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A B S T R A C T   

Open access new approach methods (NAM) in the US EPA ToxCast program and NTP Integrated Chemical 
Environment (ICE) were used to investigate activities of four neurotoxic pesticides: endosulfan, fipronil, pro-
pyzamide and carbaryl. Concordance of in vivo regulatory points of departure (POD) adjusted for interspecies 
extrapolation (AdjPOD) to modelled human Administered Equivalent Dose (AEDHuman) was assessed using 3- 
compartment or Adult/Fetal PBTK in vitro to in vivo extrapolation. Model inputs were from Tier 1 (High 
throughput transcriptomics: HTTr, high throughput phenotypic profiling: HTPP) and Tier 2 (single target: 
ToxCast) assays. HTTr identified gene expression signatures associated with potential neurotoxicity for endo-
sulfan, propyzamide and carbaryl in non-neuronal MCF-7 and HepaRG cells. The HTPP assay in U-2 OS cells 
detected potent effects on DNA endpoints for endosulfan and carbaryl, and mitochondria with fipronil (propy-
zamide was inactive). The most potent ToxCast assays were concordant with specific components of each 
chemical mode of action (MOA). Predictive adult IVIVE models produced fold differences (FD) < 10 between the 
AEDHuman and the measured in vivo AdjPOD. The 3-compartment model was concordant (i.e., smallest FD) for 
endosulfan, fipronil and carbaryl, and PBTK was concordant for propyzamide. The most potent AEDHuman pre-
dictions for each chemical showed HTTr, HTPP and ToxCast were mainly concordant with in vivo AdjPODs but 
assays were less concordant with MOAs. This was likely due to the cell types used for testing and/or lack of 
metabolic capabilities and pathways available in vivo. The Fetal PBTK model had larger FDs than adult models 
and was less predictive overall.   

1. Introduction 

New approach methods (NAMs) are an ever-expanding range of 
methods with potential for use in chemical risk assessment that include, 
for example, quantitative structure–activity relationship predictions 
(QSAR), in silico (e.g., high-throughput toxicokinetics: httk), high- 
throughput screening bioassays, advanced imaging/scanning tech-
niques, computational modeling (in vitro to in vivo extrapolation: IVIVE), 
omics applications (e.g., transcriptomics, genomics), cell and organoid 

cultures, microphysiological systems, machine learning models, artifi-
cial intelligence and other methods currently in development 
(Schmeisser et al., 2023). NAMs generally do not use intact animals (in 
vivo), but employ technologies, methodologies, or combinations of ap-
proaches to provide information on chemical hazard identification (US 
EPA, 2018). NAMs are becoming more accessible to regulatory agencies 
and researchers for pesticide screening, prioritization and risk assess-
ment through the United States Environmental Protection Agency Office 
of Research and Development (US EPA/ORD) CompTox Chemicals 
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Dashboard (CompTox Chemicals Dashboard (epa.gov)) that includes the 
Toxicity Forecaster (ToxCast) database (CompTox Chemicals Dashboard 
Assay Lists (epa.gov)). The National Toxicology Program (NTP) Inte-
grated Chemical Environment (ICE) (Integrated Chemical Environment 
(ICE) (nih.gov)) includes the Tox21 database. Together ToxCast/Tox21 
have over 1,400 assays and activity data for more than 9,000 chemicals, 
in addition to numerous computational toxicology tools, such as in vitro 
to in vivo extrapolation (IVIVE) models (Abedini et al., 2021; Bell et al., 
2020; Hines et al., 2022; Jeong et al., 2022). NAMs development speeds 
hazard characterization of untold numbers of environmental chemicals 
to help close the current gaps in information on exposure, hazard 
identification and health risk that prevent timely regulatory decision- 
making (Woodruff et al., 2023). The US EPA and NTP CompTox data-
bases and ongoing research are designed to aid in closing these knowl-
edge gaps. According to Buckley et al. (2023) the three strategic 
program aspects involve chemical curation, data development and 
modeling as well as use of the FAIR principles: Findability, Accessibility, 
Interoperability, and Reuse of digital assets (Wilkinson et al., 2016). 
Open access data availability, transparency and work-flow examples 
facilitate NAMs use in risk assessment and other regulatory decisions 
(Buckley et al., 2023). 

Pesticide registration in the United States requires testing in a battery 
of traditional bioassays, including in vivo dose–response animal studies 
to identify effects that could be hazardous to human health (US EPA, 
1998). The purpose is to identify effects that may pose a risk, even if the 
effects in animals aren’t necessarily exact predictions of what would 
occur in humans (Li et al., 2019; Shanks et al., 2009). However, the 
traditional in vivo tests for pesticide registration generally lack mecha-
nistic data, they are costly, and time consuming and animal studies 
involve ethical and relevance issues as well (Hansen & Kosberg, 2019). 
Moreover, the US EPA is charged with eventually eliminating mamma-
lian study requests by 2035 (Thomas et al., 2019). Hence, research and 
regulatory agencies have developed NAMs to supplement, support and/ 
or replace in vivo bioassays submitted for regulatory actions (Abedini 
et al., 2021; Bell et al., 2020; Carstens et al., 2022; Chang et al., 2022; 
Knudsen et al., 2021; Punt et al., 2020; Richard et al., 2020; Williams 
et al., 2017). 

NAMs are used to investigate xenobiotic chemical targets potentially 
involved in molecular initiating events, modes of action (MOA) or 
adverse outcome pathways (AOP) leading to pesticidal in vivo apical 
endpoints. Data are gathered, integrated, and evaluated using comput-
erized mathematical methods to predict points of departure (POD) from 
in vitro assays generated through a series of increasingly refined open 
access CompTox tools. On the CompTox Chemicals Dashboard the 
available ToxCast databases have hundreds of targeted cell-based and 
cell free assays mainly designed to test a single compound at a time. 
Moving forward, new assay methods for hazard identification such as 
high throughput transcriptomics (HTTr) and high throughput pheno-
typic profiling (HTPP) have been developed to improve efficiency in 
testing and increase biological coverage through broad based non- 
targeted assays (Harrill et al., 2021; Nyffeler et al., 2023). HTTr and 
HTPP can provide insights into how a chemical affects a whole cell by 
identifying gene expression as well as phenotypic changes from expo-
sure. Hence, the focus is on a transcriptomic gene expression signature 
or a phenotypic endpoint that can provide a foundation of knowledge to 
be followed by examination of ToxCast targeted assays. Together the 
HTTr, HTPP and ToxCast assays can be used for mechanistic insights and 
potency estimations, as well as screening and prioritization. 

The HTTr signatures, HTPP and ToxCast in vitro data can input into 
ICE-modeled in vitro to in vivo extrapolation (IVIVE) with the 3 
compartment (3COMP), the physiologically based toxicokinetic (PBTK) 
adult and Fetal PBTK models to generate administered equivalent doses 
(AEDHuman: mg/kg) for comparison with measured in vivo PODs (Abe-
dini et al., 2021; Bell et al., 2020; Hines et al., 2022). These comparisons 
can then provide insights into the potential usefulness of the NAMs for 
chemical screening, ranking and hazard characterization. Further, 

where it was previously necessary to understand certain coding methods 
to model data, the ICE models used in this study are open access and do 
not require knowledge of coding. On the other hand, codes are also 
available through links published on the ICE website. 

This case study investigates activities of four neurotoxic pesticides of 
two different classifications (insecticide and herbicide) that are 
currently being used in the United States and/or internationally (Fig. 1). 
Each has been characterized through comprehensive risk assessments by 
the US EPA or state agencies. Endosulfan (ENDO: CAS 115–29-2 
[6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-3H-6,9-methano- 
3λ ~ 4 ~ -2,4,3λ ~ 4 ~ -benzodioxathiepin-3-one]) (CDPR, 2008) is an 
organochlorine insecticide and fipronil (FIP: CAS 120068–37-3 [5- 
amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl) 
sulfinyl]-1Hpyrazole-3-carbonitrile]) (CDPR, 2023) is a phenylpyrazole 
insecticide. Both pesticides block chloride ion channels on the Υ-amino- 
butyric acid alpha receptor (GABAaR). Propyzamide (PRZ: CAS 
23950–58-5; 3,5-Dichloro-N-(2-methylbut-3-yn-2-yl) benzamide) is a 
benzamide herbicide, that is known to induce cytochrome P450s (CYP), 
leading to oxidative stress, however, acute effects are neurotoxic based 
on the increase in landing foot splay in female rats and the decrease in 
motor activity seen in male rats on Day 1 of treatment (US EPA, 2015). 
Carbaryl (CARB: 63–25-2; Naphthalen-1-yl methylcarbamate) (US EPA, 
2017) is a carbamate insecticide that acts by inhibition of acetylcholine 
esterase (AChE). The pesticides were examined in Tier 1 HTTr, and in 
the HTPP assay, as well as Tier 2 ToxCast assays to see what targets are 
identified in the known pathways of these well-characterized chemicals. 
Then the HTTr biological pathway altering concentrations (BPACs) and 
HTPP phenotype altering concentrations (PACs) for the Tier 1 assays 
(reported as Benchmark Dose [BMD], µM) and the activity at 50 % 
concentration (AC50 µM) for the Tier 2 assays are entered into the ICE 
3COMP, PBTK and Fetal PBTK IVIVE models to predict PODs (mg/kg/ 
day). Subsequently they are compared to regulatory PODs based on 
animal models. Further, the potency for each test method was deter-
mined and concordance between the most potent BMD and AC50 and the 
known MOA were reported.Fig. 2.. 

2. Methods 

2.1. Pesticide points of departure for Endosulfan, Fipronil, Propyzamide 
and Carbaryl 

The in vivo PODs for each pesticide were selected from regulatory, 
open access documents that are used for pesticide regulation (CDPR, 
2008, 2023; US EPA, 2015, 2017). The POD for ENDO was based on 
neurotoxic effects (e.g., tremors, convulsions) in pregnant rabbits and a 
Lowest Observed Effect Level was determined (LOEL; CDPR (2008)). 
The POD for FIP was for a neurotoxic effect (increased hindlimb splay) 
in rats determined by Benchmark Dose (BMD) analysis with a Bench-
mark Response of 10 % (BMD10) (CDPR (2023)). The POD for PRZ was 
for acute decreases in motor activity and landing foot-splay in rats based 

Fig. 1. Structures of the neurotoxic pesticides examined in this study.  
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on a LOEL (US EPA (2015). The POD for CARB was for acetylcholines-
terase inhibition (AChE) in the brain determined by BMD analysis with a 
Benchmark Response of 10 % (BMD10) in rats (US EPA (2017), Table 1). 

LOEL/BMD10 values were used in this study as a point of departure 
because they are the lowest measured level of biological activity that is 
comparable to the HTTr BMD/Biological Pathway Altering Concentra-
tion (BPAC), HTPP BMD (PAC) and ToxCast AC50 (Harrill et al., 2021; 
Judson et al., 2014; Sipes et al., 2011b). ToxCast in vitro data were re-
ported as an AC50 (µM), comparable to a LOEL or BMD, as has been 

shown previously (Paul Friedman et al., 2020; Sipes et al., 2011a). The 
AC50 values for the ToxCast assays were preferred as an in vitro POD 
because it provided the greatest confidence in the range where the true 
activity lies (Watt & Judson, 2018). That is, values at the lowest end of 
the dose–response curve may be less certain due to decreased efficacy 
and significance, as well as an increase in noisy data (Filer et al., 2017). 
Since the BMD10 and LOEL derived studies were performed in animals, a 
default uncertainty factor of 10 was added to adjust for interspecies 
extrapolation for differences in toxicokinetic parameters between 

Fig. 2. A tiered approach encompassing New Approach Methodologies (NAM) is described for screening, prioritizing and chemical characterization. Tier 1 involves 
knowledge of chemical structure, along with use of assays with broad coverage, high content, and multiple cell types. Chemicals with predictions of biological targets 
or pathways from Tier 1 can be further characterized in Tier 2 by use of in vitro targeted assays (e.g., ToxCast). Tier 1 High throughput transcriptomics (HTTr) gene 
expression signature and high throughput phenotypic profile endpoint (HTPP) benchmark doses (BMD µM) and Tier 2 ToxCast AC50s (µM) can be used in various 
Integrated Chemical Environment Tools such as in vitro to in vivo extrapolation (IVIVE) models to produce human administered equivalent doses (AEDHuman mg/kg) 
as points of departure (POD). Predicted PODs can be compared to regulatory in vivo PODs after applying an interspecies (animal to human) 10-fold extrapolation (in 
vivo AdjPOD), to assess concordance. 

Table 1 
Acute In Vivo regulatory endpoints for endosulfan, fipronil, propyzamide and carbaryl.  

Animal Strain Treatment Doses mg/kg Acute Effect POD mg/kg/ 
day 

AdjBMD10/LOELa mg/kg/ 
day 

Refb 

Endosulfan: Developmental Rabbit 
Pregnant New Zealand 

White 
Gavage GD 
6–28 

0 (corn oil), 0.3, 0.7, 1.8 Neurotoxicity signs from treatment day 
one 

LOEL 1.8 AdjLOEL 0.18 1 

Fipronil: Acute Rat 
Adult: Crl:CD BR Gavage, single 0 (corn oil), 2.5, 7.5, 25 ↑Hindlimb splay BMD10 2.5 AdjBMD10 0.25 2 
Propyzamide: Neurotoxicity Rat 
Adult: F344/DuCrl Gavage, single 0 (corn oil), 40, 200, 

600 
↓ Motor activity (♂) 
↑ Landing foot-splay (♀) 

LOEL 40 AdjLOEL 4.0 3 

Carbaryl: Acute Rat 
Pup: Male Long-Evans Gavage, single 

PND 11 
0 (corn oil), 3, 7.5, 15, 
30 

↓Brain AChE BMD10 1.46 AdjBMD10 0.146 4 

Abbreviations: Adj: adjusted; BMD10: Benchmark Dose (10% benchmark response); GD: Gestation Day; LOEL: Lowest-observed-effect-level; PND: Postnatal Day. 
a - Lowest effect levels (BMD10/LOEL) were divided by a default interspecies factor of 10 to account for animal to human (interspecies) variability. 
b -1. CDPR (2008), 2. CDPR (2023), 3. US EPA (2015), 4.US EPA (2017). 
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animal and human (AdjPOD) (US EPA, 2002b; WHO, 2014, 2017). 
Interspecies adjustments were made because most of the in vitro assays 
were performed with cultured human cells and because the ICE IVIVE 
models were designed using human pharmacokinetic parameters when 
possible. 

2.2. Tiered in vitro New approach methodologies 

The future of computational toxicology for hazard identification, risk 
assessment and other chemical characterization has been represented as 
a Tiered approach (Fig. 1) (Thomas et al., 2019). 

Tier 1 is comprised, in part, of acute (6–24 h) non-targeted assays 
with broad biological target coverage and high content readouts that can 
be performed in a variety of cell types (Thomas et al., 2019). Tier 1 
methods that can increase the efficiency of detecting chemical bioac-
tivity at molecular targets include: 1) HTTr where transcripts are 
measured in response to chemical treatment in various cultures of 
human cell lines (e.g. MCF7, U-2 OS and HepaRG) followed by con-
centration–response analysis of gene expression signature scores (Harrill 
et al., 2021). The assays produce transcriptional BPACs that potentially 
align with ToxCast in vitro assays available on the CompTox Chemicals 
Dashboard and identify gene expression signatures associated with 
molecular targets. The most potent and efficacious BPACs can corre-
spond to known mechanisms for tested chemicals; 2) HTPP methodol-
ogies where similar or the same cultured human cell lines are 
fluorescently labeled to produce images of subcellular structures as well 
as quantify cellular morphological changes as a result of chemical 
treatment (Nyffeler et al., 2023). The version of the CompTox Chemicals 
Dashboard (version 2.2.1) used in this study reported HTPP assay results 
in U-2 OS cells. HTPP methods result in quantifiable and reproducible 
visible changes in cell morphology. 

Tier 2 can involve targeted in vitro ToxCast assays as are found on the 
CompTox Chemicals Dashboard (CompTox Chemicals Dashboard (epa. 
gov)). Targeted assays are performed using cell, or cell-free methods 
and are designed to help characterize bioactivity and chemical potency 
and identify potential AOPs or MOAs. This tier follows from the 
compilation and analysis of Tier 1 data (“orthogonal confirmation”: 
Thomas et al. (2019)). 

