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Amino acid supplementation of 
a simple inorganic salt solution 
supports efficient in vitro 
maturation (IVM) of bovine oocytes
Mohammad Bahrami, Michael B. Morris & Margot L. Day

Defining oocyte in vitro maturation (IVM) conditions allows for improved reproducibility and efficiency 
of bovine embryo production. IVM conditions for bovine oocytes have been extensively studied, but 
beneficial effects of individual supplements remain controversial. This study compared methods of 
cumulus oocyte complex (COC) isolation, and culture medium requirements, for IVM in order to define 
optimal conditions. Antral follicles in ovaries were sliced or aspirated to isolate COCs. Brilliant cresyl 
blue staining of COCs was used to determine the most effective collection technique and the effect 
of hormones and groups of amino acids in the culture medium was investigated. Our results showed 
COCs isolated through aspiration had greater meiotic competency to reach MII. Oocyte maturation 
was achieved with the addition of 1 µg/mL FSH, while estrogen and human chorionic gonadotrophin 
did not increase the number of MII oocytes. We also provide novel data, that supplementation of a 
simple inorganic salt solution with L-proline, L-glutamine and essential amino acids in combination, 
but not individually, resulted in nuclear maturation comparable to TCM199, a more complex medium 
containing all 20 common amino acids, vitamins, inorganic salts and FBS. Replacement of FBS with 
BSA in this simplified medium creates a defined medium which provides conditions for IVM that enable 
reproducible maturation rates.

Improving assisted reproductive technologies (ART) is beneficial to cattle production systems1 and efficient, reli-
able production of high quality bovine embryos enables genetic improvements in herds to be made, without the 
need to transport whole animals. However, more research is required to improve the efficiency and financial 
feasibility of embryo transfer in cattle2,3. Studying in vitro produced (IVP) bovine embryos allows further under-
standing of the culture requirements of embryos4, with the aim of improving developmental outcomes.

Development of IVP bovine embryos from abattoir-acquired ovaries involves the collection of cumulus oocyte 
complexes (COCs) from antral follicles and subsequent completion of oocyte meiotic maturation in vitro (IVM). 
Conditions for IVM of bovine oocytes have been extensively studied, but there is still no consensus regarding the 
optimal methods for isolation of COCs or the composition of IVM medium. Two techniques commonly used to 
collect COCs include slicing open the surface of follicles5,6 and aspiration of antral follicles7,8. It has been reported 
that slicing results in higher numbers of COCs being collected compared to aspiration9. Two different aspiration 
techniques, involving an 18 gauge needle attached to either a 5 mL syringe or a vacuum pump, have been com-
pared to slicing, and both resulted in lower numbers of COCs collected9. Whilst obtaining multiple COCs from a 
collection may appear to be advantageous, gamete quality is critical for successful development10,11.

Currently the ‘best’ COCs are selected based on morphological grading12. Grade A COCs are those with mul-
tiple layers of clear and compact cumulus cells with a homogenous ooplasm13. Grade B COCs are those with at 
least three layers of dark compact cumulus cells and Grade C COCs have an irregularly expanded cumulus with a 
dark oocyte and inhomogeneous ooplasm13. A physiological method of selection of the most mature COCs uses 
brilliant cresyl blue (BCB) to determine glucose-6-phosphate dehydrogenase (G6PDH) activity within the cyto-
plasm of the oocyte14. During their growth phase, oocytes have high G6PDH activity and this enzyme degrades 
the BCB compound, resulting in a reduction in blue colour15. On the other hand, oocytes nearing the end of their 
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growth phase have reduced G6PDH activity, and therefore have more intense blue cytoplasmic staining14–16. BCB 
staining can therefore be used to determine maturation potential of COCs isolated by different selection methods.

Supplementation of maturation medium with hormones, such as FSH, is a common practice, primarily due to 
the known role of FSH in recruiting follicles in vivo17. However, addition of a large range of FSH concentrations 
to IVM medium is reported in the literature, from 0.5–20 µg/mL, and these had varying effects on bovine COC 
maturation6,18–22. 17β-Estradiol is also commonly added to bovine COC maturation medium6,15. The rationale for 
its addition is that 17β-estradiol has a regulatory role in mammalian ovarian function23 and is present in follicular 
fluid at a concentration of 1.5 µg/mL24. Bovine maturation medium is often supplemented with approximately this 
concentration of 17β-estradiol9,13,19 despite reports that addition of 1 µg/mL 17β-estradiol actually reduces nuclear 
maturation of bovine oocytes25 and oocytes of other mammalian species26.

