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Abstract
Type 2 inflammation is a complex immune response and primary mechanism for several common allergic diseases including allergic
rhinitis, allergic asthma, atopic dermatitis, and chronic rhinosinusitis with nasal polyps. It is the predominant type of immune
response against helminths to prevent their tissue infiltration and induce their expulsion. Recent studies suggest that epithelial barrier
dysfunction contributes to the development of type 2 inflammation in asthma, which may partly explain the increasing prevalence of
asthma in China and around the globe. The epithelial barrier hypothesis has recently been proposed and has received great interest
from the scientific community. The development of leaky epithelial barriers leads to microbial dysbiosis and the translocation of
bacteria to inter- and sub-epithelial areas and the development of epithelial tissue inflammation. Accordingly, preventing the
impairment and promoting the restoration of a deteriorated airway epithelial barrier represents a promising strategy for the
treatment of asthma. This review introduces the interaction between type 2 inflammation and the airway epithelial barrier in asthma,
the structure andmolecular composition of the airway epithelial barrier, and the assessment of epithelial barrier integrity. The role of
airway epithelial barrier disruption in the pathogenesis of asthma will be discussed. In addition, the possible mechanisms underlying
the airway epithelial barrier dysfunction induced by allergens and environmental pollutants, and current treatments to restore the
airway epithelial barrier are reviewed.
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Type 2 Inflammation and Its Role in Asthma

Asthma is a common chronic inflammatory airway disease
affecting all ages with an estimate of more than 300million
cases all around the world, varying widely between
different countries.[1] In China, the prevalence of asthma
in individuals older than 20 years was 4.2%, according to
a recently published nationwide survey.[2] Noticeably, the
ongoing increase in the prevalence of allergic asthma
contributes to the growing number of asthma patients.[3]

Type 2 inflammation has been described as the underlying
immune responses driving allergic asthma.[4] Type 1
immunity is mainly regulated by CD4+ T helper 1 cells
(Th1), which secrete interleukin (IL)-2, interferon-g and
lymphotoxin-a. Th1 cells stimulate a type 1 immune
response which is characterized by prominent phagocytot-
ic activity. Type 2 inflammation originated as a response
by the mucosal immunity against parasitic helminth
infection that represents a very dedicated immune response
to ameliorate the helminth burden in the tissues.[5] This
Access this article online

Quick Response Code: Website:
www.cmj.org

DOI:
10.1097/CM9.0000000000001983

519
type 2 cell-mediated immunity causes helminth expulsion
or elimination, whilst simultaneously limits tissue injury,
maintains tissue homeostasis, and contributes to regener-
ation and fibrosis.[6-8] Particularly, the expulsion response
against helminth larvae represents all features of a full-
blown type 2 immune response. An exciting series of
molecular events to ensure the co-survival of the worm and
the host are taking place. Löffler’s pneumonia represents
the basis for a type 2 immune response that was initially
directed against Ascaris, hookworms, Toxocara and
Schistosoma.[9,10] The life cycle of Ascaris infection is
depicted in Figure 1. Similarly, an expulsion-like patho-
physiology also occurs as an immune response to skin
parasites, such as in scabies.[11]

Type 2 immunity is associated with a wide range of allergic
diseases such as allergic rhinitis (AR), allergic asthma,
and atopic dermatitis (AD).[5] In asthma, airway type 2
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Figure 1: Life circle of Ascaris in human body and Löffler’s pneumonia. Ascaris infection
occurs when their fertilized eggs are ingested. The eggs hatch in the intestine, and the
larvae migrate to portal veins and then pass through the vena cava inferior, right heart,
pulmonary artery, and enter the lungs. The size of the larvae ranges between 0.5 and
1 mm. The growing larvae of the worms cause an eosinophilic pneumonia with cough, as
initially described by Löffler. As an essential mechanism of survival of the host, every single
larva should be expulsed from the lungs, before they become adults. Because in the case of
Ascaris, an adult is 15–20 cm long, and there is no space in the lungs for the adult worms to
accommodate their substantially large size, which becomes a big threat to the survival of
both the host and parasite. Accordingly, the larvae are fully expulsed from the lungs and
swallowed, where they find sufficient space in the guts to become adults.
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inflammation is mediated by eosinophils, mast cells (MCs),
basophils, CD4+ T helper 2 cells (Th2), group 2 innate
lymphoid cells (ILC2) and immunoglobulin E (IgE)-
expressing memory B cells.[4] Type 2 immunity is mainly
regulated by Th2 cells secreting IL-4, IL-5, and IL-13 and
stimulating antibody production and eosinophilia.[4] Type
2 cytokines promote hallmark features of asthma with
a type 2-high signature, such as eosinophilia, mucus
hypersecretion, bronchial hyperresponsiveness (BHR), IgE
production, and susceptibility to exacerbations.[12] Clini-
cally, biological agents that target type 2 inflammation
showed remarkable clinical efficacy in moderate to severe
asthma.[13] Currently, five monoclonal antibodies against
IgE (omalizumab), IL-5 (mepolizumab and reslizumab),
IL-5 receptor a (benralizumab), and IL-4 receptor a
(dupilumab) have been approved for the treatment of
severe or refractory asthma, and function by blocking the
type 2 inflammatory pathways.[14] Some potentially
effective biologicals targeting upstream proinflammatory
mediators, such as thymic stromal lymphopoietin (TSLP)
and IL-33, are also under clinical trials.[15,16]

