCACCAGGAACATTAGCAT

311

MAP kinase phosphatase-like protein GO612773 FP: TTCCGGAATTCTTTGTGCACTGCTACCAAGGAGTGT
RP: TTCCGCTCGAGATTCTAAGCACAGAACTCGGACT

212

Disease resistance protein RGA2 CK290351 FP: TTCCGGAATTCGCTGTAGGTTTATCTTTTGATGAT
RP: TTCCGCTCGAGGATTCTCCATTCCTTCTATTCTT

467

Ripening-related protein ES886818 FP: TTCCGGAATTCCACTTTCTGTTCACAACTTATTGC
RP: TTCGGCTCGAGCTCATACATAATTGTCCAAGTAGTC

410

Pleiotropic drug resistance like protein CK291986 FP: TTCCGGAATTCATGTTGTATACTCCGTTGACATGC
RP: TTCGGCTCGAGGGGTCCAAGCTCAACAAGTTCC

404

Scarecrow-like protein 5 CN744167 FP: TTCCGGAATTCTCCAGAAGTCACTAAGGCTATGC
RP: TTCGGCTCGAGGAAAACCTGCCATCATGAACCTG

416

ClpA regulatory subunit of Clp protease complex GO604713 FP: TTCCGGAATTCTGATGAAGCTGGTTCTCGTGTTC
RP: TTCGGCTCGAGCGTCGAATGGCACGACTAATGG

411

vacuolar H+-ATPase B subunit GO601484 FP: TTCCGGAATTCTTCGGTTGGGAGATGGAACTACT
RP: TTCCGCTCGAGATAGCAGCAAAGACAATGGCAAA

493

NADP+-dependent isocitrate dehydrogenase EX534040 FP: TTCCGGAATTCCTTATCTTTCCCTTTGTGGAGTT
RP: TTCCGCTCGAGATCTTTTCATCCTTCCCTTCTGGTA

407

S-adenosylmethionine synthetase CK290599 FP: TTCCGGAATTCATTTACCTCCGAGTCTGTGAACG
RP: TTCGGCTCGAGCTGTGGCATACCCGAACATGTG

380

Respiratory burst oxidase homolog CK292677 FP: TTCCGGAATTCACCATCATTCGGACACAGAGATAAT
RP: TTCGGCTCGAGAAGCATTTCGAACAAGTGAAGATCC

330

1The entity of expressed sequence tag (EST) in N. benthamiana was obtained through search using tBASLTn.
2Nucleotide sequences of forward primer (FP) and reverse primer (RP) used in the PCR to obtain the cDNA fragments for the construction of pTRV2 derivatives. The
underlined sequences are engineered restriction sites.

the assembly of the replication complex. As a result, the viral
replication protein is ready to replicate satBaMV SF4 and the
protein itself is secured from protease degradation due to the
complex structure.

Potential Host Factors
The activity of a viral replication protein may be modulated
by an array of host proteins. Different accessary proteins may
be needed at the different stages of the replication process;
inversely, some host proteins may be exploited to suppress
the polymerase activity of the invading virus. Inspired by
the improved production of BaMV replication protein, we
set out to look for host proteins in the putative replication
complex. First, we tried to solubilize the viral protein in
P30 with a variety of detergents. The anionic detergent SDS
or Sarkosyl at 0.3% (w/v) could release a fraction of the
viral protein from P30, while non-anionic detergents were
barely effective (data not shown). The RNA polymerase activity