Note that while HTTr assays reported on the CompTox Chemicals 
Dashboard (v2.2.1; accessed 10–2023; CompTox Chemicals Dashboard 
(epa.gov)) were performed with MCF-7, U-2 OS and HepaRG cells, 
where the HTPP assay reportedly used only U-2 OS. While the cell types 
used in Tier 1 are not neuronal cells, and the four pesticides are 
neurotoxic, the methods are designed to detect generalizable and 
broadly applicable activities that can be applied to detection of many 
potent biological perturbations (BPAC/PAC) through effects on gene 
expression or changes in cell morphology (Bray et al., 2016; Harrill 
et al., 2021). In addition, the CompTox Chemicals Dashboard is often 
updated to include more assays and high throughput methods. 

HTTr, HTPP and ToxCast assays from both Tiers were used in high 
throughput toxicokinetic models (e.g., ICE) IVIVE to generate AEDHuman 
PODs to compare to in vivo Regulatory PODs. Chemical potency and 
concordance with in vivo AdjPODs and mechanistic pathways are also 
described. 

2.3. High throughput Transcriptomics, high throughput phenotypic 
profiling endpoints and ToxCast in vitro data 

2.3.1. High throughput transcriptomics (HTTr) 
Tier 1 HTTr is a process used to profile gene mRNA levels expressed 

after chemical treatment in different human cell lines (e.g., MCF-7, U-2 
OS, HepaRG) (Harrill et al., 2019; Harrill et al., 2021). Use of diverse cell 
types can facilitate detection of a wide variety of gene expression 
changes. For example, molecular targets expressed in the MCF-7 human 
cell line include estrogen receptor alpha (ESR1), androgen receptor 
(AR), peroxisome proliferator activating receptor alpha and gamma 

(PPARα and PPARΥ, respectively), 3-hydroxy-3-methylglutaryl-CoA 
reductase (HMGCR), and thyroid hormone receptor alpha (THRα) 
(Harrill et al., 2021). 

Data were obtained from Templated Oligo with Sequencing Readout 
(TempO-Seq) whole transcriptome assay (Harrill et al., 2021). Gene 
expression fold-change profiles for each treatment were modeled to 
obtain signature enrichment scores based on the fold changes of genes 
within a signature versus genes not included in the signature. Test 
chemicals and gene expression signature scores were then analyzed by 
tcplfit2 (R-Package available for download: CRAN - Package tcplfit2 
(r-project.org). Continuous hit-calls, calculated by criteria provided 
within the tcplfit2 R-package have a value between zero and one, with 
values closer to one indicating a higher likelihood of a biological 
response (i.e. hit) (Sheffield et al., 2021). Continuous hit-calls of 
signature-level enrichment scores identified molecular targets associ-
ated with the transcriptional bioactivity (Sheffield et al., 2021). Hit-call 
values at 0.9 and greater were acceptable for this study since the higher 
values indicate greater confidence in classifying a modeled endpoint as a 
hit. 

Potency is an estimate of the BPAC where the winning model curve 
crosses the benchmark response (BMR = [1.349] x [signature-specific 
noise level]) (Filipsson et al., 2003; Thomas et al., 2007; Yang et al., 
2007). BMD upper and lower bounds were calculated by the profile 
likelihood method (Banga et al., 2002). In Supplemental Tables 1-4 
there are columns entitled “QC Flag” with no data listed. However, QC 
metrics used for processing and analyzing HTTr data were detailed in 
Harrill et al. (2021) and included, among others, filtering out cytotoxic 
treatments that “no longer represent molecular initiating events”. 

2.3.2. High throughput phenotypic profiling (HTPP) 
Tier 1 HTPP is a method of measuring phenotypic changes in cells (e. 

g., U-2 OS cell lines) by labeling a variety of organelles with fluorop-
robes (Gustafsdottir et al., 2013; Nyffeler et al., 2020). Data are pro-
duced as cellular images where morphological (e.g., structure or form) 
changes can occur after chemical exposures. HTPP fluorescent cyto-
chemistry and high-content imaging identify changes in organelles (e.g., 
nucleus, nucleoli, endoplasmic reticulum [ER], golgi apparatus [G], 
mitochondria [Mito], actin cytoskeleton [A], plasma membrane [P]) 
and/or cellular shape to characterize dose–response effects. There are 
1350 endpoints that can be analyzed in HTPP. This collection of end-
points is composed of 1300 phenotypic features, 49 feature categories, 
and 1 global endpoint (Nyffeler et al., 2023; Nyffeler et al., 2020). A 
category (channel_module_compartment) consists of a collection of 
features, or channels (e.g., DNA, RNA, ER, AGP, Mito), modules (e.g., 
feature types including intensity, texture, localization of fluorescent 
signal, shape and position of the cells) and compartments (cell 
compartment or organelle) (Nyffeler et al., 2020). As an example, one of 
the 49 categories is reported as “DNA_compactness_nuclei”, indicating 
DNA “channel”, compactness feature “module” and nuclei 
“compartment”. 

The global and category-level Mahalnobis distance metrics are sub-
ject to concentration–response modeling using the tcplfit2 R-package 
(version 0.1.0) (Sheffield et al., 2021). Mahalanobis distance data uti-
lized nine BMD models (Poly1, Poly2, Power, Hill, Exp2-Exp5, constant: 
Benchmark Response = 1) to determine a BMD (µM) for each category 
(Nyffeler et al., 2021; Nyffeler et al., 2023). Curves with a hit-call 
probability of ≥ 0.9 were those considered active and a chemical was 
considered “phenotypically active” when a BMD could be established by 
a “Global Mahalanobis” approach or in a category by use of the “Cate-
gory-level Mahalanobis” (Nyffeler et al., 2023). The category-level curve 
fitting Mahalanobis distance metrics is more applicable for POD deter-
mination because it is shown to have higher sensiti vity and lower risk 
for high-potency false positives when compared to the feature fitting 
approach (Nyffeler et al., 2021; Nyffeler et al., 2023). HTPP data 
selected for further analysis were determined as follows: 1) Initially data 
were sorted for hit-calls at > 0.9; 2) data were sorted for categories with 
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BMD concentrations at the global level or below and 3) a PAC defined as 
“…median potency of the most sensitive (i.e., potent) category, 
depending which value is lower” was determined (Nyffeler et al., 2020). 
The POD is synonymous with the PAC for category level fitting. An HTPP 
endpoint is described as a compilation of morphological features or 
latent variables that are subject to concentration–response modeling to 
determine if they are altered as a function of dose, 4) final data selec-
tions for this study were then based on most potent BMD. 

In Supplemental Tables 1-4 there are columns entitled “QC Flag” 
with no data listed. However, QC metrics for processing and analyzing 
HTPP data include filtering out of cytotoxic treatments in the burst re-
gion prior to the concentration–response modeling (Nyffeler et al., 
2023). It was noted in Nyffeler et al. (2021) that prior to BMD modeling 
of HTPP data, highly cytotoxic treatments were removed by excluding 
all tested concentrations above the cell viability lowest effective con-
centration (CV.LOEC). 

2.3.3. ToxCast assay Criteria 
ToxCast results downloaded from the open access: CompTox 

Chemicals Dashboard (epa.gov) (version 2.2.1, May 2023) (Supple-
mental Table 1) were examined for active hit-calls. ToxCast data were 
comprised of high throughput in vitro and in vivo (zebrafish) assays from 
numerous vendors and platforms (US EPA, 2023; Williams et al., 2017). 
Assays were performed with a variety of cells, including rat cortical 
neurons (primary brain cells), human cells (embryonic stem cells [hESC 
H9], embryonic kidney cell line [HEK293T], primary neural progenitor 
cells [hNPC], liver [primary; HepG2: hepatocyte carcinoma cell line; 
HepaRG: bi-potential hepatoma-derived cell line], and ovarian cell line 
[VM7]). Cell free (NVS: Novascreen) assays used human CYP1A1, 
CYP2C19, CYP2C9, CYP2J2 and rat CYP2A1 enzymes and cell-free 
deiodinase type 3 (DIO3) enzymes described on the CompTox Chem-
icals Dashboard for each chemical. Biological molecular targets were 
evaluated using ToxCast assays with data analyzed by concen-
tration–response modeling resulting in one or a series of AC50s (Judson 
et al., 2011). The data downloaded from the CompTox Chemicals 
Dashboard had been filtered through the ToxCast Pipeline (tcpl) to 
evaluate curve fits and AC50 levels for quantitative evaluation (Filer, 
2019; Filer et al., 2017). Final selection of active hit-calls associated 
with AC50s was facilitated by the presence or absence of flags (tcpl level 
6), in addition to quantitative uncertainty evaluations related to curve- 
fitting at tcpl level 7 (Williams et al., 2017). Flags related to curve-fits 
were generally: “Borderline active”, “Only highest conc above base-
line, active”, “Less than 50 % efficacy”, “Hit-call potentially confounded 
by overfitting”, “Noisy data” (Supplemental Tables 1-4) (Filer, 2019; 
Filer et al., 2017). Assays with more than two flags were excluded from 
further analysis in this study because reproducible curve-fitting de-
creases with greater than or equal to three flags (Paul Friedman et al., 
2020). Assays filtered and selected for further analysis in this study were 
either directly or peripherally associated with the MOA/AOP. Peripheral 
associations can include activity with nuclear receptors, or CYPs that are 
known to be involved with metabolic activation, or targets associated 
with chemical Phase II metabolism (e.g., glutathione transferase or 
sulfotransferase). In vivo zebrafish assays were excluded because for the 
four chemicals of interest neurotoxicity was not targeted. 

Further selection occurred for hit-calls below the cytotoxicity lower 
limit for each chemical (data provided on the CompTox Chemicals 
Dashboard (epa.gov) and in Table 2). This value is greater than or 
equal to three median absolute deviations (MAD) below the median 
cytotoxicity limit (Judson et al., 2016). Assays at or below the cyto-
toxicity lower limit are more likely to represent true active hit-calls, as 
they are outside the burst region. 

2.4. Z-score Calculations 

After sorting the in vitro ToxCast assays of interest, a Z-Score was 
calculated to examine the likeliness that an active hit-call is associated 

with a specific chemical-target interaction that the assay is designed to 
assess (Judson et al., 2016). The cytotoxicity median and three MAD 
below the median (cytotoxicity lower limit) were reported for each 
chemical (Judson et al., 2016). A Z-Score of 3 or greater is an indication 
of chemical-target specificity for a given assay and the result is likely an 
active-hit-call below the range of cytotoxicity or cell stress (Paul 
Friedman et al., 2016; Zhang et al., 1999). Included in the Z-Score 
calculation is a “global cytotoxicity MAD” which is the median of the 
median absolute deviation of the logAC50 based on cytotoxicity distri-
butions across all chemicals (Judson et al., 2016; Kleinstreuer et al., 
2017). Hence there is a cytotoxicity MAD on a per chemical basis and a 
global cytotoxicity MAD across all chemicals. The values are used to 
calculate the Z-Scores as shown in Equation 1: 

Z − Score(chem, assay)= ([ − logAC50(chem, assay)] − median [

− logAC50(chem, cytotox) ])/GlobalCytotoxMAD
(1)    

• ‘chem, assay’: Chemical and assay of interest  
• -logAC50 (chem, assay): Negative log of an AC50 for a chemical in an 

assay of interest.  
• ‘-logAC50′ for the chemical and assay of interest  
• ‘-logAC50′ for the chemical-specific median cytotoxicity limit  
• -logAC50 (chem, cyto): Negative log of the AC50 for a chemical- 

associated median cytotoxicity limit.  
• ‘Global Cytotox MAD’: ‘median of the median logAC50 cytotoxicity 

assay distributions across all chemicals’ = 0.29 log units (Judson 
et al., 2016) 

Z-Score calculations were performed in Excel (Windows 11 v. 22H2) 
with values rounded to the nearest whole number (Supplemental Table 
2). 

2.5. Integrated chemical Environment (ICE) models 3COMP, PBTK and 
Fetal models 

The ICE 3COMP, PBTK and Fetal PBTK oral models incorporate the 
US EPA httk R package, bioactivity (ToxCast AC50s µM), physicochem-
ical and chemical-specific toxicokinetic (TK) characteristics (e.g., 
metabolic properties) and reverse dosimetry parameters to predict in 
vivo exposures (AEDHuman mg/kg/day) (ICE: https://ice.ntp.niehs.nih. 
gov/; version 4.0; updated 3/2023; Hines et al. (2022); Unnikrishnan 
et al. (2023); Abedini et al. (2021); Bell et al. (2020); Kapraun et al. 
(2022)). The oral route is the most likely means of exposure based on the 
pesticide use on crops. The models represent adult or fetal parameters 
that are not specific to sex. The “default” values option on the ICE 
dashboard was selected for absorption, distribution, metabolism, and 
elimination (ADME) parameter inputs. This option uses experimentally 
measured values when available, and in silico predictions when 
measured data were not available. 

The 3COMP oral model used adult TK parameters. It has perfusion- 
limited compartments (i.e., equilibrium is achieved rapidly for tissue, 
RBC and plasma compared to flow of blood) comprised of gut, liver, and 
rest-of-body (e.g., fat, brain, bones). The “Solve_3comp” model from the 
open access ICE tool calculates plasma concentration over time. Hepatic 
metabolism and passive glomerular filtration of chemicals is the 
assumed form of elimination (Breen et al., 2021; Hines et al., 2022; 
Pearce et al., 2017) (ICE Tools (nih.gov)). 

The “Solve_pbtk” model used adult TK parameters in a multi-
compartment (gut, artery, vein, lung, liver, kidney, rest-of-body) func-
tion in the open access ICE tool. Cmax is calculated for oral exposure at 
the 50th percentile using the average values for the PBTK parameters 
over time. Each compartment is perfusion-limited and has mass balance 
differential equations describing rate of change for quantity of chemical 
(Breen et al., 2021; Hines et al., 2022; Pearce et al., 2017) (ICE Tools 
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(nih.gov); calculations in Supplemental Table 4). The PBTK model was 
updated to incorporate US EPA’s httk R package (version 2.2.2: released 
February 2023). 

The human gestational, or Fetal PBTK model incorporates both 
maternal and fetal parameters from in vitro chemical measurements 
(Kapraun et al., 2022). Physiological parameter changes for mother and 
fetus during gestation days 91 to 280 were modeled. Data used in the 
model represented primarily healthy, low-risk Caucasian women with a 
single fetus, and an uncomplicated pregnancy. The gestational age was 
assumed to be the fetal age plus two weeks. MATERNAL changes 
measured included: 1) body weight, 2) plasma volume, 3) placenta 
volume, 4) adipose tissue mass, 5) cardiac output, 6) kidney blood flow, 
7) glomerular filtration rate and 8) placental blood flow. FETAL changes 
measured included: 1) fetal volume, 2) liver mass, 3) kidney mass, 4) 
amniotic fluid volume, 5) blood flow through the placenta and 6) blood 
flow through the ductus arteriosus (Kapraun et al., 2019). Parameter 
changes not included: 1) maternal metabolic enzyme expression and 
activity, 2) fetal metabolic enzyme expression and activity, 3) fetal renal 
clearance capacities over development, and 4) maternal and fetal 
plasma protein binding (Kapraun et al., 2022). The Solve_fetal_pbtk 
utilizes the httk R package (version 2.2.2) to capture chemical distri-
bution following an oral exposure as a function to solve for maternal and 
fetal compartment concentrations over time. Each tissue compartment is 
perfusion rate-limited, with the rate of change chemical concentration 
per tissue compartment described by mass balance differential equa-
tions. Chemical elimination is assumed to be by hepatic metabolism and 
passive glomerular filtration. 

Reverse dosimetry calculations for acute oral exposures for humans 
were performed with an open access tool available on the ICE dash-
board. Inputs into the models were BMDs from HTTr signatures and 
HTPP data (µM) and AC50s (µM) from ToxCast. Outputs were AEDHuman 
(mg/kg/day) that were subsequently compared to in vivo AdjLOEL/ 
AdjBMD (mg/kg/day). 