In addition to the variable addition of hormones, maturation medium is often supplemented with complex 
mixtures of amino acids27 without having a complete understanding of their actions. TCM199, for example, is 
a commercial medium that is often used for bovine IVM and contains all 20 essential and non-essential amino 
acids28 and results in high rates of nuclear maturation. In contrast, the presence of essential and non-essential 
amino acids in a chemically defined protein-free medium did not increase nuclear maturation of bovine oocytes27. 
Specific amino acids can have beneficial effects on oocyte maturation. For example, cysteine increases glutathione 
content and is important for the redox state of oocytes29,30, whereas other amino acids can inhibit embryo devel-
opment31. Therefore, defining the role of individual and groups of amino acids in the in vitro maturation of COCs 
will provide insight into the metabolic requirements of oocytes.

This study aimed to compare methods of COC collection, and the use of BCB staining to determine which col-
lection technique enables isolation of COCs that are capable of nuclear maturation. In addition, this study aimed 
to simplify the composition of maturation medium, by determining the requirements for FBS, exogenously added 
hormones and specific groups of amino acids for optimal in vitro maturation of bovine COCs.

Results
Aspiration of follicles produced oocytes with greater nuclear maturation compared to slicing 
open follicles.  Maturation of bovine COCs obtained by slicing open follicles on the surface of the ovary or 
by aspiration of antral follicles was compared to determine the technique that resulted in the higher proportion 
of MII oocytes. Figure 1a shows that bovine oocytes isolated from antral follicles by slicing or aspiration, and 
matured for 22–24 h, were capable of cumulus expansion. While the expansion of cumulus cells is reported as a 
marker of maturation32,33, we also investigated nuclear maturation using DAPI staining of oocytes and examining 
the presence of a metaphase plate and polar body. COCs collected by aspiration had higher (51.6 ± 0.9%) nuclear 
maturation compared to slicing (35.0 ± 3.8%) (n = 3, P < 0.05) (Fig. 1b).

To complement the maturation results demonstrated by DAPI staining, we stained COCs extracted by slicing 
or aspiration with BCB and separated the oocytes according to positive or negative staining of the cytoplasm 
(Fig. 2a). A higher proportion of BCB-positive (BCB+) oocytes (71.4 ± 2.9%) was collected by aspiration com-
pared to slicing (57.6 ± 2.4%) (n = 5, P < 0.05) (Fig. 2b). Subsequent maturation of BCB+ COCs resulted in sim-
ilar nuclear maturation for both the aspiration and slicing groups (Fig. 3). Additionally, BCB+ COCs had higher 
nuclear maturation compared to BCB negative (BCB−) COCs for both aspiration (58.6 ± 2.0% and 30.9 ± 3.8%, 
n = 5, P < 0.05) and slicing groups (54.0 ± 1.1 and 27.1 ± 2%, n = 5, P < 0.05) (Fig. 3). These results show that aspi-
ration of bovine follicles leads to the collection of a higher percentage of oocytes that have meiotic competence.

FSH increased nuclear maturation of bovine COCs.  The addition of 1 µg/mL FSH to TCM199 
increased nuclear maturation compared to the negative control, TCM199 alone (Fig. 4). A higher concentration 
of FSH (25 µg/mL) did not further improve nuclear maturation. Thus 1 µg/mL FSH is sufficient for the stimulation 
of in vitro maturation of bovine oocytes.