assay indicated that BaMV replication protein in the Sarkosyl-
solubilized solution, S30Sark, was still functional in the synthesis
of satBaMV (Figure 2). Anti-HA agarose beads were added
into S30Sark to immunoprecipitate BaMV replication protein.
The proteins bound to the beads were analyzed by SDS-PAGE.
In comparison with the background control, the sample from
leaves agroinfiltrated with pKSF4 and pERep showed some extra
protein bands on the gel, particularly in the high molecular
weight region (Figure 3). To identify the proteins differentially
present in the BaMV replication protein-containing sample,
the marked regions of the gel, as indicated in Figure 3, were
sliced and the proteins within were analyzed by LC-MS/MS
spectrometry. The plant proteins hit by mass spectrometry in
the two samples were compared and those appeared only in
the BaMV replication protein-containing sample were chosen
for further analysis. They are functionally diverse and could
be grouped tentatively into RNA-processing enzymes, disease
resistance-associated proteins, development/remodeling-related
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FIGURE 4 | Reduction of the BaMV-encoded GFP in the NbXRN4-silenced N. benthamiana. (A) Fluorescent images of virus-infected leaves of
N. benthamiana that had been agroinfiltrated with pTRV1/pTRV2-Luc or pTRV1/pTRV2-XRN4. Two leaves were inoculated with GFP-carrying BaMV per
independent plant, with a total of three plants in one tested condition. (B) The relative expression of GFP due to BaMV infection in leaves agroinfiltrated with
pTRV1/pTRV2-Luc or pTRV1/pTRV2-XRN4. The leaves were gathered from four independent plants per tested condition. (C) The relative amounts of NbXRN4 and
β-actin transcripts in leaves obtained from the plants as described in (A). The RNA extracted from the leaves was converted to cDNA by reverse transcriptase, and
the amounts of NbXRN4 and β-actin were examined by PCR using specific primers as described in Section “Materials and Methods”. The P-value represents the
comparison of groups by Student’s t-test (tail = 1, type = 1).

proteins, and metabolic enzymes (Table 1). It is noted that
the plausible molecular weights of the selected proteins vary
greatly, ranging from ∼34.0 to 161.7 kDa. Presumably, they
are in association with macrocomplexes that may consist of
proteins, RNAs, lipids, and detergent, and the denaturing
condition of the electrophoresis in this study was not strong
enough to take the complexes apart completely. In addition,
these host proteins are not necessary to be present in the
complex for BaMV replication because they were identified
from the replicase that assembled on satBaMV. Therefore,
the involvement of them in BaMV replication needed to

be examined by virtue of the virus-induced gene silencing
method.

To obtain the cDNAs encoding the identified proteins
described above, the expressed sequence tags (ESTs) of
N. benthamiana in NCBI database were searched using the
proteins as queries by the tBLASTn program. The matched ESTs
with their ID numbers are listed in Table 2. A cDNA fragment of
each of the ESTs was amplified by PCR from a leaf cDNA library
of N. benthamiana. The primers used in the PCR reactions and
the sizes of the products are shown in Table 2. Each amplified
fragment was cloned into pTRV2 vector, and the resulting
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FIGURE 5 | Reduction of the positive-sense RNAs of BaMV in the NbXRN4-silenced plants. RNA was extracted from BaMV-infected leaves of
N. benthamiana that had been agroinfiltrated with pTRV1/pTRV2-Luc or pTRV1/pTRV2-XRN4. Leaves were collected from three independent plants per tested
condition. RNA molecules separated on an agarose gel were hybridized with a probe complementary to the 3′ UTR of BaMV. The viral genomic (gRNA) and two
major subgenomic (sgRNA) RNAs are indicated. The relative accumulations of BaMV genomic RNA were compared quantitatively in the right panel. The P-value
represents the comparison of groups by Student’s t-test (tail = 1, type = 1).

vector with pTRV1were co-introduced into N. benthamiana
leaves via agroinfiltration to induce the silence of the target
gene. A variety of phenotypic effects could be observed when
different genes were silenced. The ClpA regulatory subunit of
Clp protease complex-silenced plant grew slowly and showed
yellowish leaves. The S-adenosylmethionine synthetase-silenced
plant showed normal leaves but had underdeveloped buds.
Other silenced plants showed negligible changes in their
appearances. The silenced plants were then inoculated with GFP-
carrying BaMV virions, and the development of foci with green
fluorescence in the inoculated leaves was scrutinized on day 4
after virus inoculation. The differential GFP imaging in leaves, in
comparison with the control, was used to screen potential host
factors. Silencing of the gene encoding NbXRN4 significantly
decreased GFP expression (Figure 4A). The ripening-related
protein, S-adenosylmethionine synthetase, and the respiratory
burst oxidase homolog exerted similar effects as NbXRN4, but
at less extent (data not shown). By contrast, silencing of the
genes encoding NADP+-dependent isocitrate dehydrogenase
and MAP kinase phosphatase-like protein appeared to increase
GFP expression (data not shown). No apparent difference with
respect to GFP expression was noted when the other factors were
silenced.