The fold-differences (FD) were determined between 3COMP or PBTK 
(adult or fetal) AEDHuman (mg/kg/day) and regulatory AdjPODs. A 10- 
fold-difference between modelled and in vivo data is an acceptable 
range allowing for 3X for intraspecies variation due to TK differences 
among humans and 3X due to model uncertainty (total ≃ 10) as the 
3COMP, PBTK and Fetal PBTK models assume that ADME involves only 
a specific set of compartments (Dourson et al., 1996). FD predictions 
were considered to have “high concordance” if ≤ 5, be “concordant” if >
5 < 10 or have “low concordance” if > 10. 

3. Results 

3.1. In vivo points of departure 

Regulatory LOELs and BMDs were available from open access reports 
for each chemical and were not determined by the author of this study: 
ENDO CDPR (2008); FIP CDPR (2023); PRZ US EPA (2015) and CARB 
US EPA (2017). A BMD at the 10 % response level (BMD10) is a statistical 
calculation of a LOEL performed by CDPR and US EPA to obtain toxi-
cological endpoints for FIP and CARB for single effect dose-responses 
(Table 1). ENDO and PRZ LOELs were determined from a range of 
neurotoxic effects. Interspecies default 10-fold uncertainty factors were 
applied to each chemical LOEL/BMD to produce AdjPODs and subse-
quent comparisons of ENDO and PRZ with their respective AEDHuman 
values, shown below, are based on their comprehensive AdjLOEL effects. 

3.1.1. Endosulfan (ENDO) 
ENDO functions acutely as a non-competitive inhibitor in the central 

nervous system (CNS) by binding to specific subunits on the GABAa 
receptor subunit b3 that results in blockage of Cl- channels (Abalis et al., 
1986; Casida, 1993; Ffrench-Constant et al., 2000; Lawrence & Casida, 
1984; Ratra et al., 2001; Sutherland et al., 2004). GABAa receptors are 
the principal inhibitory neuroreceptors in the mammalian brain and 

antagonism of GABAergic neurons in the CNS causes generalized brain 
stimulation (Abalis et al., 1986; Cole & Casida, 1986; Gant et al., 1987; 
Ozoe & Matsumura, 1986) or uncontrolled excitation (Kamijima & 
Casida, 2000; Ratra et al., 2001). This effect is observed acutely in both 
humans and animals, where clinical signs were recorded. The acute 
LOEL for ENDO is 1.8 mg/kg/day from a developmental toxicity study in 
rabbits described in the Risk Characterization Document (CDPR, 2008) 
and the Risk Eligibility Decision (RED) (US EPA, 2002a). Although a 
developmental study in pregnant rabbits involves 22 days of gavage 
dosing, neurotoxic effects (hyperactivity) were observed within the first 
few days of treatment and that is why this study was selected for the 
acute oral LOEL (Table 1). The regulatory LOEL was adjusted 10-fold to 
extrapolate from rabbit to human (AdjLOEL = 0.18 mg/kg/day). 

3.1.2. Fipronil (FIP) 
Electrophysiological and ligand binding studies confirm that FIP 

reversibly and noncompetitively blocks passage of chloride ions through 
GABAa b3 receptors in the CNS (Ffrench-Constant et al., 1991; Ffrench- 
Constant et al., 1993; Mohamed et al., 2004). Humans exposed to FIP 
show symptoms such as headache, nausea, and seizures, which are 
associated with antagonism of GABAa receptors in the brain (Mohamed 
et al., 2004). Induction of the nuclear receptors PXR, and CAR are 
associated with the effects of FIP on rodent liver gene expression 
(Roques et al., 2013). The California Department of Pesticide Regulation 
selected an acute neurotoxicity study in rats as the regulatory POD for 
FIP (CDPR, 2023). The study showed decreased hindlimb splay at 2.48 
mg/kg after a BMD10 (BMDS, version 2.6; BMR = 10) was calculated. A 
10-fold factor adjustment was added to extrapolate from rat to human 
(AdjBMD = 0.25 mg/kg/day) (Table 1). 

3.1.3. Propyzamide (PRZ) 
An acute oral gavage neurotoxicity study in adult rats showed an 

increase in landing foot splay (female) and decrease in motor activity 
(males) only on day one of testing post-treatment at the LOEL of 40 mg/ 
kg/day (US EPA, 2015). There is not currently an MOA for acute PRZ 
neurotoxicity and there were no other studies in the database showing 
evidence of neurotoxicity regardless of animal strain or treatment 
duration. However, initiation of peroxisome proliferation is associated 
with oxidative stress (Corton et al., 2014), which is also associated with 
neurotoxicity (Sayre et al., 2008). Effects on motor activity and landing 
foot-splay were reversed by post-treatment day 2. There was not a no 
effect level in the study and 40 mg/kg was determined by the US EPA to 
be the acute oral LOEL (US EPA, 2015) (Table 1). A 10-fold adjustment 
was added to the LOEL to extrapolate from rat to human (AdjLOEL = 4.0 
mg/kg/day). 

3.1.4. Carbaryl (CARB) 
The acute CARB MOA is through inhibition of AChE in plasma, brain 

and red blood cells by carbamylation of the serine hydroxyl group at the 
active site on the enzyme in humans and animals (Moser et al., 2010; US 
EPA, 2017). Acute AChE inhibition resulted in increased acetylcholine 
concentrations at the neuronal or neuromuscular synapses in the central 
and/or peripheral nervous systems and ultimately neurotoxicity seen as 
decreased neuromuscular function (US EPA, 2017). However, this pro-
cess is rapidly reversible, allowing for AChE reactivation after a peak 
inhibition (15–45 min post-treatment) and recovery within minutes or 
hours (US EPA, 2017). A study in male rats showed increased brain 
AChE inhibition after a single acute dose of CARB on PND 11 to produce 
a BMD10 of 1.46 mg/kg (Moser et al., 2010; US EPA, 2017) (Table 1). 
This value was selected for the acute CARB POD. The BMD10 was 
adjusted for 10-fold extrapolation from rat to human (AdjBMD = 0.146 
mg/kg). 
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3.2. Summary of high throughput Transcriptomics, high throughput 
phenotypic profile and ToxCast data 

A summary of the in vitro HTTr, HTPP and ToxCast assay data is in 
Table 2 (Supplemental Tables 1-4). HTTr signatures evaluated in three 
cell types (MCF-7, U-2 OS, HepaRG) had a range of 218 (PRZ) to 1510 
(FIP) gene expression signatures identified and 3 % (CARB) to 5 % (PRZ) 
with hit-calls of greater than 0.9 (of 1.0) (Harrill et al., 2021). HTPP had 
1350 endpoints examined for each chemical in one cell type (U-2 OS) 
but active hit-calls (>0.9) were only 1 % (FIP, CARB), 5 % (ENDO) and 
PRZ was inactive at the category level (Nyffeler et al., 2023). While over 
1000 ToxCast assays were performed for each chemical, only small 
percentages were active hit-calls (12–32 %), and even fewer were 
selected for further analysis (5–11 %) because of relevance to known, or 
presumptive, metabolic pathways/MOA/AOPs. ToxCast assays were 
further sorted for neuronal, Phase I/II metabolism and hormonal/ 
endocrine targets to investigate where the most sensitive targets may 
occur in each category. 

3.3. NAMs predictions from Tiers 1–2 

Tables 3 to 6 show chemical characterizations using the NAMs for 
HTTr, HTPP and ToxCast assays, ToxCast Z-Scores, IVIVE predictions 
(AEDHuman: mg/kg), and fold differences between predicted AEDHuman 
and in vivo AdjLOEL/BMDs. Although the cell lines used in the HTTr and 
HTPP were not neuronal cells, gene expression signatures associated 
with potential neurotoxicity from ENDO (MCF-7: olfactory nervous 
system), PRZ (MCF-7: Neurological: Distal sensory impairment), and 
CARB (HepaRG: Cholinergic) exposures were detected with HTTr assays 
(Tables 3, 5 and 6). This indicates that neurotoxicity-related tran-
scriptomic gene expression signatures in MCF-7 and U-2 OS were 
detected even though the treated cells were not specifically neurons. 
Such activities can be promiscuous and not explicitly associated with a 
molecular initiating event or they can reveal a gene expression signature 
associated with neurotoxic effects that warrants further investigation 
even if it occurs in a non-neuronal cell type (Harrill et al., 2021). 

HTPP active hit-calls in U-2 OS cells identified DNA as the most 
potent target with ENDO and CARB, but mitochondria with FIP. These 
endpoints in non-neuronal cells may or may not broadly indicate the 
most sensitive targets regardless of cell type (Tables 3-4 and 6). HTPP 
was not active with PRZ, and in this case, the method should be inter-
preted with caution because PRZ was active with HTTr and ToxCast 
(Table 4). 

Z-Scores were calculated only for ToxCast assays because global 
cytotoxicity MAD and individual chemical cytotoxicity median values in 
the cytotoxicity burst region were available on the CompTox Chemicals 
Dashboard and in Judson et al. (2016). Although somewhat similar burst 
activity, described as “nonspecific bioactivity or cellular stress” (Harrill 
et al., 2021), occurred in HTTr assays the median cytotoxicity limit re-
ported for HTTr on the CompTox Chemicals Dashboard pertained to 
values associated with ToxCast assays and not to HTTr (Personal 
communication J. Harrill, 2023). However, non-specific molecular 
target-driven transcriptional responses or changes were reported to 
generally occur at concentrations greater than 10 µM in HTTr assays 
(Harrill et al., 2021). Assays with Z-Scores were not calculated for the 
HTPP assay results because, again there was no global cytotoxicity MAD, 
or median values reported on the CompTox Chemicals Dashboard for the 
four chemicals examined. 

Only assays with Z-Scores of three or greater, indicating chemical- 
target specificity, were selected for further analysis by 3COMP, PBTK 
and Fetal PBTK models. Data for either the 3COMP or the PBTK models, 
performed with adult TK parameters were reported in Tables 3-6, 
depending on which model produced the lowest FDs. When assays were 
similar, or identical, but assessed through different gene expression 
signature sources (HTTr), HTPP categories, or were performed at 
different timepoints (ToxCast: e.g., CYP assays performed at 6, 12 and 

Table 2 
Summary of HTTr, HTPP and ToxCast Assay Results.  

Parameter Endosulfan Fipronil Propyzamide Carbaryl 

High Throughput Transcriptomics (HTTr): Tier 1 
Total number of active 

signaturesa 
1307 1510 218 318 

High Throughput Phenotypic Profile (HTPP) b: Tier 1 
Total Number of Feature 

Level Endpointsc 
1300 1300 1300 1300 

Total Number of Active 
Feature-Level 
Endpointsc 

497 (38.2 
%) 

600 
(46.1 %) 

101 (7.7 %) 337 
(25.9 %) 

Total Number of 
Category-Level 
Endpointsd 

49 49 49c 49 

Total Number of Active 
Category-Level 
Endpointsd 

39 (79.5 %) 43 (87.8 
%) 

0e 27 (55.1 
%) 

BMD of the Most 
Sensitive Categorye 

0.45 µM 4.96 µM – e 15 µM 

Total Number of Global 
Endpointsf 

1 1 1 1 

Total Number of Active 
Global Endpointsf 

1 1 0 e 1 

BMD of the Global 
Endpoint 

14.74 µM 13.72 
µM 

– 47.12 µM 

Phenotype Altering 
Concentration (PAC) 

0.45 µM 4.96 µM – 15 µM 

ToxCast Assays: Tier 2 
Total Number of Tests 

Performed 
1208 1100 1103 1173 

Total Reported Active 
Hit-Calls (% of Total 
Tested) 

390 (32 %) 334 (30 
%) 

127 (12 %) 148 (13 
%) 

Selected Active Hit-calls 
(% of Total Active) g 

25 (6 %) 22 (6.5 
%) 

7 (5 %) 16 (11 
%) 

Selected Active Hit-Calls 
Based on Neuronal 
Targets 

13 10 0 2 

Selected Active Hit-Calls: 
Phase I/II Metabolism 

5 8 7 12 

Selected Active Hit-Calls 
Based on Hormonal/ 
Endocrine Targets 

6 4 0 1 

Cytotoxicity Lower Limit 
(µM) 

7.466 µM 7.108 
µM 

6.701 µM 7.108 µM 

Cytotoxicity Median (µM) 42.013 µM 40 µM 37.706 µM 40 µM 

a- Active signature hit-calls were ≥ 0.9 of 1.0. There were different tran-
scriptomic signature BMD values for the same target depending upon human cell 
line tested (e.g., U-2 OS: human osteosarcoma; MCF-7: human mammary 
adenocarcinoma; HepaRG: biopotential hepatoma-derived cell line). 
b- The HTPP was performed in human osteosarcoma cell line: U-2 OS. 
c- Each chemical had 1300 feature level endpoints evaluated (e.g., intensity, 
texture, localization of fluorescent signal, shape, and position of the cells). 
Active hit-calls were ≥ 0.9. 
d- Categories consist of a collection of features or channels (i.e., channel_mo-
dule_compartmet) and active hit-calls were ≥ 0.9. 
e-Categories with the lowest (most sensitive) BMDs were selected for further 
analysis. PRZ is inactive in the HTPP assay according to the criteria that the 
global endpoint or at least one category-level endpoint be active (i.e. hit-call ≥
0.9) to define a Phenotype Altering Concentration (PAC). The total number of 
endpoints with hitcall ≥ 0.9 are most accurately 101 (7.5 %) and include indi-
vidual features. However, only category level endpoints were selected for 
further analysis. The Global BMD for PRZ of 285 µM was above the highest dose 
tested of 100 µM as shown on the ToxCast Chemicals Dashboard: Propyzamide - 
Chemical Details (epa.gov)) and the Global Hit-call was 0.0036, which is below 
the acceptable hit-call cutoff of 0.9 indicating that PRZ was inactive in the HTPP 
assay. 
f-The Global HTPP BMD was made up of all features examined (~1300) and 
active hit-calls were ≥ 0.9. 
g-Active hit-calls were below the cytotoxicity lower limit, with ≤ 2 flags, and 
were associated with the MOA or metabolic pathway. The assay with the lowest 
AC50 was selected in the case of duplicate assays performed at different time 
points. Assays performed in humans were selected over the same assay per-
formed in other species, when possible. 
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Table 3 
Endosulfan: HTTr Signatures, HTPP, and ToxCast Modeled Chemical Characterization.  

a-Fold difference (FD) between in vivo AdjPOD (0.18 mg/kg) and 3COMP AEDHuman mg/kg. The 3COMP model produced AEDHuman mg/kg PODs closest to in vivo 
AdjPOD for HTTr, HTPP and ToxCast. 
b-Analysis by 3COMP modeling using BMDs from HTTr or HTPP assays or AC50s from ToxCast assays. 
c-Global BMD: 14.74 µM. 
d-Number of Features measured in a designated category (Nyffeler 2021). 
e-TOXCAST cytotoxicity lower limit/cytotoxicity median: 7.466/42.013 µM. 
f- Z-Score (chem, assay) = ([-logAC50 (chem, assay)] – median [-logAC50 (chem, cytotox)]) ÷ Global Cytotox MAD (complete description in Judson et al. (2016)). No Z- 
Score calculations for HTTr and HTPP due to lack of cytotoxicity median values specific to the HepaRG, MCF-7 and U2OS cell types available on CompTox Chemicals 
Dashboard. 
g-Nuclear receptors related to general xenobiotic metabolism primarily in liver. 
h-Nuclear receptors related to endocrine hormone metabolism. 
Abbreviations: AC50: concentration at 50 % activity; AEDHuman: administered equivalent dose in humans; BMD: benchmark dose; 3COMP: 3 compartment IVIVE 
model; CYP: cytochrome P450; DNT: neurodevelopment; ER: estrogen receptor; ERE: estrogen receptor element: FD: fold difference between in vivo AdjPOD and 
predicted AEDHuman POD; HepaRG: human liver cell line with limited metabolic capacity; HWHM: half width at half maximum for normal distribution; in vivo AdjPOD: 
Adjusted POD = LOEL (0.18 mg/kg) ÷ 10-fold interspecies extrapolation factor (animal to human); IVIVE: in vitro to in vivo extrapolation; MCF-7: human breast 
adenocarcinoma cell line; Neurodevel: neurodevelopment; PBTK: physiologically based toxicokinetic; POD: point of departure; PXR/PXRE: pregnane-x-receptor/ 
element; RAR: retinoic acid receptor; TSHR: thyroid stimulating hormone receptor; U-2 OS: human osteosarcoma epithelial cell line. 
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24 h), only results with the lowest BMDs or AC50s were selected as model 
inputs. ICE Models that were selected as the most predictive produced 
AEDHuman values with FD that were closest to the in vivo AdjLOEL/BMDs 
(Supplemental Table 5). 