Addition of 17β-estradiol or hCG had no effect on nuclear maturation of bovine oocytes in 
vitro.  Maturation medium is often supplemented with other hormones such as 17β-estradiol (E2) and 
Luteinising hormone (LH), as these hormones are involved in follicular recruitment and maturation in vivo34. 
To determine whether these hormones affect nuclear maturation in vitro, they were added individually or in 
combination with 1 µg/mL FSH to TCM199 (where LH was substituted with the structurally similar human cho-
rionic gonadotrophin (hCG)). Supplementation of TCM199 with 1 µg/mL E2 or 0.1 IU/mL hCG did not increase 
nuclear maturation when compared to TCM199 alone (Fig. 5). Nuclear maturation was only increased by the 
presence of 1 µg/mL FSH, and the addition of E2 and/or hCG along with FSH did not increase maturation further.

Addition of amino acids to a simple inorganic salt medium supports in vitro nuclear matu-
ration of bovine oocytes.  TCM199 is a complex medium containing all 20 common amino acids, vita-
mins, and inorganic salts. We formulated a defined inorganic salt solution (M1) based on a simplified version of 
TCM199. M1 was then supplemented with specific amino acids to determine their effect on nuclear maturation 
of bovine oocytes. Additionally, a comparison of the effect of addition of BSA and FBS on nuclear maturation was 
performed.

There was no difference in nuclear maturation of oocytes cultured in TCM199 + 10% FBS compared to 
TCM199 + 7 mg/ml BSA (Fig. 6a). Furthermore, COCs matured in the inorganic salt solution M1 medium + FBS 
had the same nuclear maturation as TCM199, whereas nuclear maturation in M1 + BSA was significantly reduced. 
However, supplementation of M1 + BSA with essential and non-essential amino acids (19AA) (excluding L-Gln) 
resulted in nuclear maturation comparable to TCM199 + FBS or BSA and this was not further improved by inclu-
sion of 2.8 mM L-Gln. Addition of only essential amino acids (12EAA) or non-essential amino acids (7EAA) to 
M1 + BSA did not improve nuclear maturation compared to M1 + BSA alone.
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The effect of addition of further groupings of amino acids to M1 + BSA was examined (Fig. 6b) and showed 
that addition of 12EAA plus 2.8 mM L-Gln and 0.4 mM L-Pro supported the same proportion of nuclear matu-
ration as TCM199. Whereas, addition of 12EAA and only L-Pro or L-Gln did not increase nuclear maturation.

Discussion
In this study we provide data that will help to simplify the composition of bovine IVM medium, with the aim of 
obtaining improved and reproducible nuclear maturation without batch-to-batch variability. A key aim of this 
study was to compare two commonly used COC collection techniques, slicing and aspiration of antral follicles. 
It has been reported that collection by way of slicing open antral follicles does not impact nuclear maturation in 
bovine9 and or equine35 oocytes; rather, slicing produces a higher number of grade A COCs36. Our study demon-
strated higher nuclear maturation of bovine oocytes using the aspiration technique compared to slicing (Fig. 1b). 
One possible explanation for this is that slicing may release oocytes from primordial follicles and that these 
oocytes could be classified as “Grade A” based solely on their multiple layers of cumulus cells and homogeneous 
cytoplasm9. However, it is likely that 22–24 h of IVM is not enough for the nuclear maturation of all these primary 
oocytes and our results, using a range of approaches, indicate this is the case (Figs 1b, 2 and 3).

BCB staining was used to further investigate the effect of collection techniques on nuclear maturation. BCB 
staining has been used to select oocytes that are likely to reach MII stage of development after 22–24 h of IVM15. 
G6PDH is abundant in growing oocytes37, and will break down BCB15, whilst oocytes further along in their devel-
opment will have reduced G6PDH levels and hence stain blue (BCB+)14. Our study demonstrated that oocytes 
that show BCB staining at the time of isolation resulted in higher nuclear maturation (Fig. 3), as has been reported 
by other groups15,16. We also showed that aspiration of antral follicles resulted in a higher proportion of BCB+ 
oocytes in comparison to slicing (Fig. 2). This is consistent with slicing releasing primary oocytes that are in 
their early growth phase and would be expected to have an abundance of G6PDH. Live staining with BCB can 

Figure 1.  Cumulus cell expansion and nuclear maturation of bovine COCs, after 22–24 h in vitro maturation, 
following isolation by either slicing or aspiration of antral follicles. (a) (I) COC collected by slicing the antral 
follicle prior to IVM and (II) after 22–24 h IVM. (III) COC collected by aspiration of the antral follicle prior 
to IVM and (IV) after 22–24 h IVM. (b) Nuclear maturation of oocytes obtained by slicing or aspiration. 
Maturation of bovine oocytes was determined by the presence of a metaphase plate (MII) and an extruded polar 
body. *indicates P < 0.05 via Student’s t-test. Data represent mean ± SEM from 3 separate experiments with 50 
to 60 COCs per treatment group.
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be incorporated into a standard IVM/IVP protocol, as studies have shown higher blastocyst development when 
selecting oocytes using BCB38,39.