Decrease of BaMV in N. benthamiana by
NbXRN4 Silencing
Among the screened proteins, NbXRN4 had the most prominent
effect on the development of green fluorescent foci. The protein
extract of the virus-inoculated leaves was analyzed by western
blotting using anti-GFP antiserum to sustain the difference in
fluorescent images. The average amount of GFP, normalized
against L-RubisCo, in leaves of the NbXRN4-silenced plants
was about one tenth of that in the control plants (Figure 4B),
consisting with the fluorescent imaging of leaves. RT-PCR
was performed to confirm the silencing efficiency of NbXRN4

according to the description in Section “Materials and Methods”.
The amplified amounts of the cDNA fragment of NbXRN4
in the plants agroinfiltrated with pTRV1/pTRV2-XRN4 were
considerably lower than that in the control plants, as β-actin
was used as the internal control (Figure 4C). These results
indicate that downregulation of NbXRN4 actually decreased
the accumulation of GFP, a translation product of the ∼1.8-kb
subgenomic RNA of GFP-carrying BaMV.

To know whether NbXRN4 exerted a differential effect on
accumulations of the viral genomic and subgenomic RNAs, the
NbXRN4-silenced plants were inoculated with BaMVvirions and
the total RNA extracted from the leaves 4 days post-inoculation
was analyzed by northern blotting using a probe complementary
to the 3′ UTR of BaMV (Figure 5). Accumulations of both
genomic and subgenomic RNAs in the NbXRN4-silenced plants
dropped to about a quarter of that in the control plants, indicating
that silencing of NbXRN4 could either have an inhibitory effect
on the viral replication or stimulate the turnover of the viral
RNAs. Moreover, the decrease in GFP expression should result
from the general reduction in the viral RNAs.

Since NbXRN4 was initially identified from the putative
replication complex based on satBaMV, it was interesting to know
whether this host protein exerts a similar function regarding
the accumulation of both BaMV and satBaMV. Leaves of the
NbXRN4-silenced plant were co-infiltrated with pERep and
pKSF4, and the P30 fraction was isolated 2 days post infiltration.
Subsequently, the in vitro RdRp activity of P30 for satBaMV
synthesis was assayed. Downregulation of NbXRN4 significantly
decreased the yield of satBaMV (Figure 6), suggesting that
NbXRN4 has a positive effect on the accumulation of genomic
RNA as well as satellite RNA.

The genus Potexvirus consists of many economically
important pathogens such as the type species Potato virus X
(PVX) and Foxtail mosaic virus (FoMV). To test whether the
effect exerted by NbXRN4 is common to other potexviruses, the
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FIGURE 6 | Suppression of satBaMV synthesis by NbXRN4 silencing. N. benthamiana was agroinfiltrated with pTRV1/pTRV2-Luc or pTRV1/pTRV2-XRN4.
After 3 weeks, the leaves of the silencing plants were co-infiltrated with pERep and pKSF4. The P30 fraction was isolated on day 2 after infiltration, and (A) the
in vitro RdRp activity for satBaMV synthesis was assayed as described in Section “Materials and Methods”. (B) The relatively amounts of the BaMV replication
protein used in the activity assays are indicated by western blotting.

NbXRN4-silenced plants were also inoculated with virions of
FoMV and PVX. Accumulations of the viral CP in the inoculated
leaves were assayed on day 4 after inoculation. The average
amount of the accumulated BaMV CP in the NbXRN4-silenced
plants was no more than 10% of that in the control plants
(Figure 7A). As for FoMV, a 60% drop in CP accumulation
was observed in the NbXRN4-silenced plants (Figure 7B). By
contrast, there was no significant effect on the accumulation of
PVX CP (Figure 7C). BaMV replication protein shares 58 and
43% identities in amino acid sequence with that of FoMV and
PVX, respectively. The silencing effect of NbXRN4 appears to
relate to the closeness between replication proteins of BaMV and
other potexviruses.