Epithelial Barrier Dysfunction and Allergic Diseases

Epithelial barrier dysfunction has been demonstrated to
participate in the development of allergic diseases.[17]

Structural and functional disruption of the airway
epithelial barrier was found in inflammatory and allergic
respiratory diseases, i.e., asthma, AR, and chronic
rhinosinusitis.[18] Studies showed that epithelial damage
in allergic asthma was associated with tight junction (TJ)
defects and decrease of adherence junctions.[19-21] The
expression of TJ molecules, such as occludin and zonula
occludens (ZO)-1, decreased in AR patients compared
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with healthy controls, which was associated with disease
severity.[22] It is well-known that skin barrier dysfunction
is a fundamental feature in AD. Filaggrin (FLG) loss-of-
function gene mutations are the strongest known genetic
risk factor for AD.[23] FLG deficiency is associated with
impairment of keratinocyte differentiation, reduced in-
flammatory thresholds to irritants and haptens, and
enhanced percutaneous microbial and allergen penetra-
tion.[24-26] In addition to FLG mutations, TJ barrier
dysfunction has also been reported in AD.[27] Skin barrier
dysfunction and AD is associated with an increased risk of
food allergy and allergic asthma, and transcutaneous
exposure of food or airborne allergens increases the risk of
sensitization.[28-30] Moreover, skin barrier injury can
induce intestinal MC expansion through skin-to-gut axis
mediated by IL-33, IL-25, and ILCs.[31] Subsequently,
degranulation of MCs causes increased intestinal perme-
ability and leads to enhanced sensitization to food
allergens in the intestinal tract.[31] Therefore, the dysfunc-
tion of the epithelial barrier in the airway, skin, and gut is
closely associated with allergic diseases.

The “Epithelial Barrier Hypothesis” proposes that in-
creased exposure to epithelial barrier damaging agents
linked to industrialization, urbanization, and modern life
underlies the rise in allergic, autoimmune, and other
chronic conditions.[17,32] It discusses whether the immune
responses to dysbiotic microbiota that cross the damaged
barrier are involved in the development of these dis-
eases.[33] Almost two billion patients are affected with
diseases which can be initiated or exacerbated with the
exposure to epithelial barrier damaging agents.[34] The
development of leaky epithelial barriers then leads to
microbial dysbiosis and the translocation of bacteria to
interepithelial and subepithelial areas and the development
of tissue microinflammation [Figure 2]. Studies on the
epithelial barrier suggest that these processes underlie not
only the development of allergy and autoimmune
conditions in barrier-damaged tissues but also a wide
range of diseases in which an immune response to
commensal bacteria and opportunistic pathogens
occurs[17] [Figure 3].
Cellular and Molecular Components of the Airway Epithelial
Barrier

The airway epithelium is a pseudostratified columnar
structure composed of different types of cells. The
predominant airway epithelial cells are ciliated epithelial
cells, mucous-secreting goblet cells, airway basal cells, and
club/clara cells;[35] and another three rare but specialized
epithelial cells are neuroendocrine cells, solitary chemo-
sensory cells, and ionocytes.[36,37] Airway basal cells are
stem-cell-like progenitor cells that can differentiate to
ciliated cells, mucus-secreting goblet cells, or other
specialized epithelial cells.[38] Basal cells anchor the
epithelium to the basal membrane via hemidesmo-
somes.[39] Ciliated epithelial cells originate from basal
cells and/or club cells and contain abundant cilia that are
necessary for the mucociliary clearance.[35] Mucus-secret-
ing goblet cells are secretory cells that contain vesicles with
tightly packed mucin granules and surfactant proteins.[40]
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Club cells, also called clara cells, are nonciliated secretory
cells differentiated from basal cells in small airways, which
can secrete a specific protein belonging to the secretoglobin
family (secretoglobin family 1A member 1, SCGB1A1).[41]