A critical component controlling the in vivo maturation of bovine oocytes is the activity of hormones, which 
regulate recruitment, selection and the eventual ovulation of a dominant follicle40–43. Thus, it is important to con-
sider the impact of hormones on COCs during IVM. When high (25 µg/mL) and low (1 µg/mL) concentrations of 
FSH in the medium were compared, there was no significant difference in nuclear maturation, although nuclear 
maturation decreased significantly without FSH supplementation (Fig. 4). In previous studies, a range of FSH 

Figure 2.  Proportion of BCB-stained COCs collected from antral follicles via aspiration and slicing. (a) 
Representative image of COCs stained with BCB. Positive staining was indicated by presence of the blue dye in 
the cytoplasm of the oocyte. Arrows indicate oocytes with no staining (BCB−). (b) Proportion of BCB stained 
COCs (mean ± SEM). *indicates P < 0.05 via Student’s t-test. Data are from 5 separate experiments, with 70 to 
100 COCs per treatment group.

Figure 3.  Nuclear maturation of bovine COCs subjected to BCB staining. Oocytes with positive staining of 
their cytoplasm (BCB+) and those without cytoplasmic BCB staining (BCB−) were matured in vitro for 22–24 h. 
Nuclear maturation of oocytes was determined by the presence of a metaphase plate (MII) and an extruded 
polar body. *indicates P < 0.05 using one-way ANOVA with Tukey’s post-hoc test. Data represent mean ± SEM 
from 5 separate experiments, with 70 to 100 COCs per treatment group.
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concentrations has been used44–47, with varied results6,20. The lowest concentration used in our study (1 µg/mL) 
is still substantially higher than the peak plasma FSH concentration (21 ng/mL) during a normal bovine estrus 
cycle48. It has been shown that 2 µg/mL FSH concentration causes abnormalities in chromosomal alignment in 
mice49 and human50 in vitro matured oocytes. Whilst our study demonstrates that 1 µg/mL FSH improves nuclear 
maturation, we did not investigate the effect of FSH concentration on aneuploidy.

Maturation medium used in bovine IVM protocols often include 17β–estradiol6,15,51. Estrogen is important 
in follicular recruitment in vivo through the suppression of GnRH release. However, in an in vitro system, the 
normal hormonal feedback loop(s) are no longer present. Studies have shown that 17β–estradiol alone reduces 
nuclear maturation in bovine25 and porcine52,53 oocytes. Our study confirmed that 1 µg/mL 17β–estradiol alone 
had no effect on nuclear maturation and does not add to the beneficial effect of FSH on IVM (Fig. 5). Based on 
our results, the addition of 17β–estradiol is not necessary for the in vitro maturation of bovine oocytes, and thus 
its omission helps to further simplify the composition of IVM medium.

The pre-ovulatory LH surge induces the resumption of meiosis54 and completion of in vivo follicle matura-
tion55. Due to importation restrictions, it was necessary to substitute LH with the structurally similar hCG. LH 
and hCG act on the same receptor, luteinizing hormone-chorionic gonadotropin receptor (LHCGR)56. A recent 
study showed higher (66%) nuclear maturation in mouse GV-stage oocytes cultured in hCG in comparison to 
recombinant-LH (47%)57. In a human IVM trial, the addition of 0.5 IU/mL hCG produced comparable nuclear 
maturation to medium supplemented with LH58; however, other studies have shown that hCG does not improve 
nuclear maturation in patients with polycystic ovarian syndrome59. Our results indicate that hCG did not improve 
nuclear maturation of bovine COCs, regardless of whether it was added in the presence of FSH or FSH and 
17β–estradiol. Future studies should compare binding of LH and hCG to the LHCGR in bovine cumulus cells 
and denuded oocytes to identify possible differences in downstream signalling pathways and subsequent effects 
on the resumption of meiosis.