3.3.1. Endosulfan 
The 3COMP model with ENDO had the lowest FD between the 

AEDHuman predictions compared to the in vivo AdjLOEL using the HTTr, 

HTPP and ToxCast assay model inputs (Table 3). The PBTK modeled 
AEDHuman predicted FD were, generally about 170 % greater than those 
generated by the 3COMP model across the three assay methods (Sup-
plemental Tables 1 and 4). 

HTTr (Tier 1): ENDO was tested with three cell types (MCF-7, U- 
2OS, HepaRG). The lowest HTTr BPAC was for the RAR (retinoid acid 
receptor) nuclear receptor gene (BMD: 0.49 µM) in HepaRG (Table 3). 
RARs are involved with vertebrate development (i.e., embryonic 

Shaded: Green: AEDHuman < in vivo AdjPOD (“-“); Yellow: AEDHuman ≃ in vivo AdjPOD; Red: AEDHuman > in vivo AdjPOD (“+“). 
Red numbers are FD that exceed the optimal 10-fold difference range (Dourson et al., 1996). 

Table 4 
Fipronil: HTTr Signatures, HTPP, and ToxCast Modeled Chemical Characterization.  

a-Fold difference (FD) between in vivo AdjPOD (0.25 mg/kg) and 3COMP AEDHuman mg/kg. The 3COMP model produced the AEDHuman mg/kg PODs closest to in vivo 
AdjPOD for HTTr, HTPP and ToxCast. 
b-Analysis by 3COMP modeling using BMDs from HTTr or HTPP assays or AC50s from ToxCast assays. 
c-Global BMD: 13.72 µM. 
d- Number of Features measured in the designated category (Nyffeler 2021). 
e- TOXCAST cytotoxicity lower limit/cytotoxicity median: 7.108/42.01. 
f- Z-Score (chem, assay) = ([-logAC50 (chem, assay)] – median [-logAC50 (chem, cytotox)]) ÷ Global Cytotox MAD (complete description in Judson et al. (2016)). No 
Z-Score calculations for HTTr and HTPP due to lack of cytotoxicity median values reported on CompTox Chemicals Dashboard. 
Abbreviations: AC50: concentration at 50 % activity; Adj: Adjusted; AEDHuman: administered equivalent dose in humans; ADK: adenosine kinase (marker of steatosis); 
ARE: androgen receptor element; BMD: benchmark dose; 3COMP: 3 compartment IVIVE model; CYP: cytochrome P450; hDIO3: human deiodinase; DNT: develop-
mental neurotoxicity; FD: fold difference between in vivo AdjPOD and predicted AEDHuman POD; GSTA: glutathione-s-transferase; HepaRG: biopotential hepatoma- 
derived cell line; in vivo AdjPOD: Adjusted POD = LOEL (0.25 mg/kg) ÷ 10-fold interspecies extrapolation factor (animal to human); IVIVE: in vitro to in vivo 
extrapolation; MCF-7: human breast cancer cell line; PXRE: pregnane x receptor element; SULTA: sulfotransferase; U-2 OS: human osteosarcoma epithelial cell line. 
Shaded: Green: AEDHuman < in vivo AdjPOD (“-“); Yellow: AEDHuman ≃ in vivo AdjPOD; Red: AEDHuman > in vivo AdjPOD (“+“). 
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morphogenesis, organogenesis, differentiation, apoptosis, and others) 
and genetic disruptions are associated with human carcinomas and 
dermatological diseases (Germain et al., 2006). Although RAR genes are 
not specifically identified with a GABAa receptor AOP (Abalis et al., 
1986; Casida, 1993; Ffrench-Constant et al., 2000; Lawrence & Casida, 
1984), these genes are associated with critical biological processes. 

MCF-7 and U-2 OS cell lines had higher BMD values at 2.71 and 3.50 
µM, respectively as their lowest BPAC; affecting HTTr gene expression 
signatures for olfactory nervous system and the epidermal growth factor 
receptor (EGFR: immune-related) pathway has 105 genes in a gene 
expression signature (NUM_GENES: Supplemental Table 1) (Harrill 
et al., 2021). The MCF-7 gene expression signature with the lowest BMD 
was for the olfactory nervous system (Table 3; Supplemental Tables 1 
and 5). ENDO affects neurotransmission within the olfactory bulb in rats 
(Lakshmana & Raju, 1994) where there are mainly GABAbeta and 
estrogen-beta (ESR2) receptors (Mazo et al., 2016; Schantz & Widholm, 
2001). MCF-7 cells are enriched in ESR1 and ESR2 receptors and ENDO 
is weakly estrogenic in these cells (Soto et al., 1994). 

U-2 OS lowest gene expression activity (3.50 µM) corresponded to 

immune-associated EGFR (Table 3, Supplemental Tables 1 and 5) after 
105 genes were assessed in a transcriptomic signature (Harrill et al., 
2021). Mutations in the immune-associated EGFR gene can affect 
inflammation in skin diseases such as eczema and psoriasis (as does 
RAR), in addition to affecting numerous forms of epithelial cancers (e.g., 
breast, lung, colon) (Sasaki et al., 2013). Overall, ENDO identified gene 
expression signatures in two cell lines that could potentially lead to 
dermatological diseases (HepaRG: RAR and U-2 OS: EGFR). 

The FD were all less than five between the in vivo (Table 1; AdjLOEL: 
0.18 mg/kg) and AEDHuman predicted by the 3COMP model for the three 
cell lines (Table 3). The FD between the RAR nuclear receptor AEDHuman 
and the in vivo AdjLOEL was less than one at − 2.76, whereas the other 
two were greater than one (+2.0: olfactory nervous system and + 2.58 
EGFR immune); each indicating high concordance. 

HTPP (Tier 1): DNA was the main target for ENDO in the HTPP assay 
(Table 3). It was most active or had the lowest PAC with U-2 OS cells in 
the DNA “channel”, with altered texture “module” in the nuclei 
“compartment” (DNA_Texture_Nuclei; BMD: 0.45 µM; 14 features 
examined) (Table 3). However, the DNA “channel”, and profile 

Table 5 
Propyzamide: HTTr Signatures and ToxCast Modeled Chemical Characterization.  

a- Fold difference (FD) between in vivo AdjPOD (4.0 mg/kg) and PBTK AEDHuman mg/kg. The PBTK model produced the AEDHuman mg/kg PODs closest to in vivo 
AdjPOD with HTTr and ToxCast. 
b-Analysis by PBTK modeling using BMDs from HTTr or AC50s from ToxCast assays. 
c- The highest hit-call for HTPP was AGP_Axial_Cells at 0.65. The hit-call below the cutoff rendered the HTTP method inactive (data not reliable) for PRZ. 
d- Number of Features measured in the designated category (Nyffeler 2021). 
e- TOXCAST cytotoxicity lower limit/cytotoxicity median: 6.7/37.7 µM. 
f- Z-Score (chem, assay) = ([-logAC50 (chem, assay)] – median [-logAC50 (chem, cytotox)]) ÷ Global Cytotox MAD (complete description in Judson et al. (2016)). No Z- 
Score calculations for HTTr and HTPP due to lack of cytotoxicity median values reported on CompTox Chemicals Dashboard. 
Abbreviations: AC50: concentration at 50 % activity; Adj: Adjusted; Adj: Adjusted; ADR: alpha-1A adrenergic receptor; AEDHuman: administered equivalent dose in 
humans; BMD: benchmark dose; CYP: cytochrome P450; FD: fold difference between in vivo AdjPOD and predicted AEDHuman POD; in vivo AdjPOD: Adjusted POD =
LOEL (4.0 mg/kg) ÷ 10-fold interspecies extrapolation factor (animal to human); HepaRG: biopotential hepatoma-derived cell line; IVIVE: in vitro to in vivo 
extrapolation; MCF-7: human breast cancer cell line; PBPK: Physiologically Based Toxicokinetic; UGT1A1: UDP glucuronosyltransferase: U-2 OS: human osteosarcoma 
epithelial cell line. 
Shaded: Green: AEDHuman < in vivo AdjPOD (“-“); Red: AEDHuman > in vivo AdjPOD (“+“). 
Red numbers are FD that exceed the optimal 10-fold difference range (Dourson et al., 1996). 
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“module” in the nuclei “compartment” (DNA_Profile_Nuclei; BMD: 0.62 
µM; 24 features examined) was almost equally sensitive (Table 3; Sup-
plemental Tables 1 and 5). The “global” endpoint was 14.74 µM, 97 % 
(30-fold) higher than the lowest BMD of 0.45 µM. Both HTPP assay re-
sults had AEDHuman PODs < 5 FD from the in vivo AdjPOD indicating 
high concordance with the 3COMP model. The HTPP assay detected 
DNA as a critical endpoint that may occur in neurons as well as U-2 OS 
cells. This is a hypothesis that needs to be tested. 

ToxCast (Tier 2): ENDO had active hit-calls for targets that were 
directly relevant to ENDO metabolism (e.g.,[ CYP2B6, CYP3A4: human 
liver primary cells], [PXR and PXRE: HepG2]) (Bebe & Panemangalore, 
2003; Casabar et al., 2006; Ihunnah et al., 2011; Pavek & Dvorak, 2008). 
A cell-free assay for human CYP2C19, a xenobiotic metabolizing 
enzyme, was also active with ENDO but it is not specifically associated 
with the MOA (Flockhart, 1995). The selected assay AC50s were below 
the cytotoxicity lower limit (7.46 µM) (Tables 2-3). The AEDHuman 

predictions indicated high concordance, ranging from − 1.21 FD below 
to + 3.38 FD above the in vivo AdjPOD (0.18 mg/kg) with the 3COMP 
model. 

There were 10 acute neuroactivity assay endpoints, two develop-
mental neurotoxicity (DNT) performed in rat cortical cells and one 
neurodevelopmental assay (hNPC brain cells) comprising 13 of 25 (52 
%) total selected active hit-calls for ENDO. Neural connectivity (8 of 13 
total assays; 62 %) was the most affected target for acute neuroactivity 
and DNT assays (Shafer, 2021; Shafer et al., 2019). The lowest AC50s 
occurred with acute neuroactivity bursting (1) and connectivity (3) as-
says indicating an area of acute sensitivity in rat cortical neurons 
(Robinette et al., 2011). The lowest acute neuroactivity “bursting” 
category AC50 was 0.065 µM (“up”), with an AEDHuman that was 21 FD 
lower than the in vivo AdjLOEL (low concordance). The lowest acute 
neuroactivity AC50s in the “neural connectivity” category were for 
network burst percentage “up” (0.047 µM), percentage burst spike 

Table 6 
Carbaryl: HTTr Signatures, HTPP, and ToxCast Modeled Chemical Characterization.  

a- Fold difference (FD) between in vivo AdjPOD (0.146 mg/kg) and 3COMP AEDHuman mg/kg PODs. The 3COMP model produced AEDHuman mg/kg PODs closest to in 
vivo AdjPOD for HTTr, HTPP and ToxCast. 
b-Analysis by 3COMP or PBTK modeling using BMDs from HTTr or HTPP assays or AC50s from ToxCast assays. 
c-Global BMD: 47 µM. 
d-Number of Features measured in the designated category (Nyffeler 2021). 
e-TOXCAST cytotoxicity lower limit/cytotoxicity median: 7.466/53.722 µM. 
f- Z-Score (chem, assay) = ([-logAC50 (chem, assay)] – median [-logAC50 (chem, cytotox)]) ÷ Global Cytotox MAD (complete description in Judson et al. (2016)). No 
Z-Score calculations for HTTr and HTPP due to lack of cytotoxicity median values reported on CompTox Chemicals Dashboard. 
Abbreviations: AC50: concentration at 50 % activity; Adj: Adjusted; AEDHuman: administered equivalent dose in humans; BMD: benchmark dose; 3COMP: 3 
compartment IVIVE model; CYP: cytochrome P450; DNT: developmental neurotoxicity; FD: fold difference between in vivo Adjusted POD and predicted AEDHuman 
POD; HepaRG: human liver cell line with limited metabolic capacity; in vivo AdjPOD: Adjusted POD = LOEL (0.146 mg/kg) ÷ 10-fold interspecies extrapolation factor 
(animal to human); IVIVE: in vitro to in vivo extrapolation; MCF7: human breast cancer cell line; OrnCyssISnorm: developmental biomarker for ratio or percent change 
in metabolites for CARB; POD: point of departure; PXR/PXRE: pregnane X receptor/element; U-2 OS: human osteosarcoma epithelial cell line. 
Shaded: Red: AEDHuman > in vivo AdjPOD (“+“). 
Red numbers are FD that exceed the optimal 10-fold difference range (Dourson et al., 1996). 

M.H. Silva                                                                                                                                                                                                                                        



Current Research in Toxicology 6 (2024) 100156

12

number mean “up” (0.118 µM), and a decrease (“dn”) in cross correla-
tion area (half width at half maximum [HWHM] of cross-correlogram/ 
well; 0.060 µM). AEDHuman for these three assays showed FD of 29, 11 
and 22, respectively, below the in vivo AdjLOEL, exceeding the optimal 
prediction range (~10 FD) (Dourson et al., 1996). Increased (“up”) ac-
tivities support the increased in vivo acute GABA-related ENDO hyper-
activity and convulsions seen in rabbits (CDPR, 2008; Silva & Gammon, 
2009). Higher AC50s with DNT assays (lesser toxicity) are in the “dn” 
direction, indicating decreased percent of spikes in network spikes and 
disruption in coordinated neural network activity. ENDO was active in 
the “dn” direction in a developmental assay with primary human fetal 
neural progenitor cells (hNPC5: IUF_NPC5_oligodendrocyte_differ-
entiation_120hr_dn). In this assay human fetal hNPC cell spheres 
migrate and differentiate into oligodendrocytes. Disruptions in hNPC5 
oligodendrocyte differentiation could affect the structure of axonal 
myelination in the central nervous system (Baumann & Pham-Dinh, 
2001). The predicted AEDHuman values were below or approximately 
equal to the in vivo AdjPOD in all but one of the neuronal assays with a 
range of − 29 FD below (low concordance) to + 1.42 FD (high concor-
dance) above with the 3COMP model. Although the ENDO MOA is 
blocking of ion channels at the GABA receptor site, it was inactive in a 
cell-free (Novascreen) bovine GABA receptor A5 assay (NVS_LGIC_b-
GABARa5) on the CompTox Chemicals Dashboard (only GABA assay 
tested; version 2.2.1; Supplemental Tables 1 and 5). The GABA assays, 
especially the cell-free assays may not have the parameters needed for 
the chemical-target interaction. In addition it is the GABAa, subunit b3 
that is most sensitive to ENDO, not the GABAa5, which was tested and 
that might explain the lack of activity (Ratra et al., 2001). 

Endocrine-related nuclear receptor target families had active hit- 
calls for thyroid, ER (HepG2 and VM7 ovary cells), and specifically 
ERa with AC50s below the cytotoxicity limit (Supplemental Tables 1 and 
5). It is well-documented that in vivo ENDO treatment affects estrogenic 
pathways (Silva & Gammon, 2009; Silva et al., 2015). Although the 
TSHR is not known to be part of the ENDO MOA (CDPR, 2008; US EPA, 
2002a), an acute high dose of ENDO in pubertal male rats (6.12 mg/kg/ 
day) resulted in down regulation of thyroid stimulating hormone (TSH) 
along with decreased plasma concentrations (Caride et al., 2010). These 
effects were associated with pituitary toxicity, since TSH expression is 
modified by ENDO. With the 3COMP model, endocrine AEDHuman values 
had 50 % of assays (2/6) that were equivalent to in vivo AdjPOD (~1 FD) 
and the remaining 4 assays had + 1.18 to + 3.63 FD. For ENDO the 
3COMP model was highly concordant with AdjPOD observed in vivo 
(Table 3). Z-Scores for all selected ToxCast assays were greater than 
three, showing the likelihood of chemical-target specificity. 