When the epithelium is injured, club cells are able to
differentiate into ciliated and mucus-secreting goblet cells
driven by the intercellular junctional protein E-cad-
herin.[42] Neuroendocrine cells are located at airway
branch points with allergens and other harmful substances
accumulating, contain dense granules of various neuro-
peptides, amines, and neurotransmitters regulated by the
Figure 2: Fact circle of epithelial barrier hypothesis.

Figure 3: Conditions in which the pathogenesis is associated with epithelial barrier disruptio
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sympathetic and parasympathetic nervous system and
serve as airway chemoreceptors.[43,44] Solitary chemo-
sensory cells contain an apical microvilli tuft, and the
function and signal pathways of these cells are similar to
intestinal tuft cells, which can regulate type 2 immunity
and produce epithelial IL-25.[45,46] The recently identified
ionocytes account for only 1% of airway epithelial cells
and lie in multiple levels of the respiratory tract. These cells
originate from basal cells and highly express the cystic
fibrosis transmembrane conductance regulator (CFTR).[36]

The inhibition of CFTR has been found to reduce ZO-1
expression and epithelial differentiation, which implies
that ionocytes play a role in regulating TJ assembly and
epithelial barrier function.[47]

The chemical and physical barriers form the airway
epithelial barrier function. Most exogenous substances are
trapped in the mucus layer and cleared away by ciliary
movements. The production and maintenance of the
airway mucus is precisely regulated. It has been found that
the balance between Muc5AC and Muc5B, major mucins
secreted by goblet cells, can influence mucus viscosity,
the ciliary beating and subsequently the likelihood of
environmental molecules coming into contact with the
airway epithelial cells.[48] On the other hand, the
coordinated interaction between neighboring epithelial
cells via cell-cell adhesion complexes is of great importance
for the physical barrier function, including TJ, adherence
junction, desmosome and hemidesmosome[49] [Figure 4].
These junctional structures not only build a physical
barrier, but also play an important role in the regulation
of epithelial permeability, cell proliferation and differenti-
ation.[50]
n.
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Figure 4: Schematic diagram of structure and molecular components of airway epithelial barrier. The mucus secreted by goblet cells forms the superficial mucus layer. The junctional
structures between epithelial cells from the surface to base are tight junction (TJ), adherence junction (AJ), and desmosomes. TJs, located nearest to the epithelial surface, are key regulators
of paracellular permeability depending on the size and ionize of molecules. TJs are constituted of transmembrane proteins including the claudin family (24 claudins), occludin, tricellulin, and
junctional adhesion molecules, and the major TJ-associated cytoplasmic proteins are ZO-1, ZO-2, and ZO-3. AJs are located directly below TJs and composed of cadherin-catenin
complexes. AJs provide intercellular adhesion to maintain epithelial integrity and perform multiple functions, such as initiation and stabilization of TJs, regulation of the actin cytoskeleton,
intracellular signaling, and transcriptional regulation. Desmosomes are located around the midpoint of epithelial cells and contribute to the mechanical stability of airway epithelium due to
their strong contact with the intermediate filaments. Hemidesmosomes make the epithelial layer attached to the basal membrane. JAM: Junction adhesion molecule; ZO: Zonula occludens.

Table 1: Methods to assess airway permeability and reflect epithelial barrier function.