Figure 4.  Effect of FSH on nuclear maturation of bovine oocytes in vitro. COCs harvested through aspiration 
were cultured in TCM199 without FSH (control), 1 µg/mL or 25 µg/mL FSH for 22–24 h. All treatment groups 
also contained 1 µg/mL 17β-estradiol. *indicates P < 0.05 using one-way ANOVA with Tukey’s post-hoc test. 
Data represent mean ± SEM from 3–6 separate experiments, with 20 to 50 COCs per treatment group.

Figure 5.  Nuclear maturation of bovine COCs in the presence of different hormone combinations. COCs 
harvested through aspiration were cultured in TCM199 for 22–24 h in the presence of various combinations 
of 1 µg/ml FSH, 1 µg/ml E2 and 0.1 IU/ml hCG. Bars with different letters are significantly different from 
one another, with P < 0.05. Analysis was conducted using one-way ANOVA with Tukey’s post-hoc test. Data 
represent mean ± SEM from 4 separate experiments, with 20 to 40 COCs per treatment group.
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This study showed that 17β–estradiol and hCG did not improve nuclear maturation when added individually 
or in combination with FSH (Fig. 5). Whilst others19,51,60 supplement maturation medium with FSH, LH and 
17β–estradiol, our results show that FSH alone can support IVM of bovine oocytes (Fig. 5).

The addition of other supplements to culture medium can support the in vitro culture of cell lines61, gam-
etes62–64 and embryos60,64. The effects of amino acids on cellular function has been investigated by a number of 
groups65,66 and supplementation of amino acids in culture medium for embryo growth and development is widely 
practiced45,67. Essential or non-essential amino acids are also added to some bovine maturation media formula-
tions51, whereas premixed media, such as TCM199, contain all 20 common amino acids and are widely used for 
bovine IVM6,8,25,45,60.

Our study examined the effect of amino acids on IVM of bovine oocytes (Fig. 6). Nuclear maturation was 
reduced in COCs cultured in a simple inorganic salt solution, M1, in the absence of amino acids. However, 
nuclear maturation of COCs cultured M1 with 10% FBS was comparable to TCM199. 10% FBS contains amino 
acids at sufficient concentration (generally tens of micromolar) to, for example, maintain the viability of mouse 
ES cells68 and these concentrations appear to be sufficient to support nuclear maturation. Supplementation of M1 
with essential and non-essential amino acids resulted in nuclear maturation comparable to TCM199 with BSA 
(Fig. 6), further supporting that amino acids are important constituents of maturation medium, and that their 
concentrations in FBS may be sufficient for maximum benefit.

This study also showed that in comparison to M1 + BSA containing both EAA and NEAA, nuclear matura-
tion was lower in COCs when only EAA or NEAAs were present. Contrary to other reports27, this suggests that 
a combination of both essential and non-essential amino acids is necessary for the in vitro nuclear maturation 
of bovine oocytes. Furthermore, we show that a combination of EAA along with only L-Gln and L-Pro results 
in maturation equivalent to M1 + BSA with both EAA and all NEAAs and to TCM199 (Fig. 6b). Further exper-
iments are needed to determine the specific amino acids required for improved bovine IVM and which, if any, 
are detrimental or at least superfluous. It is likely that a complex interacting network of amino acids would prove 
optimal, and this will include consideration of the concentrations used, rates of uptake, competition for uptake 
through amino-acid transporters, as well as routes of metabolism and/or use of individual amino acids in the 
context of the molecular mechanisms that drive maturation. These data provide a foundation for beginning this 