Increase of BaMV by NbXRN4
Overexpression
A couple of mRNA transcripts that may contain
the coding region of NbXRN4 are available in the
N. benthamiana_transcriptome databases, Sydney University,

with the ID numbers such as Nbv5tr6403855 and Nbv5tr384653.
Further analysis using the BLASTx program against non-
redundant protein sequences revealed that the protein encoded
by those transcripts has 98% identity over the total 982 amino
acid residues with an annotated exonuclease (XP_009765212)
of N. sylvester. Since the prediction of XP_009765212 was based
on the sequenced genome of N. Sylvester, the N. benthamiana
transcripts obtained from the databases of Sydney University are
believed to be able to direct the synthesis of a complete NbXRN4.
A pair of primers was thus designed to clone the coding region
of NbXRN4 from a N. benthamiana leaf cDNA library, and the
clone was used to substitute for the β-glucuronidase gene in
plasmid pBI221.

Silencing of NbXRN4 decreased the accumulations of BaMV
RNAs and the virus-encoded proteins; thus, it was important
to find out whether overexpression of this specific exonuclease
would increase BaMV accumulation.N. benthamiana protoplasts
were co-transfected with pCBG and the transient protein
expression vector pBI221, or pBI-XRN4. The accumulation of
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FIGURE 7 | Differential effects of NbXRN4 on the accumulation of various potexviral CP. The NbXRN4-silenced N. benthamiana was inoculated with
Bamboo mosaic virus (A), Foxtail mosaic virus (B), or Potato virus X (C). The relative expression of the viral coat protein (CP) was analyzed by western blotting
2 days post-inoculation. The sample in each lane was from an individual plantlet. P-values represent comparisons of groups by Student’s t-test (tail = 1, type = 1).

BaMV CP was monitored at 18 and 36 h post-transfection. The
protoplasts co-transfected with pBI221 accumulated less BaMV
CP than those with pBI-XRN4, by 40 and 60% drops at 16
and 36 h, respectively (Figure 8A). This data demonstrated a
positive effect of NbXRN4 on BaMV accumulation. Because this
effect was manifested in protoplasts, it should be regardless of a
cell-to-cell movement-related mechanism.

NbXRN4 contains 982 amino acid residues with an
N-terminal 5′→3′ exonuclease domain conserved in members
of XRN_N family. The active site residues are highly conserved
across XRN1s, the main cytoplasmic RNase associated with
5′→3′ mRNA decay in animals and fungi. XRN4 is the
functional homolog of XRN1 in plants (Kastenmayer and
Green, 2000). The structure of Drosophila XRN1 (PACMAN)
shows two catalytically essential Mg2+ ions coordinated by the
active-site residues Asp35, Asp86, Glu177, Asp205, Asp207,
and Asp288 (Nagarajan et al., 2013). To know whether the
catalytic function of NbXRN4 is critical for promoting the
accumulation of BaMV, Asp55 and Glu206 of the protein

(corresponding to Asp35 and Glu177 of PACMAN, respectively)
were targeted for alanine mutagenesis. The mutated pBI-XRN4
and pCBG were introduced into protoplasts to examine the
mutational effects. Neither of the mutant NbXRN4s was
able to promote the accumulation of BaMV CP (Figure 8B),
indicating a critical role of the RNA hydrolysis function in this
regard.

Irrelevance Between the Function of
NbXRN4 in BaMV Accumulation and the
RNAi Mechanism
Loss of XRN4 in Arabidopsis increased siRNA-mediated mRNA
decay (Gazzani et al., 2004). This effect has been attributed
to the survival of uncapped RNAs in xrn4 mutants, leading
to the formation of double-stranded RNA precursors used for
siRNA biogenesis. Mutations of XRN4 also led to the over-
accumulation of miRNA-generated cleavage products (Souret
et al., 2004). It was thus interesting to investigate whether
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FIGURE 8 | Increase of BaMV CP in the NbXRN4-overexpressed protoplasts. (A) N. benthamiana protoplasts (1 × 105) were co-transfected with 1 μg pCBG
plus 3 μg pBI221, or pBI-XRN4. The accumulation of BaMV CP was analyzed by western blotting 18 and 36 h post-transfection. (B) The accumulation of BaMV CP
in protoplasts transfected with the indicated plasmid (3 μg) plus pCBG (1 μg) was analyzed 18 h post-transfection. pBI-XRN4(D55A) and pBI-XRN4(E206A) were
used to produce mutant NbXRN4 in which the active-site residues Asp55 and Glu206, respectively, were replaced with alanine. The sample in each lane was from
an individual plantlet. P-values represent comparisons of groups by Student’s t test (tail = 1, type = 1).