3.3.2. Fipronil 
The 3COMP model with FIP had the lowest FD between the AEDHu-

man predictions compared to the in vivo AdjBMD using the HTTr, HTPP 
and ToxCast assay model inputs. The PBTK modeled AEDHuman pre-
dicted FD were, generally about 200 % greater than those generated by 
the 3COMP model across the three assay methods (Supplemental Ta-
bles 1 and 5). 

HTTr (Tier 1): FIP was tested in the three cell types (MCF-7, U-2 OS, 
HepaRG). U-2 OS cells had the lowest HTTr BPAC (BMD: 0.82 µM) with 
the “LI_WILMS_TUMOR_VS_FETAL_KIDNEY_1 (cancer)” signature indi-
cating genes downregulated in Wilm’s tumor samples compared to fetal 
kidney (163 genes in a gene expression signature; Table 4; Supplemental 
Tables 1 and 5) (Harrill et al., 2021). FIP is not associated with Wilm’s 
tumor in kidney, as it is considered a genetic disease not known to be 
induced by environmental chemicals (Anvar et al., 2019). The next 
higher BPAC signature (BMD: 1.36 µM) was in MCF-7 cells with an 
mTOR (mammalian target of rapamycin) gene expression signature (100 
genes: Table 4). “mTOR” regulates cellular processes for cell growth, 
proliferation, motility, survival, protein synthesis, transcription, and 
homeostasis (Lipton & Sahin, 2014; Tokunaga et al., 2004). The mTOR 
gene affects many metabolic pathways, such that perturbation by FIP is 

likely incidental and not chemical-specific. FIP had a gene expression 
signature in MCF-7 cells for a “neuron” target in the “nervous system” 
Target Class, but the BMD was 11 µM which is much higher than the 
BPAC at 0.82 µM. A BMD of > 10 µM in HTTr assays is likely non-specific 
and could be within the burst region (Harrill et al., 2021). The lowest 
gene expression signature BMD in HepaRG cells (Random_340) was 
4.89 mg/kg. The context is that in Harrill et al. (2021) 1000 random 
signatures, or “random sets of genes with the same gene co-occurrence 
frequency and signature length distribution as the collection of real 
signatures” to compare to known signatures associated with 41 chem-
icals tested. “Target”, “Target Class” and “Target Level” were all 
described as “random” and did not provide meaningful information for 
FIP characterization. With the 3COMP models, both assays showed FD 
− 2.25 to − 1.37 below the in vivo AEDHuman, indicating high concor-
dance. Neurotoxic gene expression signatures were not detected in the 
cells available in this test system. 

HTPP (Tier 1): FIP was tested in U-2 OS cells only. The most sen-
sitive effects were associated with mitochondrial morphology for FIP in 
the HTPP assay (Table 4; Supplemental Tables 1 and 5). It had the lowest 
PAC with U-2 OS cells in the mitochondria “channel”, with altered 
compactness “module” in U-2 OS cells “compartment” (Mito_-
Compactness_Cells; BMD: 4.96 µM; 40 features examined) (Table 4). 
Compactness describes how tightly packed the brightest features inside 
an object are using various thresholds (e.g., 30 %) (Harrill et al., 2021; 
Nyffeler et al., 2023; Nyffeler et al., 2020; Thomas et al., 2019). FIP 
administered by gavage to male Wistar rats for 28 days results in loss of 
spermatozoa mitochondrial membrane potential and increased cell 
death at a LOEL of 2.5 mg/kg/day (Khan et al., 2015). However, it is not 
specifically known whether a loss of mitochondrial membrane potential 
(a functional endpoint) results in a change in mitochondrial compact-
ness (a morphological endpoint) that would resemble qualitatively the 
effects of FIP in the U-2 OS cells. The global BMD of 13.72 µM, exceeding 
the PAC BMD of 4.96 µM which was used for further analysis. The 
AEDHuman for HTPP Mito_Compactness_Cells assay was + 2.68 FD above 
in vivo AdjBMD10 (high concordance) with the 3COMP model. Neuro-
toxic endpoints were not detected in the cells available in this test 
system. 

ToxCast (Tier 2): FIP had active hit-calls for targets that were 
directly relevant to metabolic pathways with PXRE (HepG2 cells), 
CYP2B6 and CYP3A4 (primary human hepatocytes), and cell free human 
CYP2C19 and CYP2C9 assays (Abass et al., 2012; Tang et al., 2004) 
(Table 4). FIP is metabolized primarily by CYP3A4 with human liver 
microsomes to form fipronil-sulfone, the major metabolite (Carrão et al., 
2019). 

FIP Phase II metabolism showed induction of transporters UGT1a1 
and SULT1b1 based on mRNA microarrays (Roques et al., 2013). Tox-
Cast Phase II metabolism showed FIP active hit-calls with glutathione-S- 
transferase (GSTA2: primary human liver) and sulfotransferase-2A 
(SULT2A: primary human liver; Table 4; Supplemental Tables 1 and 
5). GST was depleted in male Wistar rats treated by gavage with 5 mg/kg 
FIP for 14 days (Mazzo et al., 2018). SULT2, regulated by CAR, when up- 
regulated leads to conjugation and elimination of substrates into bile 
and feces. These metabolic steps support the in vivo findings where 
increased metabolism and excretion of thyroid hormone occur from FIP 
treatment in rodents (Roques et al., 2012). FIP was active with adeno-
sine kinase (ADK in HepaRG), a marker of steatosis (Boison et al., 2002). 
FIP increased fatty liver and associated pathologies in rodents (Ferreira 
et al., 2012; Roques et al., 2012). The AEDHuman predictions for Phase I 
and II metabolism, except for ADK and GSTA2, had FD below the in vivo 
AdjBMD ranging from − 10 (concordant) to − 1.37 (high concordance). 
The FD values greater than the in vivo AdjBMD were + 1.15 (ADK 
steatosis) and + 2.34 (GSTA2), but all FD had high concordance (≤5) or 
were concordant at > 5 ≤ 10) in the 3COMP model. 

Almost half of the selected active hit-calls for FIP were for neuronal 
effects (8/18; 44 %) mainly for increased (“up”) acute neuroactivity (6/ 
8; 75 %) associated with neural connectivity (4) and bursting (2). FIP is a 
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GABA-gated chloride channel inhibitor, with neurotoxicity as the pri-
mary MOA (Cole et al., 1993; Hainzl et al., 1998). The reversible, non- 
competitive blockage of chloride ions through GABAa receptors in the 
CNS can result in seizures (Mohamed et al., 2004), which supports the 
increased activity in the acute neuroactivity ToxCast results. The neu-
rodevelopmental assay (CCTE_Mundy_HCI_Cortical_Synap&Neur_Mat 
ur_BPCount_loss) measured synaptogenesis and neurite maturation 
related to number of branch points in neurons from primary rat cortical 
cells. FIP was active in the “dn” direction in a developmental assay with 
hNPC5 neural progenitor cells (IUF_NPC5_oligodendrocyte_differ-
entiation_120hr_dn). The human fetal hNPC cell spheres migrate and 
differentiate into oligodendrocytes and FIP was shown to decrease these 
processes. Decreases in cortical synaptogenesis, neurite maturation and 
hNPC5 oligodendrocyte differentiation could affect the neuronal con-
nectivity in the CNS (Baumann & Pham-Dinh, 2001). 

AEDHuman predictions for the six neuroactivity assays had FD less 
than the in vivo AdjBMD in a range of − 9.0 to + 1.16. The two neuro-
developmental assays predictions slightly overestimated the in vivo 
AdjBMD (FD: +1.83, +2.55) (Table 4). Overall, the 3COMP model had 
high concordance based on the low FD. Although the FIP MOA directly 
involves binding at the GABA receptor site, FIP was not reported to have 
been tested in GABA assays on the CompTox Chemicals Dashboard 
(version 2.2.1; Supplemental Tables 1 and 5). 

Endocrine ToxCast results had active hit-calls in the androgen re-
ceptor element (ARE: HepG2 cells) agonist assay, although this nuclear 
receptor is not generally a target for FIP. On the other hand, the inhi-
bition of the human iodothyronine deiodinase type 3 (DIO3) enzyme 
(CCTE_GLTED_hDIO3_dn (deiodinase) in a cell-free assay is relevant to 
the FIP MOA (Roques et al., 2013). DIO3 (iodothyronine) deactivates 
thyroid hormone (T4) and turns it into an inactive metabolite reverse T3 
(rT3) (Sabatino et al., 2021). The sources of active hormone are depleted 
by deiodination of the inner ring of T4 and T3 to regulate circulating 
fetal thyroid hormone concentrations and prevent premature exposure 
of fetal tissues to adult levels of thyroid hormones (Gutiérrez-Vega et al., 
2020). FIP AEDHuman with the androgen receptor element and the DIO3 
assays were + 2.34 and − 1.60 (high concordance), respectively with the 
3COMP model. All the Z-Scores for ToxCast assays were greater than 
three indicating the likelihood of a chemical-target specificity (Table 4; 
Supplemental Tables 1 and 5). However, activity with the nuclear re-
ceptor “ARE” in HepG2 liver cell line is not seen with FIP in vivo where 
complete metabolic processes are available. 

3.3.3. Propyzamide 
The more complex (7 compartment) PBTK model with PRZ had the 

lowest FD between the AEDHuman predictions compared to the in vivo 
AdjLOEL with HTTr, and ToxCast assay model inputs. The 3COMP 
modeled AEDHuman predicted FD were, generally about 212 % greater 
than those generated by the PBTK model across the two assay methods 
(Supplemental Tables 1 and 5). HTPP was inactive with PRZ. 

HTTr (Tier 1): PRZ was tested in the three cell types (MCF-7, U-2 OS, 
HepaRG). MCF-7 cells treated with PRZ showed the lowest HTTr BPACs 
were signatures for stress (“Bryant Stress Signatures”; BMD = 0.38 µM 
(100 genes in a transcriptomic signature) (Harrill et al., 2021) and for 
developmental processes with mesenchymal progression from formation 
to the mature structure (190 genes in a transcriptomic signature; BMD =
0.49 µM (Table 5; Supplemental Tables 1 and 5). PRZ is associated with 
stress enzymes through peroxisome proliferation receptor alpha (PPAR- 
α,) associated with biomarkers for peroxisome proliferation (LeBaron 
et al., 2014). Peroxisomes contain enzymes related to oxidative stress 
(catalase, D-amino acid oxidase, uric acid oxidase). PRZ is not currently 
associated with developmental effects. However, fold difference for an 
HTTr gene expression signature was − 31 (below the in vivo AdjLOEL), 
which could indicate it is a sensitive target. On the other hand, such 
large FD with a target that was not associated with PRZ toxicity, in-
dicates a likely incidental effect. The signatures for CYP450 (BMD =
2.34 µM) are related to acute in vivo Key Events for PRZ toxicity (100 

genes in a transcriptomic signature) (Harrill et al., 2021; LeBaron et al., 
2014) and neurological activity (79 genes in a transcriptomic signature; 
“distal sensory impairment”; BMD = 1.85 µM) (Harrill et al., 2021) is 
directly associated with acute in vivo observations (decreased motor 
activity) (Andrus & Hukkanen, 2011). HepaRG cells had the most potent 
(lowest) BMD, but the target was “random” and hence, not associated 
with PRZ characterization. The lowest gene expression signature with U- 
2 OS cells was for an antimicrobial pesticide (methyl-benzethonium 
chloride) according to the assay description (Supplemental Tables 1 and 
5). 

The AEDHuman FD for the CYP P450 and neurological activity sig-
natures with the PBTK model were − 6.57 and − 8.37 below the in vivo 
AdjLOEL, respectively, indicating concordance with the in vivo AdjPOD. 

HTPP (Tier 1): PRZ was tested with U-2 OS cells only. The main 
target for PRZ was “actin, golgi and plasma membrane” (AGP) in the 
HTPP assay (Table 5; Supplemental Tables 1 and 5). It was most active 
and had the lowest PAC with U-2 OS cells in the AGP “channel”, with 
altered axial orientation “module” in U-2 OS cells “compartment” 
(AGP_Axial_Cells; BMD: 57 µM; 20 features examined) (Table 5). How-
ever, since the highest hit-call was 0.65 for AGP_Axial_Cells, which also 
had the lowest BMD, PRZ was inactive with HTPP, and further analysis 
was not performed with the ICE models. It should also be noted that PRZ 
was tested only with one cell type (U-2 OS) and it is not known if activity 
would have been seen with other cell lines. 

ToxCast (Tier 2): The PRZ MOA involves activation of nuclear re-
ceptors and induction of liver enzymes as is seen with phenobarbital 
treatment in rodents (Braeuning et al., 2014; Elcombe et al., 2014; 
LeBaron et al., 2014). Acute exposure activates xenobiotic sensors (e.g., 
CAR, PPARα and PXR) (Angrish et al., 2016; LeBaron et al., 2014) that 
heterodimerize with RXR to bind at PXRE (Sugatani et al., 2004) or 
PPRE (Viswakarma et al., 2010; Wang & Negishi, 2003) to initiate 
expression of the CYPs and other proteins involved in lipophilic xeno-
biotic metabolism (Michalik et al., 2006). CYP4A10, CYP2B10 (CAR- 
associated), CYP1A1 (AhR-associated receptor) and CYP3A11 (PXR- 
associated) are the primary P450s involved in PRZ metabolism (LeBaron 
et al., 2014). 

PRZ had active hit-calls for two Phase I and Phase II metabolic targets 
directly relevant to the MOA (e.g., human CYP1A1 and UDP- 
glucuronosyltransferase [UGT] induction in primary human liver cells) 
(LeBaron et al., 2014) (Table 5; Supplemental Tables 1 and 5). Other 
CYPs (primary human liver cells: CYP1A2, CYP2B6 and rat CYP2A1, 
human CYP2J2 and HepaRG CYP3A7) were also active with PRZ, but 
they are not associated with the known metabolic pathway. In vitro CYP 
activity with isolated primary human hepatocytes (CLD), or in cell-free 
(NVS) assays may occur because of a lack of interference by other in vivo 
processes. Although the PRZ Key Events begin with the activation of the 
nuclear receptors (CAR/PXR, PPARα, CAR, PXR), along with induction 
of CYPs (LeBaron et al., 2014). CAR, PXR, and PPARα were tested in 
three, eight and two ToxCast assays, respectively but they were either 
inactive (CAR and PPARα) or exceeded the cytotoxicity lower limit 
(PXR). Hence, the most significant molecular initiating events were not 
active, or not chemical-target specific in the ToxCast assays tested. The 
AEDHuman for the CYP1A2 was 36 FD below the in vivo AdjLOEL, indi-
cating low concordance but the other assays had FD ranging from 3.34 to 
9.11 which was predictive with the PBTK model. The Z-Scores showed 
chemical-target specificity, although some of the CYPs are not directly 
related to the known MOA. Activity may be non-specific due to a lack of 
metabolic capabilities that would normally occur in vivo. 

3.3.4. Carbaryl 
The 3COMP model with CARB had the lowest FD between the 

AEDHuman predictions compared to the in vivo AdjBMD using the HTTr, 
HTPP and ToxCast assay model inputs. The PBTK modeled AEDHuman 
predicted FD were, generally about 250 % greater than those generated 
by the 3COMP model across the three assay types (Table 6; Supple-
mental Tables 1 and 5). 
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HTTr (Tier 1): CARB was tested in the three cell types (MCF-7, U-2 
OS, HepaRG). HepaRG cells treated with CARB showed cholinergic 
transcriptomic signatures (100 genes in a transcriptomic signature) 
(Harrill et al., 2021) with a BMD of 4.64 µM. While this was not the 
lowest BPAC, it is directly associated with the MOA involving AChE 
inhibition (100 genes in a transcriptomic signature) (Harrill et al., 2021; 
US EPA, 2017)(Table 6; Supplemental Tables 1 and 5). The lowest BPAC 
was in MCF-7 cells for ETS1 transcription factor with a BMD of 0.60 µM 
(137 genes in a transcriptomic signature) (Harrill et al., 2021). ETS1 is 
associated with T-cell and other immune responses (Cauchy et al., 
2016). Sterol regulatory element-binding factor (SREBF; BMD 0.95 µM; 
21 genes in a transcriptomic signature) is associated with cholesterol 
biosynthesis (Yokoyama et al., 1993) and was activated in U-2 OS cells 
(Harrill et al., 2021). CARB exposure has not been shown to be associ-
ated with either cholesterol biosynthesis or immune response (US EPA, 
2017). AEDHuman for cholinergic response was + 1.85 FD above the in 
vivo AdjBMD, indicating the 3COMP produced highly concordant AED-
Human PODs. However, CARB gene expression had the most potent 
endpoint with MCF-7 cells for ETS1 transcription factor, which is not 
associated with the main MOA for CARB. 