Figure 6.  Effect of FBS, BSA and groups of amino acids on nuclear maturation of bovine COCs. (a) COCs, 
harvested by aspiration, were cultured in TCM199 or M1 for 22–24 h in the presence of either 10% FBS or 7 mg/
ml BSA. M1 + 7 mg/ml BSA was supplemented with either 19 amino acids (19AA), 19AA + 2.8 mM L-Gln, 
12 essential amino acids (12EAA) or 7 non-essential amino acids (7NEAA). (b) COCs cultured in TCM199 
(+FBS) or M1 (+BSA) supplemented with groups of amino acids. Bars with different letters are significantly 
different from one another, with P < 0.05. Analysis was conducted using one-way ANOVA with Tukey’s post-hoc 
test. Data represent mean ± SEM from at least 3 separate experiments (number given in parentheses), with 30 to 
40 COCs per treatment group.

https://doi.org/10.1038/s41598-019-48038-y


7Scientific Reports |         (2019) 9:11739  | https://doi.org/10.1038/s41598-019-48038-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

search, which can be supplemented with measuring the developmental capacity of fertilised oocytes matured in 
these simplified media.

Conclusion
The purpose of this study was to compare two widely used collection techniques, as well as simplifying the culture 
medium used for the in vitro maturation of bovine oocytes. Our results suggest that aspirating antral follicles is 
the most effective way to collect developmentally competent COCs. Furthermore, supplementation of a sim-
ple inorganic salt solution with 7 mg/mL BSA, 1 µg/mL FSH, essential amino acids, L-Pro and L-Gln results in 
nuclear maturation comparable to TCM199 + FBS.

Materials and Methods
Unless stated otherwise, all reagents were obtained from Sigma.

Bovine ovary collection.  Bovine ovaries were obtained from freshly slaughtered Bos taurus heifers at the 
local abattoir and stored in 0.9% saline +50 mg penicillin/streptomycin at 38.5 °C. All ovaries were then trans-
ported back to the laboratory, where they were washed again in pre-warmed (38.5 °C) 0.9% saline solution.

Isolation of bovine COCs by slicing or aspiration.  Bovine COCs were collected from ovarian antral fol-
licles measuring from 2–8 mm in size. Follicles on the surface of the ovary were sliced open using an 11 mm sterile 
surgical blade to release intact COCs as described by others5,6. The ovary was then swirled in a beaker with 50 mL 
pre-warmed (38.5 °C) HEPES-TALP medium69. The contents of the beaker were transferred to a pre-warmed 
50 mL tube and allowed to sediment at 38.5 °C.

Aspiration of follicles was performed using an 18-gauge needle attached to a 10 mL syringe. Follicular fluid 
was aspirated and transferred into a 15 mL tube where the follicles could sediment at 38.5 °C.

The resulting pellet from both groups was washed with 2 mL HEPES-TALP on a heated stage (38.5 °C) with 
grade A and B70 COCs collected and cultured at a density of 20 COCs per 100 µL drop TCM199 medium (Life 
Technology, Reference number: 31100–035) + 10% FBS (Life Technologies), supplemented with 1 µg/mL FSH 
(FoltropinV, Bioniche Life Sciences), 1 µg/mL 17β–estradiol, and 0.2 mM sodium pyruvate, unless otherwise 
stated.

In vitro maturation and Identification of mature oocytes.  COCs were cultured in a humidified incu-
bator at 38.5 °C and 5% CO2 for 22–24 h. Following maturation, oocytes were stripped of cumulus cells using type 
IV bovine hyaluronidase (10 mg/mL) and a P200 pipette. Denuded oocytes were transferred into a microwell 
using a finely pulled glass pipette and fixed in 300 µL 4% paraformaldehyde in PBS for 30 min at room tempera-
ture. Oocytes were washed 3 × 300 µL PBS then permeabilised in 0.3% Triton X-100 in PBS + 1 mg/mL PVA (poly 
vinyl alcohol) for 20 min at room temperature. Oocytes were washed again with 3 × 300 µL PBS and transferred 
into 3 µL VECTASHIELD mounting medium with DAPI (Vector Laboratories H-1200) on a glass slide using a 
finely pulled glass pipette, and a coverslip was laid over the oocytes. Oocytes were visualised using an Olympus 
BX51 fluorescent microscope. Nuclear maturation was considered to have occurred based on the presence of a 
metaphase plate and an extruded polar body.