Method Sample-taking Examination

Histology and/or cytology Airway mucosal biopsy
Bronchial brushing

Specific analysis of junctional structure and proteins

Permeability assay in vivo Serum Tracking the metabolism of radioisotopes (e.g., iodine
125 and technetium 99) or mannitol to reflect the
permeability of airway epithelium

Biomarkers Serum Testing in vitro the levels of CC16, zonulin
Electrical impedance spectroscopy None Direct assessment in vivo of epidermal barrier function

in previous studies, implying a potential method to
examine the airway epithelial barrier

CC16: Club cell secretory protein-16.
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Assessment of Epithelial Barrier Function
One of the direct implications of epithelial barrier damage
is the increase in epithelial permeability leading to
transepidermal water loss, which can be used as a
measurable parameter for the assessment of epithelial
barrier function. Although not available in routine clinical
practice, some techniques can be used in research to
evaluate epithelial permeability [Table 1]. For example,
histological examination via airway mucosal tissue biopsy
and/or cytological examination of epithelial cells can
provide specific analysis of junctional structure and
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proteins, albeit it is an invasive method.[49] In addition,
early studies have reported that compounds with traceable
radioisotopes, e.g. iodine-125 and technetium-99, can be
used to assess the permeability of the airway epitheli-
um.[51,52] Mannitol, rarely metabolized and without
radioactivity, was used in animal studies to evaluate the
airway epithelial permeability.[53] However, a recent study
showed no difference in serum mannitol levels between
subjects with mild asthma and healthy controls after
inhalation of mannitol.[54] Biomarkers for evaluating the
epithelial barrier function are gaining research interest.

http://www.cmj.org
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One such potential biomarker of airway epithelial damage
is club cell secretory protein-16 (CC16).[55] Studies have
demonstrated that the levels of CC16 in serum and
bronchoalveolar lavage fluid were elevated in subjects
exposed to asbestos and ozone.[56,57] Recently, zonulin,
identified as pre-haptoglobin-2 (pre-HP2), was shown to
modulate intercellular TJs and reversibly regulate epitheli-
al permeability in the intestine.[58,59] Studies in mice also
indicated the involvement of zonulin in respiratory tract
epithelial barrier damage. Rittirsch et al[60] reported that
zonulin facilitated the development of acute lung injury
(ALI) by enhancing albumin leak and complement
activation. In addition, zonulin inhibitor was found to
exhibit protective effects on influenza infection and
mitigate pulmonary edema in ALI,[61] and might be a
potential therapy for coronavirus disease 2019 according
to a recent in silico analytic study.[62] It has to be noted here
that by using electrical impedance spectroscopy, skin
barrier integrity can be detected within 8 seconds in a
robust and reliable manner.[63,64] There is a current need
for similar devices for the assessment of mucosal epithelia.

Common Allergens and Environmental Factors that Induce
Airway Epithelial Barrier Dysfunction

Many different exogeneous factors can open the skin and
mucosal epithelial barriers. It must be emphasized that the
substances mentioned in this review may cooperate in
opening the barriers in a synergistic way together with
epithelial inflammation. Airway epithelial barrier damage
can be caused by a number of allergens, microbes, and
environmental substances [Figure 5]. Common aeroaller-
gens, such as dust mites, pollens, and fungi, can disrupt the
airway epithelium barrier. The cysteine proteinase allergen
Figure 5: Disrupting and repairing factors for airway epithelial barrier. CpG: Repeated cytosine
gene; Pim-1: Pim-1 proto-oncogene, serine/threonine kinase.
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Der p1 from house dust mite (HDM), Dermatophagoides
pteronyssinus, can directly cleave the TJ adhesion protein
occludin. The disruption of intercellular TJs subsequently
increases the permeability of the epithelial barrier and
induces an immune response.[65] Saito et al[66] recently
found that the amount of peroxisome proliferator-
activated receptor g coactivator-1 alpha (PGC-1a) and
E-cadherin decreased significantly in HDM-stimulated
cells. The HDM allergen disrupted the airway epithelial
barrier function through the protease-activated receptor 2
(PAR2)/Toll-like receptor 4/PGC-1a pathway. Similarly,
pollens often contain proteases, for example, serine
proteases and metalloproteinases, which act on transmem-
brane adhesion proteins E-cadherin, claudin-1, and
occludin, as well as the cytosolic complex ZO-1, and
then damage intercellular TJs, the anchorage of columnar
epithelial cells and the integrity of epithelial barrier.[67,68]

Proteases of Alternaria alternata can also induce the
disruption of the airway epithelial barrier.[69]

Importantly, increasing evidence indicates that exogenous
noxious substances in the environment are risk factors for
the airway epithelial barrier injury and leakiness, including
cigarette smoke,[70,71] diesel exhaust,[72] ozone,[73] partic-
ulate matter,[74,75] nanoparticles,[76] microplastics,[77]

detergents, surfactants, and proteolytic enzymes used in
cleaning agents,[78-80] as well as emulsifiers in processed
food.[81,82]