the decrease in BaMV RNA accumulation in the NbXRN4-
silenced plants results from an enhanced RNA degradation
via an RNAi-related mechanism. The accumulation of siRNAs
derived from BaMV in the virus-infected plants that had
been infiltrated with TRV1/TRV2-NbXRN4 or TRV1/TRV2-Luc
was examined by northern blotting assay. If an RNAi-related
mechanism plays a major role in decreasing the accumulated
level of BaMV RNAs, more BaMV siRNAs in the NbXRN4-
silenced plants may be expected. The result showed a much

less amount of BaMV siRNAs in the NbXRN4-silenced plants
than that in the control (Figure 9A), in agreement with the
accumulated levels of BaMV RNAs in the previous experiment
(Figure 5), suggesting that the decrease in BaMV RNAs in the
NbXRN4-silenced plants should not result from an increased
degradation of the viral RNAs via RNAi mechanisms. Overall,
more BaMV accumulation due to the presence of NbXRN4
will lead to more BaMV siRNAs generated by the RNAi
mechanism.
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FIGURE 9 | Irrelevance between the increase of BaMV by NbXRN4 and the RNAi mechanism. (A) BaMV-specific siRNAs in N. benthamiana plants that had
been agroinfiltrated with TRV1/TRV2-Luc or TRV1/TRV2-XRN4. RNAs in the plants was isolated by a protocol for selective enrichment of small RNAs on day 4 after
BaMV inoculation and analyzed by northern blotting using a probe complementary to the 3′ UTR of BaMV. H denotes the plant without virus inoculation.
(B) Protoplasts from P19 transgenic N. benthamiana were co-transfected with 1 μg pCBG plus 3 μg pBI221, or pBI-XRN4. The accumulations of BaMV CP and
P19 were analyzed by western blotting at 18 h after transfection. The sample in each lane was from an individual plantlet. The P-value represents the comparison of
groups by Student’s t-test (tail = 1, type = 1).

To further investigate the involvement of RNAi mechanisms
in the stimulating function of NbXRN4 in BaMV accumulation,
we tested the effect of NbXRN4 in protoplasts derived
from a P19 transgenic N. benthamiana line. This transgenic
line is able to produce P19 (Figure 9B) and sustains an
enhanced expression of the recombinant VP1 of Foot-and-mouth
disease virus (unpublished data). In addition, overexpression
of P19 in the cell suspension culture of N. benthamiana
leaves greatly enhanced the production of BaMV chimeric
virus particles (Muthamilselvan et al., 2015). If an RNAi-
related mechanism plays a major role, the stimulating effect
of NbXRN4 should be abolished in the presence of the
RNAi suppressor P19. Overexpression of NbXRN4 in the P19
transgenic protoplasts was still able to increase the accumulation
of BaMV CP (Figure 9B), precluding the involvement of
an RNAi-related mechanism in the stimulating function of
NbXRN4.

DISCUSSION

A number of N. benthamiana proteins involved in BaMV
replication or movement have been identified by approaches
using techniques such as cDNA-ALFP and UV-induced
crosslinking. In this study, a protocol was established to isolate
the BaMV replication protein-enriched fraction, from which a
handful of selectively representing proteins were found. Some of
them are able to modulate the accumulation of BaMV according
to the results of subsequent screen. Elucidation of the functions
of those proteins will broaden our knowledges regarding the
interplay between BaMV and its plant hosts.