HTPP (Tier 1): CARB was tested with U-2 OS cells only. DNA was the 
main target for PRZ in the HTPP assay (Table 6; Supplemental Tables 1 
and 5). It was most active or had the lowest PAC with U-2 OS cells in the 
DNA “channel”, with altered texture “module” in U-2 OS nuclei 
“compartment” (DNA_Texture_Nuclei; BMD: 15 µM; 15 features exam-
ined) (Table 6). This profile had an AEDHuman of 45 FD above the in vivo 
AdjBMD with the 3COMP model, indicating low concordance. However, 
DNA in nuclei was identified as the main target. 

ToxCast (Tier 2): AhR regulates CYP1A1 expression (Fallone et al. 
2005) and the CYP3A, CYP1A and CYP2B families are activated through 
CAR/RXR and PXR/RXR with PXRE in the nuclear DNA (Ihunnah et al., 
2011; Wang & Negishi, 2003). AhR (HepG2) and CYP1A1 (human pri-
mary hepatocytes) were both active identified in ToxCast, and are 
involved in the CARB metabolic pathway (Fallone et al. 2005). CYP2B6 
and CYP1A2 (both in human primary hepatocytes) are also associated 
with CARB metabolic pathways (Tang et al., 2002). Human CYP19A1 is 
not a main CYP in CARB metabolism, but it may be active in ToxCast 
because it is a cell-free Novascreen assay that has no interference from 
whole cell processes. Three of the 5 CYP assays have AEDHuman FD that 
are marginally greater than 10 FD above the in vivo AdjBMD with the 
3COMP model indicating low concordance. The remaining 2/5 FD for 
CYPS had AEDHuman less than 10 FD above the in vivo AdjBMD with the 
3COMP model. 

The AChE assay had an active hit-call with rat protein in a cell-free 
assay, which is directly associated with the main MOA. On the other 
hand, the Z-Score was below three, meaning that the target was not 
chemical specific and the AEDHuman was 22 FD above the in vivo AdjBMD 
(low concordance). The assay was included in Table 6, however, since 
AChE inhibition is critical to CARB toxicity. AChE was tested in four cell- 
free Novascreen assays, including two performed with human protein, 
but they were either inactive, or greater than the cytotoxicity lower 
limit. 

CARB was active in the developmental neurotoxicity rat cortical 
neuron cells with general neuronal activity (CCTE_Shafer_MEA_dev_fir-
ing_rate_mean_dn) and neural connectivity (CCTE_Shafer_MEA_dev_ne 
twork_spike_number_dn) assays (Table 6). Both assays were in the down 
direction indicating a decrease in neural firing rate and neural connec-
tivity that could occur during development. These effects support what 
is observed in vivo with AChE inhibition in brain leading to decreased 
neuro-muscular function and resulting in decreased motor activity, 
tremors, altered gait, decreased body temperature, decreased arousal, 
pinpoint pupils, increased salivation, and decreased grip strength, 
depending on dose (US EPA, 2017). 

CARB had active hit-calls for increased percent metabolite change 
(STM_H9_OrnCyssISnorm_ratio_perc_up) or ratio of metabolite change 
(STM_H9_OrnCyssISnorm_ratio_dn) of CARB in human stem cells 

(Table 6; Supplemental Tables 1 and 5). The human H9 embryonic stem 
cell assay STM_H9_OrnCyssISnorm_ratio_dn measures a decrease in the 
ornithine (ORN) and cystine (CYSS) metabolite ratio secreted into the 
culture media, which is a biomarker for developmental toxicity (Zur-
linden et al., 2020). The STM_H9_CystineISnorm_perc_up assay in 
human stem cells measures changes in cystine utilization which is also a 
biomarker for developmental toxicity. CARB has shown in vivo devel-
opmental effects but only at very high doses (92–136 mg/kg/day) 
(CDPR, 2014), where AChE inhibition occurs in brain at a BMD of 1.46 
mg/kg/day in rodents, hence, neurotoxicity would occur before devel-
opmental effects (US EPA, 2017). All the assays described above had Z- 
Scores greater than three (Table 6; Supplemental Tables 1 and 5). The 
AEDHuman was concordant with the in vivo AdjBMD at + 8.14 and + 8.70 
FD. 

3.4. Comparison of most concordant models in adults to Fetal PBTK 
modeled predictions 

The most concordant ICE models for each chemical were compared 
to the Fetal PBTK model in Figs. 3-6 (Supplemental Tables 1 and 5) that 
covers gestation days 91 to 280. Note that the 3COMP and PBTK models 
had adult IVIVE modeled parameters. The in vivo regulatory ENDO, FIP 
and PRZ PODs were for adult animals, but the CARB POD was from rat 
pup data. 

3.4.1. Comparison of Models: 3COMP in adults with PBTK Fetal 
A graphed comparison was made between the FD values of the most 

concordant adult 3COMP or PBTK models and the FD of the Fetal PBTK 
model (Figs. 3-6; Supplemental Tables 1 and 5). The FD values shown in 
the Figures were rounded to the nearest whole number. 

Endosulfan: The FD ratio between adult 3COMP and Fetal PBTK FD 
was approximately 1: 1.55 for each assay, with the FD for the fetal model 
always larger (raw data in Supplemental Tables 1 and 5). The most 
sensitive AEDHuman predictions were with the Fetal PBTK model in the 
ToxCast acute neuroactivity neural connectivity category (-45 FD) and 
ToxCast acute neuroactivity bursting in the bursting category (–32 FD). 
In general, the Fetal PBTK FD were closer to one (i.e. AEDHuman ≃ in vivo 
AdjLOEL). There was little variability in FD between the models, that is, 
most FD were less than 10, indicating high concordance for both models 
(Fig. 3). The acute neurotoxicity assays were the most sensitive but least 
concordant compared to the other assays. 

The FD ratio between the 3COMP and Fetal PBTK was low (1: 1.55 
ratio), which meant that when a FD was above the AdjLOEL then the 
fetal FD was always higher, and the same if the FD was below the 
AdjLOEL. This could mean that the FD below the AdjLOEL were more 
health protective for fetuses by a 1: 1.55 ratio but not if the FD exceeded 
10. This measurement is good for screening, but it could be further 
refined by use of known maternal and fetal pharmacokinetic and phar-
macodynamic parameters if available (Kapraun et al., 2019; Pearce 
et al., 2017; Ring et al., 2017; Wambaugh et al., 2021). 

Fipronil: The ratio between 3COMP and Fetal PBTK FD is about 1: 
1.70 for each assay with the FD for the fetal model having larger FD (raw 
data in Supplemental Tables 1 and 5). While this is almost a twofold 
difference, the main concern is the FD below the AdjBMD. Based on 
these preliminary results, the model could be further refined to account 
for maternal/fetal variability during pregnancy (Kapraun et al., 2019; 
Pearce et al., 2017; Ring et al., 2017; Wambaugh et al., 2021). 

The most sensitive AEDHuman predictions were with the Fetal PBTK 
model in the ToxCast acute neuroactivity neural connectivity (-16 FD) and 
Phase II metabolism with a ToxCast sulfotransferase assay (-15 FD). There 
was little variability in FD between the models, that is, most FD were less 
than 5, indicating high concordance for both models (Fig. 4). The acute 
neurotoxicity assays and Phase II metabolism assays were the most sen-
sitive and least concordant compared to the other assays. However, the FD 
with low concordance with less than or greater than 10 should be inter-
preted with the understanding that they are generally less reliable. 
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Propyzamide: The ratio between 3COMP and Fetal PBTK FD is 
about 1: 1.14 (~equivocal) for each assay with the fetal model having 
the slightly larger FD (raw data in Supplemental Tables 1 and 5). The FD 
for PRZ were all below the in vivo AdjLOEL for the adult PBTK, and Fetal 
PBTK models (Fig. 5). The most sensitive AEDHuman predictions were 
with the Fetal PBTK model for CYP P450 with HTTr (-47 FD) and Tox-
Cast CYP1A2 (-41 FD). Since the FD for these targets in both the 3COMP 
and Fetal PBTK models have low concordance, they would need to be 
further refined to account for uncertainties. Overall, however, there was 
little variability in FD between the models, and most FD were less than 
10, indicating generally, a high concordance for both models (Fig. 5). 

Carbaryl: The ratio between 3COMP and Fetal PBTK FD is about 1: 2 
for each assay with the FD for the fetal model having larger FD (raw data 
in Supplemental Tables 1 and 5). CARB FDs were all greater than one 
with both models (Fig. 6). The most sensitive but least concordant 
AEDHuman were with the Fetal PBTK model for HTPP endpoint (DNA_-
Texture_Nuclei) at FD = 91 and HTTr cholinergic gene expression 
(Table 6 and Fig. 6). ToxCast CYP1A2 (29 FD). FD > 10 must be inter-
preted with caution since they may be less reliable. There was a 2-fold 
variability in FD between the models, that is, and most FD for adult 
3COMP were greater than 5 (Fig. 6). The AChE inhibition assay had FD 
of greater than 10 for both models indicating low concordance with the 
major target for CARB. The developmental ToxCast assays in human 
embryonic stem cells measured changes in cystine utilization as a 
biomarker for developmental toxicity (Zurlinden et al., 2020). These 
assays had high concordance in the 3COMP but not the Fetal PBTK 
models. While CARB has shown in vivo developmental effects they are 
seen only at very high doses (92–136 mg/kg/day) (CDPR, 2014), hence, 

protecting for effects at lower doses would protect from developmental 
effects at higher doses. 

3.5. Assay Potency, concordance evaluations and Summary of fold 
differences for each assay Format 

In this study, assay potency is described as the threshold for 
perturbation of cellular biology (HTTr) (Harrill et al., 2021), category 
with the lowest Benchmark Dose (HTPP) (Nyffeler et al., 2020) and the 
lowest effective concentration leading to a 50 % change from control 
(AC50) based on a best fit curve (ToxCast) (Filer, 2019; Filer et al., 2017; 
Harrill et al., 2018). The best fit curves are described on the CompTox 
Chemicals Dashboard for each chemical and assay after having gone 
through the tcpl (CompTox Chemicals Dashboard (epa.gov)). Table 7 
shows the most potent assays for each assay method (i.e., HTTr, HTPP 
and ToxCast) and each chemical. The predicted AEDHuman for the most 
potent assays is shown, along with the AdjLOEL/AdjBMD. Concordance 
was determined for relevance to MOA as well as for AEDHuman PODs 
compared with regulatory Adj PODs (Table 7). 

The Tier 1 HTTr assays did not reveal a lowest BPAC that is directly 
associated with ENDO, FIP or CARB toxicity. However, ENDO and PRZ 
had neurotoxicity-related gene expression signatures that could flag a 
potential for neurotoxicity even though the tested cells were not neu-
rons. In addition PRZ activated a stress signature (DNA100) potentially 
associated with transcription for enzymes related to oxidative stress 
(catalase, D-amino acid oxidase, uric acid oxidase) and the MOA (LeB-
aron et al., 2014). The HTTr gene expression BMDs had the highest 
potency for PRZ and CARB, compared to HTPP (HTPP inactive with 

Fig. 3. Fold differences (FD) between AEDHuman predictions for selected ENDO assays in the adult 3COMP and Fetal PBTK models and AdjLOEL in vivo regulatory 
POD. The assays are divided into HTTr, HTPP, and ToxCast (endocrine, neuronal activity, and metabolism). The FD are shown on each bar rounded to the nearest 
whole number. 
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PRZ) and ToxCast assays. HTTr AEDHuman were highly concordant/ 
concordant with the AdjLOEL/AdjBMD10 for PRZ but for ENDO, FIP and 
CARB the results had low concordance. 

The Tier 1 HTPP category-level endpoint that was most potently 
affected by ENDO and CARB was DNA texture in the nucleus. The HTPP 
BMDs were comparable to HTTr potency for ENDO, but not for CARB 
where the most potent HTPP BMD was > 25 times higher than what was 
seen for HTTr. DNA as a biological target was potentially concordant 

with what occurs in vivo based on the active nuclear receptor targets in 
ToxCast (i.e., PXRE for ENDO and AhR for CARB). HTPP PAC may be 
concordant for FIP where mitochondria were affected, however a direct 
association is unknown. PRZ was inactive in the HTPP assay. ENDO, FIP 
and PRZ HTPP AEDHuman were concordant with the AdjLOEL/BMD10 
where all FD were ≃2-3. Predicted CARB HTPP AEDHuman was not 
concordant with the AdjBMD10 (~45 FD) (Table 7). 

Tier 2 ToxCast assay potency identified neurotoxicity pathways for 

Fig. 4. Fold differences (FD) between AEDHuman predictions for selected FIP assays in the adult 3COMP and Fetal PBTK models and AdjBMD in vivo regulatory POD. 
The assays are divided into HTTr, HTPP, and ToxCast (endocrine, neuronal activity, and metabolism). The FD are shown on each bar rounded to the nearest 
whole number. 

Fig. 5. Fold differences (FD) between AEDHuman predictions for selected PRZ assays in the adult PBTK and Fetal PBTK models and AdjLOEL in vivo measured POD. 
The assays are divided into HTTr and ToxCast (metabolism). The FD are shown on each bar rounded to the nearest whole number. 
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the neurotoxic ENDO, FIP and CARB. Both ENDO and FIP, with similar 
MOAs, identified increased acute neuroactivity bursting patterns at or 
near the lowest AC50s. CARB identified neuro-connectivity in a DNT 
assay as the lowest AC50. However, since both ENDO and FIP act through 
the GABAa receptor, it is interesting that they were either tested in 
ToxCast with the wrong subunit (ENDO: subunit b3 on the GABAa re-
ceptor) or were not tested with GABA (FIP). PRZ showed the lowest AC50 
for CYP1A2 which is not directly associated with the MOA but appears to 
be the most active in U-2 OS cells (LeBaron et al., 2014). ENDO had the 
lowest AC50 for a Phase II sulfotransferase enzyme which was equivocal 
with the AC50 for the neuroactivity assay (i.e., 0.19 vs. 0.21 µM). 
Overall, the ToxCast assays for each chemical were concordant with the 
MOA-associated toxicity and with the in vivo AdjLOEL/BMD10 (Table 7). 

Table 7 summarizes the AEDHuman PODs with FD above, equivalent 
to and below the in vivo AdjPOD. Of most interest are the FDs that are 
within +/- 5 of the AdjLOEL/BMD. FD for ENDO had 48 % of AEDHuman 
below, 41 % above and 11 % equivalent to the in vivo AdjPOD. Of the 29 
total ENDO assays across the 3 test methods, there were 3/29 (all Tox-
Cast) that had FD > 10 (low concordance) and the remainder FD ranged 
from − 1.21 to + 6.64, indicating high concordance (FD ≤ 5) or 
concordance (>5 ≤ 10). FD for FIP had 62 % of AEDHuman below, and 28 
% above the in vivo AdjPOD. Of the 21 total FIP assays across the 3 test 
systems, the FD ranged from − 1.37 to + 2.82, indicating high concor-
dance. FD for PRO had 92 % of AEDHuman below and 8 % above the in 
vivo AdjPOD. Of the 12 total PRO assays across the 3 test systems, there 
were 3/12 (2/4 HTTr; 1/7 ToxCast) that had FD > 10 (low concordance) 
and the remainder FD ranged from − 3.34 to + 9.11, indicating high 
concordance (FD ≤ 5) or concordance (>5 ≤ 10). FD for CARB had 100 

% AEDHuman above the in vivo AdjPOD. Of the 14 total CARB assays 
across the 3 test systems, there were 6/14 (1/3 HTTr; 1/1 HTPP; 4/10 
ToxCast) with FD > 10 (low concordance) and the remainder FD ranged 
from + 1.83 to + 8.70, indicating high concordance or concordance. 