The skin epithelium is overwhelmingly exposed to toxic
substances present in detergents and household cleaning
products.[17] Increased use of detergents in general and
the addition of surfactants to commercial detergents
has significantly increased the daily exposure to tissue
and guanine nucleotides linked with phosphate; PARK2: A Parkinson’s disease-associated

http://www.cmj.org


Chinese Medical Journal 2022;135(5) www.cmj.org
barrier-damaging substances.[83] An additional burden to
the epithelial barrier was the introduction of proteolytic
enzymes in washing powders in the mid-1960s to improve
their cleaning efficiency.[84] Proteolytic enzymes derived
from Bacillus subtilis have a direct disruptive effect on the
airway epithelial barrier as observed in the development of
asthma and rhinitis in employees of a detergent facto-
ry.[85,86] On the other hand, certain strains of Bacillus
subtilis can serve as probiotics, regulating TJ proteins (ZO-
1) and reducing death of intestinal epithelial cells.[87] A
systematic review of epidemiological studies showed an
association between exposure to cleaning products and
asthma in four cross-sectional, longitudinal, and case-
control studies.[88] Occupational allergies and asthma in
the detergent industry have significantly decreased by
adopting extensive measures and development of best
practice guidelines focusing on exposure control in
production facilities.[89] There has been extensive research
on replacing nonbiodegradable products with more
environmentally friendly and safer alternatives.[90] How-
ever, daily exposure to tissue barrier damaging doses of
detergents and household cleaners continues today with
the addition of household and professional dishwashers.

Viruses, such as rhinoviruses[91] and coronaviruses,[92,93] can
disrupt TJs and epithelial barrier function, increasing
epithelial permeability and viral invasion, and facilitating
inflammatory reactions. A typical feature of chronic mucosal
inflammation is the development of an immune response
toward microbiome components or newly colonizing
facultative pathogens, such as Staphylococcus aureus
(S. aureus), moraxella, pneumococcus, hemophilus and
Pseudomonas aeruginosa.[17,94] S. aureus is the most
abundant bacteria that colonize barrier damaged tissues in
the skin and respiratory mucosa. Increased colonization of
S. aureus in the nose of asthma patients and increased serum
levels of IgE against S. aureus enterotoxins have been
repeatedly reported.[95-99] Prevalence of antibodies against
S. aureus components has been linked to asthma severity and
exacerbations.[97]S. aureus can enhance the TJ barrier
integrity in nasal tissue in healthy individuals but not in
nasal polyps.[100]S. aureus has also been shown to be
dominant in skinmicrobiomeofpatientswithAD, suggesting
a role of this pathogen in skin barrier dysfunction.[101]

Role of Airway Epithelial Barrier Dysfunction in Type 2
Inflammation of Asthma

The development of asthma and respiratory allergies is a
complex interaction between genes, immune system, and
the environment whereby the airway epithelial barrier
function plays a key role.[18,102] Airway epithelial damage
leads to the loss of physical protection, facilitates the
penetration of exogenous stimulants and allergens[103] and
acts as an interface of innate and adaptive immunity.[104]

Airway epithelial cells express pattern recognition recep-
tors and detect environmental stimuli such as pathogens
and allergens.[105] Epithelial barrier disruption has been
the focus in understanding the pathogenesis of asthmawith
type 2 inflammation.[17]

Aeroallergens, virus, bacteria, and environmental toxins can
impair the epithelial barrier and promote airway epithelial
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cells to release alarmins IL-25, IL-33, and TSLP, as well as
chemokines C-C motif chemokine ligand 2 (CCL2) and
CCL20.[105] The alarmins can induce the differentiation of
ILC2, which then releases type 2 cytokines IL-5 and IL-13.
CCL2 andCCL20 can recruit immature dendritic cells (DCs)
and monocytes, the precursors of DCs, to the lungs.[106,107]