Assessing oocyte developmental competence using brilliant cresyl blue.  COCs harvested by slic-
ing and aspirating were stained using BCB. After harvesting from antral follicles, washed COCs were stained 
with 16 µM BCB in PBS + 10% BSA (Sigma A9647, lyophilized powder) and kept at 38.5 °C in humidified air for 
90 min. COCs with and without cytoplasmic staining were referred to as BCB+ and BCB−, respectively. Using 
a polished Pasteur pipette, COCs were washed twice in 2 mL HEPES-TALP. COCs were matured as described 
above for 22–24 h. Maturation was assessed by removing cumulus cells and DAPI staining the oocytes for the 
presence of a metaphase plate and an extruded polar body. Data was analysed using a Student’s t-test. The exper-
iment was repeated 5 times.

Effect of FSH concentration on bovine oocyte in vitro maturation.  COCs isolated through follicle 
aspiration were cultured in high (25 µg/ml) and low (1 µg/ml) concentrations of FSH and matured for 22–24 h 
in TCM199. To assess maturation, oocytes were denuded, fixed and permeabilised as described earlier. Data was 
analysed through One-way ANOVA with Tukey’s post hoc test. All treatments were repeated 3–6 times.

Examining the role of 17β-estradiol and hCG on bovine oocyte in vitro maturation.  COCs iso-
lated by follicle aspiration were matured in TCM199 supplemented 1 µg/mL FSH, 1 µg/mL 17β-estradiol and/or 
0.1 IU/mL hCG for 22–24 h. To assess maturation, oocytes were denuded, fixed and permeabilised as described 
earlier. Data was analysed through One-way ANOVA with Tukey’s post hoc test. The experiment was repeated 4 
times.

The effect of amino acids on maturation of bovine COCs.  Aspirated COCs were matured as described 
above. The culture conditions used in this experiment were TCM199 + 0.2 mM sodium pyruvate, 1 µg/mL FSH 
and 10% FBS or 7 mg/mL BSA; M1 medium (1.8 mM CaCl2, 0.81 mM MgSO4, 5.3 mM KCl, 26.2 mM NaHCO3, 
117.24 mM NaCl, 1.01 mM NaH2PO4-H2O, 5.6 mM D-Glucose) + 0.2 mM sodium pyruvate, 1 µg/mL FSH and 
10% FBS or 7 mg/mL BSA.

Additionally, 50x MEM (ThermoFisher #11130051) and 100x MEM NEAA (ThermoFisher #11140076) were 
diluted in M1 to generate treatment groups that included 12 essential amino acids (12EAA) (final concentrations: 
0.419 mM L-Arg, 0.07 mM L-Cystine (L-Cys), 0.14 mM L-His, 0.28 mM L-Ile, 0.28 mM L-Leu, 0.277 mM L-Lys, 
0.07 mM L-Met, 0.14 mM L-Phe, 0.28 mM L-Thr, 0.035 mM L-Trp, 0.139 mM L-Tyr, 0.28 mM L-Val) and 7 
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non-essential amino acids (7NEAA) (final concentrations: 0.3 mM Gly, 0.3 mM L-Ala, 0.3 mM L-Asn, 0.3 mM 
L-Asp, 0.3 mM L-Glu, 0.3 mM L-Pro and 0.3 mM L-Ser). A combination of both essential and non-essential 
amino acids (19AA) with 2.8 mM L-Glutamine (19AA + L-Gln) was also formulated. A mixture of 3 NEAA 
was also used containing 0.66 mM Gly, 0.28 mM L-Ala and 0.24 mM L-Ser. L-Pro and L-Gln were used alone 
at a concentration of 0.4 mM and 2.8 mM, respectively. To assess maturation, oocytes were denuded, fixed and 
permeabilised as described earlier. Data was analysed through One-way ANOVA with Tukey’s post hoc test. All 
treatments were performed at least three times.

Statistical analysis.  Data are presented as mean ± standard error (SEM). All experiments were repeated at 
least 3 times, with a minimum of 20 COCs per treatment group in each experiment. Statistical analysis was per-
formed using GraphPad Prism v7. Statistical tests used are described in the relevant methods section.

Data Availability
All data generated or analysed during this study are included in this manuscript.
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