4. Discussion and conclusions 

This case study provided a general workflow for how NAMs could be 
investigated for use in risk assessment as well as a predictive scope of 
various IVIVE models with the acutely neurotoxic pesticides described. 
The procedure involved the use of well-characterized pesticides so that 
the regulatory acute PODs, based on in vivo studies, could be compared 
to the predicted PODs, involving a progression of increasingly refined 
NAMs. Acute in vivo PODs were selected because the HTTr, HTPP and 
ToxCast in vitro assays were performed over acute periods (Harrill et al., 
2021; Nyffeler et al., 2020; Williams et al., 2017). The pesticide MOAs 
are known for acute effects of ENDO, FIP and CARB, but the acute 
neurotoxic MOA for PRZ has not been specifically characterized (CDPR, 
2008, 2023; US EPA, 2015, 2017). PRZ in rodent assays is mainly known 
for tumorigenesis through disruption of hypothalamus-pituitary-gonad/ 
thyroid axes and from nuclear receptor/CYP induction leading to liver 
proliferation and hepatocarcinoma. However, it may be neurotoxic 
through oxidative stress (Corton et al., 2014; Sayre et al., 2008). 

Pesticide risk assessment involves a thorough evaluation of the open 
literature, in addition to review of Health Effects Test Guideline studies, 
to provide the most health protective exposure levels (Overview of Risk 
Assessment in the Pesticide Program | US EPA) (US EPA, 1998). In vitro 
NAMs can produce similar values but they may, as was seen in several 

Fig. 6. Fold differences between AEDHuman predictions for selected PRZ assays in the 3COMP or Fetal PBTK models and AdjBMD in vivo regulatory POD. The assays 
are divided into HTTr, HTPP, and ToxCast (esterase, development, neuronal activity, and metabolism). The FD are shown on each bar rounded to the nearest 
whole number. 
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examples, predict even lower values. This finding may mean that the 
dose at which a molecular initiating event occurs, especially if the target 
is related to a known MOA/AOP and associated with apical endpoints. 
This conclusion may be less certain when assays use cells that are not 
targeted by low chemical exposures such as may have occurred with all 
three test methods. Uncertainties involve a lack of in vivo complexity or 
metabolic capability such that when the FD are > 10 below or > 10 
above the in vivo AdjPOD in non-target cells, the results may be difficult 
to interpret and need further analysis (Paul Friedman et al., 2020; Pearce 
et al., 2017). It cannot be concluded that AEDHuman predictions of > 10 
below the in vivo AdjLOEL/BMDs are more health protective because 
there are too many variables and unknowns, as well as data gaps in 
IVIVE models exist to predict with certainty. The open access databases 
and models mainly provide good screening and support for the in vivo 
presumptive MOA/AOPs. 

While the three methods predicting AEDHuman with ENDO generally 
had high concordance with what is seen in vivo, the GABAa receptor was 
inactive for reasons that perhaps had to do with the test design (Ratra 
et al., 2001). On the other hand, neurotoxicity was identified with HTTr, 

and ToxCast assays and notably, the neurotoxicity-related gene signa-
ture in HTTr was seen in MCF-7 non-neuronal cells. Tier 1 “screening” 
results showed neurotoxicity with HTTr and endpoints for nuclear DNA 
targets with HTPP in MCF-7 and U-2 OS cells, respectively. Endocrine 
targets were captured for ENDO with ToxCast (i.e., ERa and THSR: 
Table 3). In vivo ENDO affects reproduction and development but at 
doses higher than those for neurotoxicity (CDPR, 2008; Silva & 
Gammon, 2009). There were active DNT and neurodevelopment assays 
with ToxCast which are more closely associated with the MOA. For Tiers 
1 and 2, the 3COMP model provided the lowest FD and the most highly 
concordant PODs with ENDO. 

The FIP results for HTTr gene expression signatures in MCF-7 and U- 
2 OS cells and HTPP endpoints in U-2 OS cells were not associated with 
the known MOA, however it is interesting that the HTPP PAC was 
perturbation of the mitochondrial compactness in U-2 OS cells. 
Although FIP is associated with loss of spermatozoa mitochondrial 
membrane potential in rats (Khan et al., 2015) there is no direct asso-
ciation between mitochondrial compactness and changes in membrane 
potential. The cells used in Tier 1 were not neuronal and that may be the 

Table 7 
Assay potency, concordance evaluations and summary of fold differences for each assay format.  

Abbreviations: AC50: concentration at 50% activity; AEDHuman: administered equivalent dose in humans; BMD: benchmark dose; CCTE: assays performed with rat 
cortical neurons; 3COMP: 3 compartment IVIVE model; CYP: cytochrome P450; HepaRG: bi-potential hepatoma-derived cell line; HTPP: high throughput phenotypic 
profile; HTTr: high throughput transcriptomics; MCF7: human mammary adenocarcinoma cell line; RAR: retinoic acid receptor; TSHR: thyroid stimulating hormone 
receptor; U-2 OS: human osteosarcoma epithelial cell line. 
a- FD below, equivalent to or above the in vivo AdjPOD out of the total number of assays selected. 
b- Range of FD indicating high concordance (FD ≤ 5), concordance (>5 ≤ 10) and low concordance (FD > 10) with the in vivo AdjLOEL/AdjBMD. 
c-Red Text: There were few assays that had FD > 10, as shown here: 1. ENDO: ToxCast 3/18 > 10 FD; 2. PRZ: HTTr: 2/4 > 10 FD; ToxCast 1/7 > 10 FD; 3. CARB: 
HTTr: 1/3 > 10 FD; HTPP 1/1 > 10 FD; ToxCast 4/10 > 10 FD. For more detail see Tables 3 – 6. 
d-The highest hit-call for HTPP was AGP_Axial_Cells at 0.65. The hit-call below the cutoff rendered the HTTP method inactive (data not reliable) for PRZ. 
“+” indicates concordance; “-“indicates non-concordant with either the AEDHuman or the AdjLOEL/AdjBMD, “?” unknown whether activity is related to the MOA/AOP; 
“Potential” indicates that gene expressions for neurotoxicity were detected at higher BMD than the most potent BMD, however since the cell types were not neurons, it 
is not known whether the results were incidental. 
Green indicates FD above; Red indicates FD below and Yellow indicates FD equivalent to in vivo AdjLOEL/AdjBMD. 
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reason why there were no MOA/AOP targets identified. Almost half of 
the ToxCast assays for FIP were associated with increased neuroactivity, 
as would occur in vivo, with the majority affecting neuro-connectivity. 
ToxCast identified Phase I and Phase II metabolic enzymes, kinases 
associated with steatosis and DNA binding associated with deiodinase 
which are all part of the FIP MOA. For Tiers 1 and 2, the 3COMP model 
provided the lowest FD and the most highly concordant PODs with FIP. 

PRZ had HTTr signatures, such as CYP P450, neurological distal 
sensory impairment and stress DNA100 that could all be associated with 
the MOA. There was also a gene expression signature for developmental 
processes that may be incidental based on the lack of effects on such 
processes in the PRZ database (US EPA, 2015). HTPP was inactive with 
PRZ, but the assays were performed in U-2 OS cells that may not be the 
appropriate test cells to detect activity, since PRZ was active in HTTr and 
ToxCast. It is anticipated that HTPP will be tested in other cell types 
beyond U-2 OS to increase the number of chemicals with bioactivity that 
may also be active in ToxCast (Nyffeler et al., 2023). ToxCast captured 
the Phase I and Phase II metabolic processes for PRZ, which are relevant 
to the MOA. For Tiers 1 and 2, the PBTK model provided the lowest FD 
and the most highly concordant PODs with PRZ. 

CARB HTTr captured the cholinergic signature in U-2 OS cells, which 
is directly associated with the MOA. HTPP endpoints indicate that CARB 
targets DNA as the most potent endpoint which can potentially be 
associated with nuclear receptor activity (Ahr) at a low AC50. AChE was 
active with CARB in ToxCast, at an AC50 that was just below the cyto-
toxicity lower limit (7.37 vs. 7.47 µM), as were CYPS associated with the 
CARB metabolic pathway. Developmental neurotoxicity assays, showing 
decreased firing rates and decreased spike number comprised about 20 
% of the total ToxCast assays. This is consistent with what has been seen 
with CARB as far as neuro-suppression (US EPA, 2017). For Tiers 1 and 
2, the 3COMP model provided the lowest FD and the most highly 
concordant PODs with CARB. 

While it can be argued that the cell types used for Tier 1 might not 
have the targeted pathways (e.g., MOA/AOP), like GABAa receptor 
subunits or neurons, and it is known (Harrill et al., 2021), or presumed 
(Nyffeler et al., 2023) that different gene expressions and morphological 
endpoints occur with different cell types, the current cell types used, 
have identified relevant targets. It would be interesting to see if future 
tests with neuronal cells show a greater level of potency, and better 
identify indicators of the MOA/AOPs than the current cell-types used in 
HTTr and in the HTPP assay reported on the CompTox Chemicals 
Dashboard. 

Z-Scores were greater than or equal to three for all assays selected for 
further analysis. The test is meant to indicate a chemical target speci-
ficity. This is most likely true for the in vitro assays where there are not 
the full influences of in vivo processes. Hence, a positive Z-Score should 
be taken in context with what is known about a possible MOA, or AOP. 
The most concordant model, based on FD closest to one, was the 3COMP 
for all but PRZ, where the PBTK model provided better predictions. 
While the PBTK model has seven compartments, rather than only three, 
it may not be as concordant because there are insufficient TK parameters 
for model inputs for ENDO, FIP and CAR. This result suggests that model 
complexity did not necessarily provide better concordance. Moreover, 
interpretation of the predictiveness of modeled AEDHuman values must 
consider several factors, including relevance of an assay to the MOA, 
availability of metabolic activation to generate a representative 
chemical-target interaction expressed as a transcriptomic signature, a 
phenotypic profile or an AC50. Simply having a low FD is not enough to 
ensure an AEDHuman is predictive. 

The Fetal PBTK model was compared with the most predictive model 
where adult TK parameters were applied. The model has specific pa-
rameters for fetal growth and maternal changes throughout gestation 
(Kapraun et al., 2019). Fetal AEDHuman FD were proportionately greater 
or lesser in a consistent ratio for each assay and chemical compared to 
those produced by the 3COMP or adult PBTK models (i.e., Ratio: Fetal 
FD: Adult FD, or Adult FD: Fetal FD). The proportion was consistent 

across all assays for a given chemical but was different for each chem-
ical. This may be due to: 1) each assay for each chemical would have the 
same parameters for the model input; 2) because each chemical has TK 
parameters, the ratios would be different among chemicals; 3) the fetal 
and adult results are different because they encompass different physi-
ological conditions. The fetal model also encompasses the maternal TK 
parameters, acknowledging that tissue volumes, blood flow rates, he-
matocrits, glomerular filtration rates and other parameters are 
constantly changing (Kapraun et al., 2019). This occurrence is especially 
notable for such targets as GABAa receptors because GABAa is primarily 
excitatory in early development and then it switches to inhibitory 
postnatally which would impact interpretation of results depending on 
the age of development (Kaila et al., 2014; Scheyer et al., 2020). Each 
output for the Fetal PBTK model represents a period beginning with 13 
weeks of gestation at a time when data are more readily available. But 
the Fetal AEDHuman output covers the entire term for an “average” 
mother and fetus. Instances where the Fetal PBTK FD were further below 
zero than the 3COMP or adult PBTK model, could be interpreted as 
increased toxicity to fetuses compared to adults during a specific win-
dow of susceptibility during gestation (Barton, 2005; Corley et al., 
2003). On the other hand, as with the adult models, these findings 
should be interpreted with caution if the FDs are greater than 10. An 
advantage to this model is that it can be directly compared to adult 
IVIVE predictions based on the same assays, but future work could 
develop appropriate TK parameters for specific stages of development. 
All the FD for CARB were less than the AdjBMD in vivo value and the 
majority had high concordance or concordance. 

This work offers a few indications of how NAMs can provide insights 
into gene expression signatures, morphological endpoints and more 
specific chemical targets that help support chemical characterization. 
The HTTr and HTPP are more recent additions to the CompTox Chem-
icals Dashboard, and they offer a broad initial screening to facilitate 
chemical prioritization based on bioactivity and potency. However, 
even if a Tier 1 assay is inactive, as was seen with PRZ in HTPP, tested 
only with U-2 OS cells, the absence of bioactivity does not mean that 
activity would not occur in a different cell type. If a chemical is inactive 
with several cell types over broad concentration ranges, then the weight 
of evidence could indicate that the chemical is likely inactive and may 
not present a human health hazard. In the future, as more cell types are 
used in the HTTr and HTPP tests, the hazard evaluations for many 
thousands of chemicals can be more thoroughly evaluated. The ToxCast 
Tier 2 methods provide a constantly expanding library of concentration 
response screens, that are supported by the tcpl, data flags, and robust 
curve-fitting algorithms developed by the US EPA and NTP (Filer et al., 
2017; Thomas et al., 2019). It is acknowledged, however, that there is a 
real need to understand uncertainty and variability involved with the 
use of NAMs for regulatory decision-making (Watt & Judson, 2018). 
Development of pluripotent neuronal stem cells, such as those utilized in 
ToxCast developmental neurotoxicity assays (Shafer, 2021) can help 
evaluate the various responses that might occur among individuals with 
diverse genetic makeup. Improved metabolic capability in in vitro assays 
to represent chemical activation and target interaction more accurately, 
is a continuing process (Buckley et al., 2023). Machine learning/artifi-
cial intelligence methods are being incorporated into the NAMs to 
enhance predictive abilities, improve accuracy and efficiency in NAM 
development and data analysis (Buckley et al., 2023; Klambauer et al., 
2023). This includes a continuing refinement of Maternal-Fetal PBTK 
models available through the open access ICE database (Kapraun et al., 
2019). Open access is critical to making NAMs fit-for-purpose and user- 
friendly for regulatory agencies and research laboratories. It was stated 
succinctly in Buckley et al. (2023) “Considering the scale of chemical 
production, management requires transparent, systematic, timely, 
evidence-based decisions where computational approaches provide the 
only practical means of success.” While it is undeniable that human and 
ecological diversity are complex and variable, technological advance-
ments, including machine learning, open-access data availability and 
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method transparencies have provided substantial means for progress. 
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Castro, E., Leiva, A., Guzmán-Gutiérrez, E., 2020. High levels of maternal total tri- 
iodothyronine, and low levels of fetal free L-thyroxine and total tri-iodothyronine, 
are associated with altered deiodinase expression and activity in placenta with 
gestational diabetes mellitus. PLoS One 15 (11), e0242743. 

Hainzl, D., Cole, L.M., Casida, J.E., 1998. Mechanisms for Selective Toxicity of Fipronil 
Insecticide and Its Sulfone Metabolite and Desulfinyl Photoproduct. Chem. Res. 
Toxicol. 11 (12), 1529–1535. https://doi.org/10.1021/tx980157t. 

Hansen, L.A., Kosberg, K.A., 2019. Ethics, efficacy, and decision-making in animal 
research. In: Animal Experimentation: Working towards a Paradigm Change. Brill, 
pp. 275–288. 

Harrill, J.A., Freudenrich, T., Wallace, K.B., Ball, K., Shafer, T.J., Mundy, W.R., 2018. 
Testing for developmental neurotoxicity using a battery of in vitro assays for key 
cellular events in neurodevelopment. Toxicol. Appl. Pharmacol. 354, 24–39. https:// 
doi.org/10.1016/j.taap.2018.04.001. 

Harrill, J.A., Everett, L.J., Haggard, D.E., Sheffield, T., Bundy, J.L., Willis, C.M., 
Thomas, R.S., Shah, I., Judson, R.S., 2021. High-throughput transcriptomics 
platform for screening environmental chemicals. Toxicol. Sci. 181 (1), 68–89. 

Harrill, J., Shah, I., Setzer, R.W., Haggard, D., Auerbach, S.S., Judson, R., Thomas, R.S., 
2019. Considerations for strategic use of high-throughput transcriptomics chemical 
screening data in regulatory decisions. Current Opinion in Toxicology 15, 64–75. 
https://doi.org/10.1016/j.cotox.2019.05.004. 