Epithelial cytokines IL-25, IL-33, and TSLP favor the
development of a proallergic DC phenotype.[108] Activated
DCs act as antigen presenting cells and migrate to the
draining lymph nodewhere they induce the differentiation of
naïveTcells toTh2cells. The interactions between the airway
epithelial cells, DCs and the regional lymph node provide a
cytokine milieu for Th2 cell differentiation.[108] IL-4
produced by basophils, together with IL-4 and IL-21
produced by follicular helper T cells, promotes immunoglob-
ulin class switch to IgE in B cells. Effector cells includingMC,
basophils, and eosinophils are activated, degranulate, and
release inflammatory mediators upon being re-exposed to
allergens. IL-4 and IL-13 are cardinal type 2 cytokines and
central to many aspects of airway changes in asthma, e.g.,
directly participating in type 2 inflammation, disrupting the
epithelial barrier function, acting on basement membrane,
and promoting airway remodeling. Therefore, a vicious cycle
composed of IL-4, IL-13, epithelial barrier impairment, and
type 2 inflammation has been suggested in asthma.[106] In
addition, airway epithelial barrier damage will also enhance
permeability to foreign substances including allergens,[109]

which are uptaken, processed, and presented by DCs and
initiate adaptive immune responses.[110] A recent study
showed that allergen-induced degranulation of MCs was
only observed in those with injured nasal epithelia, and
epithelial barrier dysfunction promoted transepithelial aller-
gen passage, sensitization, andMCdegranulation even in the
absence of an inflammatory condition.[111] In return, MC
mediators could rapidly increase epithelial permeability,
which facilitated allergen penetration again.[112] Moreover,
airway epithelial barrier function canmaintain the balance of
immunomodulation.Restoring the epithelial barrier integrity
reduced inflammation inmodels ofTh2-mediated respiratory
inflammation.[113] In a mouse model, the activation of MCs
was elevatedwhen the epithelial barrierwasdisrupted.[50] It is
speculated that nasal epithelial barrier dysfunction is one of
the crucial risk factors in the inflammatory progression from
upper to lower airways.[114] Thus, airway epithelial barrier
dysfunction may represent a cardinal pathophysiological
mechanism of type 2 immunity. The physical barrier injury,
allergic sensitization, and immunological dysregulation
resulted from airway epithelial barrier disruption and
dysfunction participate in the pathogenesis of asthma and
respiratory inflammatory diseases [Figure 6].

Molecular Mechanisms Underlying the Disruption of Airway
Epithelial Barriers

Currently, the precise underlying mechanisms leading to
airway epithelial barrier disruption in asthma are under
extensive research. Different mechanisms may be involved
for the various damaging factors of the epithelial barrier,
such as allergens, bacteria, virus, particulate matter, and
other environmental pollutants.[34,115] Many allergens
possess protease activity, which acts on protease-activated
receptors (PARs) and induces airway epithelial barrier
impairment. HDM allergens were reported to induce
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Figure 6: Schematic diagram of the interaction of type 2 inflammation and airway epithelial barrier in asthma. BAS: Basophil; DC: Dendritic cell; EOS: Eosinophils; FceRI: High-affinity
receptor for IgE; IgE: Immunoglobulin E; IL: Interleukin; ILC2: Group 2 innate lymphoid cell; MC: Mast cell; PARs: Protease-activated receptors; Th2: T helper 2 cell; TSLP: Thymic stromal
lymphopoietin.
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airway epithelial barrier dysfunction via proteolytic
activity.[65] However, another report showed that
HDM-induced airway inflammation and hypersensitivity
was dependent on allergen sensitization but not to serine/
cysteine protease activity, since HDM extract with the
lowest serine protease activity still induced the most
pronounced dysfunction of the epithelial barrier and
CCL20 release in vitro.[116] Another study also demon-
strated that inhalation of HDM allergens did not induce
impairment of the airway epithelial barrier.[117] As non-
allergic individuals mostly tolerate allergen exposure
without or only with mild symptoms, mechanisms other
than allergen-specific MC degranulation may have a
relatively minor effect. It is suggested that HDM-induced
PAR activation and epithelial barrier disruption depended
on epidermal growth factor receptor (EGFR) signaling
since EGFR inhibition reduced the HDM-triggered
decrease in epithelial resistance and improved restoration
of epithelial junctions.[118] Mitochondrial biogenesis and
heat shock protein 90a have also been demonstrated to
participate in HDM-induced airway epithelial barrier
dysfunction with distinct signaling pathways.[66,119] Aller-
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genic fungus A. alternata possesses serine protease activity
and induces barrier disruption of airway epithelium in
severe asthmapatients.[69] German cockroach inducedCa2+

release from intracellular Ca2+ store by acting on PAR2 in
the airway epithelium.[120] In addition, cockroach and
HDM extracts also activated store-operated Ca2+ entry
and thus sustained intracellular Ca2+ elevation in the
airway epithelium,[121] which triggers proinflammatory
cytokines release and airway epithelial barrier dysfunc-
tion.[122] Tumor necrosis factor (TNF)-a was shown to
induce bronchial epithelial barrier dysfunction by activat-
ing Src-family kinase in severe asthma.[123]