XRN_N family is typically represented by one cytoplasmic
enzyme (XRN1/PACMAN or XRN4) and one or more nuclear
enzymes (XRN2/RAT1 and XRN3). XRN1 in yeast is the main
cytoplasmic RNase associated with 5′→3′ mRNAdecay (Garneau
et al., 2007; Geisler and Coller, 2012). One of the mRNA turnover
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pathways starts from removal of the 5′ cap by the enzymes DCP1
and -2, and the uncapped RNA is subsequently degraded by
XRN1. In the nucleus, XRN2/RAT1 functions in the processing
of rRNAs and small nucleolar RNAs (Petfalski et al., 1998).
XRN2 also has an important role in transcription termination
by RNA polymerase II (Kim et al., 2004; West et al., 2004).
Three XRNs have been identified from Arabidopsis thaliana,
named AtXRN2, AtXRN3, and AtXRN4. The first two enzymes
are targeted to the nucleus, while the cytosolic AtXRN4, the
functional homolog of XRN1, is responsible for the decay of
uncapped mRNA and miRNA-guided mRNA cleavage products
(Kastenmayer and Green, 2000; Souret et al., 2004). In addition,
AtXRN4 has been shown to act as an endogenous suppressor of
posttranscriptional gene silencing (Gazzani et al., 2004; Souret
et al., 2004).

The involvement of XRN1 or XRN4 in viral infections has
been reported. Production of a small subgenomic flavivirus
RNA, which is important for the pathogenicity of Yellow fever
virus, from the incomplete degradation of the viral genome
requires the 5′→3′ exonuclease activity of XRN1 (Silva et al.,
2010). Silencing of NbXRN4 promoted the accumulation of
tombusvirus RNAs and enhanced the viral RNA recombination
(Jaag and Nagy, 2009), while overexpression of AtXrn4 in
N. benthamiana accelerated the degradation of the viral
RNAs (Cheng et al., 2007). Similarly, silencing of NbXRN4
facilitated both local and systemic infection of Tobacco mosaic
virus (TMV) in N. benthamiana (Peng et al., 2011). To
tombusvirus and TMV infection, NbXRN4 seems to act as
an antiviral agent. However, an enhancer role of NbXRN4
in BaMV replication was observed in this study. Apparently,
diverse biology functions of XRN1 or XRN4 are displayed in
relation to virus accumulation by the same 5′→3′ exonuclease
activity.

Although XRN1 or XRN4 is generally considered a cytosolic
exonuclease, cytoplasm is not necessarily the place where it exerts
its control over virus accumulation. More likely, the exonuclease
may be recruited into the viral replication complexes by different
viruses at specific stages so that it can perform distinctly
biological functions. In addition, the silencing suppressor
function of cytoplasmic XRN4 should not play a determinant
role in the scenario of controlling virus accumulations, because a
universal effect on different viruses would otherwise be expected.
This notion is also supported by the observation that NbXRN4
was still able to increase BaMV accumulation when the universal
silencing suppressor P19 was present.

The effect of NbXRN4 on BaMV accumulation relies on
the exonuclease activity of the enzyme; however, the detailed
mechanism underlying this effect is yet unknown. Aberrant
genomic and subgenomic RNAs without the 5′ cap structure

may be generated during the replication/transcription process
of BaMV. Presumably, NbXRN4 could help to remove those
defective RNAs, which otherwise may interfere with the
replication process by competing with the normal RNAs to the
viral replication machinery. NbXRN4 may also play a role in
editing the 5′ end of the nascent viral RNAs before the RNAs are
modified with the 5′ cap structure. Biochemical characterizations
of NbXRN4 are needed to clarify such speculative mechanisms in
the future.

CONCLUSION

SeveralN. benthamiana proteins thatmay regulate the replication
of BaMV were identified from the putative viral replication
complex in this study. They include cytoplasmic 5′→3′
exoribonuclease (NbXRN4), S-adenosylmethionine synthetase, a
ripening-related protein, a respiratory burst oxidase homolog, a
MAP kinase phosphatase-like protein, and NADP+-dependent
isocitrate dehydrogenase. The major function of NbXRN4
in cytoplasm is to degrade uncapped mRNA and miRNA-
guided mRNA cleavage products. However, it may exhibit
distinct functions in response to the infection of different
viruses. NbXRN4 attenuates the accumulation of TBSV and
TMV by facilitating the degradation of the viral RNAs. By
contrast, NbXRN4 increases the accumulated level of BaMV.
The replication efficiency of BaMV may be improved by the
exoribonuclease activity of NbXRN4.
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