Hines, D.E., Bell, S., Chang, X., Mansouri, K., Allen, D., Kleinstreuer, N., 2022. 
Application of an Accessible Interface for Pharmacokinetic Modeling and In Vitro to 
In Vivo Extrapolation [Perspective]. Front. Pharmacol. 13 https://doi.org/10.3389/ 
fphar.2022.864742. 

Ihunnah, C.A., Jiang, M., Xie, W., 2011. Nuclear receptor PXR, transcriptional circuits 
and metabolic relevance. Biochim. Biophys. Acta (BBA) - Mol. Basis Dis. 1812 (8), 
956–963. https://doi.org/10.1016/j.bbadis.2011.01.014. 

Jeong, J.W., Kim, D., Choi, J., 2022. Application of ToxCast/Tox21 data for toxicity 
mechanism-based evaluation and prioritization of environmental chemicals: 
Perspective and limitations. Toxicol. In Vitro 84, 105451. https://doi.org/10.1016/j. 
tiv.2022.105451. 

Judson, R., Kavlock, R.J., Setzer, R.W., Hubal, E.A.C., Martin, M.T., Knudsen, T.B., 
Houck, K.A., Thomas, R.S., Wetmore, B.A., Dix, D.J., 2011. Estimating toxicity- 
related biological pathway altering doses for high-throughput chemical risk 
assessment. Chem. Res. Toxicol. 24, 451–462. https://doi.org/10.1021/tx100428e. 

Judson, R., Houck, K., Martin, M., Knudsen, T., Thomas, R.S., Sipes, N., Shah, I., 
Wambaugh, J., Crofton, K., 2014. In Vitro and Modelling Approaches to Risk 
Assessment from the U.S. Environmental Protection Agency ToxCast Programme. 
Basic Clin. Paharmacol. Toxicol. 115, 69–76. 

Judson, R., Houck, K., Martin, M., Richard, A.M., Knudsen, T.B., Shah, I., Little, S., 
Wambaugh, J., Setzer, R.W., Kothya, P., Phuong, J., Filer, D., Smith, D., Reif, D., 
Rotroff, D., Kleinstreuer, N., Sipes, N.K., Xia, M., Huang, R., Thomas, R.S., 2016. 
Analysis of the Effects of Cell Stress and Cytotoxicity on In Vitro Assay Activity 
Across a Diverse Chemical and Assay Space. Toxicol. Sci. 152 (2), 323–339. 

Kaila, K., Price, T.J., Payne, J.A., Puskarjov, M., Voipio, J., 2014. Cation-chloride 
cotransporters in neuronal development, plasticity and disease. Nat. Rev. Neurosci. 
15 (10), 637–654. https://doi.org/10.1038/nrn3819. 

Kamijima, M., Casida, J.E., 2000. Regional Modification of [3H] 
Ethynylbicycloorthobenzoate Binding in Mouse Brain GABAA Receptor by 
Endosulfan, Fipronil, and Avermectin B1a. Toxicol. Appl. Pharmacol. 163 (2), 
188–194. https://doi.org/10.1006/taap.1999.8865. 

Kapraun, D.F., Wambaugh, J.F., Setzer, R.W., Judson, R.S., 2019. Empirical models for 
anatomical and physiological changes in a human mother and fetus during 
pregnancy and gestation [Report]. PLoS One 14, e0215906. 

Kapraun, D.F., Sfeir, M., Pearce, R.G., Davidson-Fritz, S.E., Lumen, A., Dallmann, A., 
Judson, R.S., Wambaugh, J.F., 2022. Evaluation of a rapid, generic human 
gestational dose model. Reprod. Toxicol. 113, 172–188. 

Khan, S., Jan, M.H., Kumar, D., Telang, A.G., 2015. Firpronil induced spermotoxicity is 
associated with oxidative stress, DNA damage and apoptosis in male rats. Pestic. 
Biochem. Physiol. 124, 8–14. https://doi.org/10.1016/j.pestbp.2015.03.010. 

Klambauer, G., Clevert, D.-A., Shah, I., Benfenati, E., & Tetko, I. V. (2023). Introduction 
to the Special Issue: AI Meets Toxicology. In (Vol. 36, pp. 1163-1167): ACS 
Publications. 

Kleinstreuer, N.C., Ceger, P., Watt, E.D., Martin, M., Houck, K., Browne, P., Thomas, R.S., 
Casey, W.M., Dix, D.J., Allen, D.G., Sakamuru, S., Xia, M., Huang, R., Judson, R., 
2017. Development and Validation of a Computational Model for Androgen Receptor 
Activity. Chem. Res. Toxicol. 30 (4), 946–964. https://doi.org/10.1021/acs. 
chemrestox.6b00347. 

Knudsen, T., Fitzpatrick, S.C., Abrew, K., Birnbaum, L., Chappelle, A., Daston, G., 
Dolinoy, D., Elder, A., Euling, S., Faustman, E., Fedinick, K., Franzosa, J., 
Haggard, D., Haws, L., Kleinstreuer, N., Louis, G., Mendrick, D., Rudel, R.A., Saili, K. 
S., Zurlinden, T., 2021. FutureTox IV Workshop Summary: Predictive Toxicology for 
Healthy Children. Toxicol. Sci. https://doi.org/10.1093/toxsci/kfab013. 

Lakshmana, M.K., Raju, T.R., 1994. Endosulfan induces small but significant changes in 
the levels of noradrenaline, dopamine and serotonin in the developing rat brain and 
deficits in the operant learning performance. Toxicology 91 (2), 139–150. https:// 
doi.org/10.1016/0300-483X(94)90140-6. 

Lawrence, L.J., Casida, J.E., 1984. Interactions of lindane, toxaphene and cyclodienes 
with brain-specific t-butylbicyclophosphorothionate receptor. Life Sci. 35 (2), 
171–178. https://doi.org/10.1016/0024-3205(84)90136-X. 

LeBaron, M.J., Rasoulpour, R.J., Gollapudi, B.B., Sura, R., Kan, H.L., Schisler, M.R., 
Pottenger, L.H., Papineni, S., Eisenbrandt, D.L., 2014. Characterization of Nuclear 
Receptor-Mediated Murine Hepatocarcinogenesis of the Herbicide Pronamide and Its 
Human Relevance. Toxicol. Sci. 142 (1), 74–92. 

Li, A.A., Makris, S.L., Marty, M.S., Strauss, V., Gilbert, M., Blacker, A., Zorrilla, L.M., 
Coder, P.S., Hannas, B., Lordi, S., Schneider, S., 2019. Practical considerations for 
developmental thyroid toxicity assessments: What’s working, what’s not, and how 
can we do better? Regul. Toxicol. Pharm. https://doi.org/10.1016/j. 
yrtph.2019.04.010. 

Lipton, J.O., Sahin, M., 2014. The neurology of mTOR. Neuron 84 (2), 275–291. https:// 
doi.org/10.1016/j.neuron.2014.09.034. 

Mazo, C., Lepousez, G., Nissant, A., Valley, M.T., Lledo, P.-M., 2016. GABAB receptors 
tune cortical feedback to the olfactory bulb. J. Neurosci. 36 (32), 8289–8304. 

Mazzo, M., Balieira, K.V.B., Bizerra, P.F.V., Mingatto, F.E., 2018. Fipronil-induced 
decrease in the epididymal sperm count: oxidative effect and protection by vitamin 
E. Anim. Reprod. 15 (4), 1223–1230. https://doi.org/10.21451/1984-3143-ar2017- 
0040. 

Michalik, L., Auwerx, J., Berger, J.P., Chatterjee, V.K., Glass, C.K., Gonzalez, F.J., 
Grimaldi, P.A., Kadowaki, T., Lazar, M.A., O’Rahilly, S., Palmer, C.N.A., Plutzky, J., 
Reddy, J.K., Spiegelman, B.M., Staels, B., Wahli, W., 2006. International Union of 
Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacol. Rev. 
58 (4), 726–741. https://doi.org/10.1124/pr.58.4.5. 

Mohamed, F., Senarathna, L., Percy, A., Abeyewardene, M., Eaglesham, G., Cheng, R.N., 
Azher, S., Hittarage, A., Dissanayake, W., Sheriff, M.H.R., Davies, W., Buckley, N.A., 
Eddleston, M., 2004. Acute human self-poisoning with the N-phenylpyrazole 
insecticide fipronil–a GABAA-gated chloride channel blocker. J. Toxicol. Clin. 
Toxicol. 42 (7), 955–963. https://doi.org/10.1081/clt-200041784. 

Moser, V.C., McDaniel, K.L., Phillips, P.M., Lowit, A.B., 2010. Time-Course, Dose- 
Response, and Age Comparative Sensitivity of N-Methyl Carbamates in Rats. Toxicol. 
Sci. 114 (1), 113–123. https://doi.org/10.1093/toxsci/kfp28. 

Nyffeler, J., Willis, C., Lougee, R., Richard, A., Paul-Friedman, K., Harrill, J.A., 2020. 
Bioactivity screening of environmental chemicals using imaging-based high- 
throughput phenotypic profiling. Toxicol. Appl. Pharmacol. 389, 114876 https:// 
doi.org/10.1016/j.taap.2019.114876. 

Nyffeler, J., Haggard, D.E., Willis, C., Setzer, R.W., Judson, R., Paul-Friedman, K., 
Everett, L.J., Harrill, J.A., 2021. Comparison of Approaches for Determining 
Bioactivity Hits from High-Dimensional Profiling Data. SLAS Discovery 26 (2), 
292–308. https://doi.org/10.1177/2472555220950245. 

Nyffeler, J., Willis, C., Harris, F.R., Foster, M.J., Chambers, B., Culbreth, M., 
Brockway, R.E., Davidson-Fritz, S., Dawson, D., Shah, I., Paul-Friedman, K., 
Chang, D., Everett, L.J., Wambaugh, J.F., Patlewicz, G., Harrill, J.A., 2023. 
Application of Cell Painting for chemical hazard evaluation in support of screening- 
level chemical assessments. Toxicol. Appl. Pharmacol. 468, 116513 https://doi.org/ 
10.1016/j.taap.2023.116513. 

Ozoe, Y., Matsumura, F., 1986. Structural requirements for bridged bicyclic compounds 
acting on picrotoxinin receptor. J. Agric. Food Chem. 34 (1), 126–134. https://doi. 
org/10.1021/jf00067a035. 

Paul Friedman, K., Gagne, M., Loo, L.H., Karamertzanis, P., Netzeva, T., Sobanski, T., 
Franzosa, J.A., Richard, A.M., Lougee, R.R., Gissi, A., Lee, J.J., Angrish, M., Dorne, J. 
L., Foster, S., Raffaele, K., Bahadori, T., Gwinn, M.R., Lambert, J., Whelan, M., 

M.H. Silva                                                                                                                                                                                                                                        

http://refhub.elsevier.com/S2666-027X(24)00009-4/h0160
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0160
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0165
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0165
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0165
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0170
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0170
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0170
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0170
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0175
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0175
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0175
https://doi.org/10.1146/annurev.ento.45.1.449
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0185
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0185
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0185
https://doi.org/10.1080/10408440390242360
https://doi.org/10.1080/10408440390242360
https://doi.org/10.2165/00003088-199500291-00008
https://doi.org/10.2165/00003088-199500291-00008
https://doi.org/10.1016/0041-008X(87)90206-7
https://doi.org/10.1124/pr.58.4.4
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0215
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0215
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0215
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0215
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0220
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0220
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0220
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0220
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0220
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0220
https://doi.org/10.1021/tx980157t
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0230
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0230
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0230
https://doi.org/10.1016/j.taap.2018.04.001
https://doi.org/10.1016/j.taap.2018.04.001
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0240
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0240
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0240
https://doi.org/10.1016/j.cotox.2019.05.004
https://doi.org/10.3389/fphar.2022.864742
https://doi.org/10.3389/fphar.2022.864742
https://doi.org/10.1016/j.bbadis.2011.01.014
https://doi.org/10.1016/j.tiv.2022.105451
https://doi.org/10.1016/j.tiv.2022.105451
https://doi.org/10.1021/tx100428e
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0270
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0270
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0270
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0270
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0275
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0275
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0275
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0275
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0275
https://doi.org/10.1038/nrn3819
https://doi.org/10.1006/taap.1999.8865
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0290
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0290
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0290
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0295
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0295
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0295
https://doi.org/10.1016/j.pestbp.2015.03.010
https://doi.org/10.1021/acs.chemrestox.6b00347
https://doi.org/10.1021/acs.chemrestox.6b00347
https://doi.org/10.1093/toxsci/kfab013
https://doi.org/10.1016/0300-483X(94)90140-6
https://doi.org/10.1016/0300-483X(94)90140-6
https://doi.org/10.1016/0024-3205(84)90136-X
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0330
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0330
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0330
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0330
https://doi.org/10.1016/j.yrtph.2019.04.010
https://doi.org/10.1016/j.yrtph.2019.04.010
https://doi.org/10.1016/j.neuron.2014.09.034
https://doi.org/10.1016/j.neuron.2014.09.034
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0345
http://refhub.elsevier.com/S2666-027X(24)00009-4/h0345
https://doi.org/10.21451/1984-3143-ar2017-0040
https://doi.org/10.21451/1984-3143-ar2017-0040
https://doi.org/10.1124/pr.58.4.5
https://doi.org/10.1081/clt-200041784
https://doi.org/10.1093/toxsci/kfp28
https://doi.org/10.1016/j.taap.2019.114876
https://doi.org/10.1016/j.taap.2019.114876
https://doi.org/10.1177/2472555220950245
https://doi.org/10.1016/j.taap.2023.116513
https://doi.org/10.1016/j.taap.2023.116513
https://doi.org/10.1021/jf00067a035
https://doi.org/10.1021/jf00067a035


Current Research in Toxicology 6 (2024) 100156

22

Thomas, R.S., 2020. Utility of In Vitro Bioactivity as a Lower Bound Estimate of In 
Vivo Adverse Effect Levels and in Risk-Based Prioritization. Toxicol. Sci. 173 (1), 
202–225. https://doi.org/10.1093/toxsci/kfz201. 

Pavek, P., Dvorak, Z., 2008. Xenobiotic-Induced Transcriptional Regulation of 
Xenobiotic Metabolizing Enzymes of the Cytochrome P450 Superfamily in Human 
Extrahepatic Tissues. Curr. Drug Metab. 9, 129–143. 

Pearce, R.G., Setzer, R.W., Strope, C.L., Sipes, N.S., Wambaugh, J.F., 2017. httk: R 
Package for High-Throughput Toxicokinetics. J. Stat. Softw. 79 (4), 1–26. https:// 
doi.org/10.18637/jss.v079.i04. 

Punt, A., Firman, J., Boobis, A.R., Cronin, M., Gosling, J.P., Wilks, M.F., Hepburn, P.A., 
Thiel, A., Fussell, K.C., 2020. Potential of ToxCast Data in the Safety Assessment of 
Food Chemicals. Toxicol. Sci. 174 (2), 326–340. https://doi.org/10.1093/toxsci/ 
kfaa008. 

Ratra, G.S., Kamita, S.G., Casida, J.E., 2001. Role of Human GABAA Receptor β3 Subunit 
in Insecticide Toxicity. Toxicol. Appl. Pharmacol. 172 (3), 233–240. https://doi.org/ 
10.1006/taap.2001.9154. 

Richard, A.M., Huang, R., Waidyanatha, S., Shinn, P., Collins, B.J., Thillainadarajah, I., 
Grulke, C.M., Williams, A.J., Lougee, R., Judson, R., 2020. The Tox21 10K 
compound library: collaborative chemistry advancing toxicology. Chem. Res. 
Toxicol. 34 (2), 189–216. 

Ring, C.L., Pearce, R.G., Setzer, R.W., Wetmore, B.A., Wambaugh, J.F., 2017. Identifying 
populations sensitive to environmental chemicals by simulating toxicokinetic 
variability. Environ. Int. 106, 105–118. 

Robinette, B.L., Harrill, J.A., Mundy, W.R., Shafer, T.J., 2011. In vitro assessment of 
developmental neurotoxicity: use of microelectrode arrays to measure functional 
changes in neuronal network ontogeny. Front. Neuroeng. 4, 1. 

Roques, B.B., Lacroix, M.Z., Puel, S., Gayrard, V., Picard-Hagen, N., Jouanin, I., Perdu, E., 
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