The impact of type 2 cytokine IL-13 on epithelial barrier
dysfunction has been well-established in air-liquid inter-
face (ALI) cultures of bronchial epithelial cells and mouse
models of lung inflammation.[124,125] IL-13, released both
by ILC2 and Th2 cells, was shown to induce airway
epithelial barrier disruption by targeting TJs in asthmatic
patients.[124,125] By contrast, another study demonstrated
that IL-13 plays an important role in restoration of airway
epithelial barrier via IL-13 receptor a2.[126]

http://www.cmj.org


Chinese Medical Journal 2022;135(5) www.cmj.org
In addition to directly affecting TJ molecules in the
epithelia, several programmed cell death processes have
been suggested to contribute to airway epithelial barrier
dysfunction. Both pyroptosis[127,128] and apoptosis[129]

have been demonstrated to play a possible role in the
airway epithelial barrier dysfunction and airway inflam-
mation.[130,131] Similarly, ferroptosis and autophagy,[132]

and their interactions[133] have also been suggested to
contribute to airway epithelial barrier dysfunction in
asthma. Particulate matter and respiratory syncytial virus-
induced necroptosis of airway epithelial cells contribute to
airway inflammation.[134,135] However, the role of nec-
roptosis in airway epithelial barrier impairment needs to be
clarified further.
Restoration of the Airway Epithelial Barrier

Epithelial barrier impairment is central to the pathogenesis
of airway inflammation and may also be linked with
severity and control of asthma, therefore, restoration of the
barrier integritymay be a useful strategy in the treatment of
asthma [Figure 5]. Deoxyribonucleic acid containing
repeated cytosine and guanine nucleotides linked with
phosphate (CpG DNA) treatment exhibited a barrier
healing capacity in vitro.[136] Reduced adrenomedullin
expression in airway epithelial cells was observed in
asthma patients, and supplementation with adrenomedul-
lin could promote airway epithelial wound repair.[137] It is
reported that Pim1 kinase activity is essential to main-
taining airway epithelial integrity and protects against
HDM-induced proinflammatory cytokine secretion from
airway epithelium.[138] Inhibition of CpG methylation was
found to improve the integrity of the bronchial epithelial
barrier in asthma.[139] Parkinson’s disease-associated gene
could also protect against HDM-induced airway epithelial
barrier impairment by attenuating epithelial cell pyropto-
sis.[127] Nitric oxide promoted airway epithelial wound
repair through increasing the activity of matrix metal-
loproteinases 9.[140] As also shown in vitro in bronchial
epithelial cells,[125] inhibition of histone deacetylase
activity could restore nasal epithelial integrity and prevent
the development of allergic airway inflammation in
patients with AR.[141] Therefore, further studies are
warranted to provide evidence of the potential use of
histone deacetylase activity inhibitors to restore the
bronchial epithelial integrity in asthma patients. Mechani-
cal strain inhibited airway epithelial repair as demonstrat-
ed in in vitro cultured epithelial cells,[142] thus maintaining
well-control of asthma may reduce mechanical strain
induced by hyperinflation secondary to airflow limitation.

As to the currently available treatments for asthma,
corticosteroid dexamethasone was able to restore the
expression of E-cadherin and beta- and gamma-catenin
that was inhibited by TNF-a, as demonstrated in primary
human bronchial epithelial cells.[143] A few studies
demonstrated a protective effect of long-acting beta-
agonists (LABA) on the airway epithelial barrier.[144,145]

Montelukast could suppress cysteinyl leukotriene-induced
disruption of TJs and adherence junctions (AJs) in human
airway epithelial cells.[146] Allergen-specific immunother-
apy (AIT) was also able to restore airway epithelial
integrity that was damaged in mice exposed to HDM
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component Der f through inhibition of IL-25 expression
and endoplasmic reticulum stress.[147] The effect of
biologicals, such as anti-IgE, anti-IL-5/R, and anti-IL-
4Ra monoclonal antibodies on airway epithelial barrier
dysfunction in asthma patients, is not fully understood.
Short-chain fatty acids propionate and butyrate were also
capable of restoring HDM-induced bronchial epithelial
barrier dysfunction and have been suggested for the
potential treatment of asthma.[148] Even though there is
limited evidence on the potential of probiotics in
restoring the airway epithelial barrier integrity, a study
showed a decrease in airway epithelial permeability in both
animal models and in vitro cultured bronchial epithelial
cells.[149]
Prospects

It should be noted that the airway epithelial barrier
integrity is dynamically regulated by disrupting and
repairing factors, both of which may coexist simulta-
neously. To date, most studies focus only on disruption or
restoration of the barrier. Studies aiming to elucidate the
imbalance between disruption and repair under different
exposomes and its impacts on type 2 inflammation with
state-of-the-art techniques will be of great importance to
the development of new diagnostic and therapeutic
strategies for asthma. A better understanding of the
epithelial barrier hypothesis is needed for the prevention,
early intervention, and development of novel therapeutic
approaches.[17] Possible strategies to reduce diseases
associated with a disrupted epithelial barrier include:
avoidance and dose control of all of the above-mentioned
noxious substances; development of safer, less-toxic
products; discovery of biomarkers for the identification
of barrier leaky subjects; development of novel therapeutic
approaches for restoration of the expression of tissue-
specific barrier molecules; strengthening other components
of the mucosal barrier; blocking bacterial translocation;
avoiding the colonization of opportunistic pathogens;
interventions through diet and microbiome, and many
more novel approaches. In addition, an international
network has been initiated together with the development
of the European Academy of Allergy and Clinical
Immunology guidelines on environmental health, and a
working group to target epithelial barrier related research,
education, and communication to outreach regulatory
authorities has been recently taken off[150] [Table 2].

In summary, future studies are warranted to understand:
(1) the imbalance between impairment and repair of the
airway epithelial barrier; (2) the molecular components of
different aeroallergens responsible for the induction of
airway epithelial barrier damage; (3) exposomes including
virus, bacteria, fungi, particulate matter, microplastics,
and their interactions and contributions to airway
epithelial barrier damage; (4) biomarkers of airway barrier
dysfunction in asthma; (5) novel strategies to repair the
airway epithelial barrier. Researches focusing on the
interactions of airway epithelial barrier dysfunction and
type 2 inflammation in the context of asthma will be
helpful to find novel therapeutic targets for asthma.
Adoption of state-of-art techniques such as single-cell
sequencing, proteomics, airway organoids, Visium spatial
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Table 2: The aims of EAACI working group targeting epithelial barrier related research, education and communication.

Items Contents

A Coordination of research and education on the avoidance and dose control of all of the toxic
substances

B Coordination of research and education for the development of safer, less-toxic products
C Coordination of research and education on the discovery of biomarkers for the identification of

individuals with a leaky epithelial barrier
D Coordination of research and education on the development of novel therapeutic approaches for

strengthening the tissue-specific barriers
E Coordination of research and education on understanding the changes in microbiome on

epithelial barrier leaky areas, bacterial translocation, decreased biodiversity, colonization of
opportunistic pathogens

F Coordination of research and education on treatments and interventions through diet and the
microbiome

G Development of educational content on epithelial cell biology
H Development of Schools and Focused Meetings on Epithelial Cells and Microbiome
I Collaborative work with research groups from Immunology, Asthma, Pediatrics, Dermatology

and ENT and Interest Groups of Aerobiology, Biologicals
J Lobbying in throughout the whole world to have international projects and in the area

EAACI: European Academy of Allergy and Clinical Immunology; ENT: Ear, nose and throat.
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imaging together with immunology and animal models
will facilitate these studies.
Conclusions

The epithelial barriers of the skin, upper and lower
airways, and gut mucosa have been severely impacted by
the rapid change in the environment caused by industriali-
zation, urbanization, and westernized lifestyle. The
development of leaky epithelial barriers leads to the
dysbiosis and translocation of microbiota to inter- and
subepithelial areas, and the development of tissue micro-
inflammation. Epithelial barrier dysfunction contributes to
the development of type 2 inflammation in asthma, which
then in turn aggravates barrier dysfunction. Allergens,
bacteria, viruses, and environmental pollutants could
cause epithelial barrier dysfunction by different mecha-
nisms, such as proteases, Ca2+ signaling and programmed
death of airway epithelial cells. Most currently available
treatments for asthma, such as corticosteroids, LABA,
montelukast, and AIT, are able to restore airway epithelial
integrity. The interplay between the epithelial barrier and
type 2 inflammation in asthma, as well as therapies aimed
at regulating this balance is a promising field to be further
explored.
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