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Abstract: Meiotic recombination is initiated by the induction of programmed DNA double 

strand breaks (DSBs). DSB repair promotes homologous interactions and pairing and leads 

to the formation of crossovers (COs), which are required for the proper reductional 

segregation at the first meiotic division. In mammals, several hundred DSBs are generated 

at the beginning of meiotic prophase by the catalytic activity of SPO11. Currently it is not 

well understood how the frequency and timing of DSB formation and their localization are 

regulated. Several approaches in humans and mice have provided an extensive description 

of the localization of initiation events based on CO mapping, leading to the identification 

and characterization of preferred sites (hotspots) of initiation. This review presents the 

current knowledge about the proteins known to be involved in this process, the sites where 

initiation takes place, and the factors that control hotspot localization.  
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1. Introduction 

Meiosis is an essential process whereby the number of chromosomes of diploid germ cells is halved 

during sexual reproduction. The production of haploid gametes from a diploid germ cell requires one 

round of DNA replication coupled with two successive nuclear divisions. During the first reductional 

division, which is a unique feature of meiosis, homologous chromosomes separate, and during the 

second equational division sister chromosomes are segregated. The faithful segregation of homologous 
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chromosomes (homologs) requires specialized mechanisms to connect them, thereby, ensuring their 

correct orientation at metaphase I and their subsequent migration to opposite spindle poles. Meiotic 

recombination establishes these physical connections by forming crossovers (COs), which are 

reciprocal exchanges of genetic material between homologs [1]. Lack of recombination affects the 

accurate segregation of homologs with fatal consequences for gamete formation. Thus, failure to 

precisely regulate the frequency or the position of COs can cause zygotic lethality or aneuploidy, 

which can lead to congenital birth defects such as Down syndrome [2]. 

The molecular mechanism of meiotic recombination has been investigated in great detail in 

Saccharomyces cerevisiae and Schizosaccharomyces pombe [3,4] and most of its features are 

conserved in higher eukaryotes as well [5]. Meiotic recombination is initiated by the induction of 

programmed DNA double-strand breaks (DSBs). Spo11 catalyzes DSB formation via a DNA 

Topoisomerase II-like reaction to generate a protein-DNA intermediate in which Spo11 is covalently 

bound to the DNA 5' terminus through a phospho-tyrosine bond [6,7]. Spo11 is then removed by 

endonucleolytic cleavage that generates short Spo11-bound oligonucleotides [8]. The DNA 5' ends are 

then processed to produce 3' single stranded overhangs on either side of the break. One protruding 3' 

end searches for regions of homology and forms a displacement loop by invading an unbroken 

non-sister homologous chromatid in a RAD51- and DMC1-dependent process called strand 

invasion [9,10]. Then, the invading 3' end provides a template for DNA synthesis and DSBs can be 

repaired by either synthesis-dependent strand annealing or DSB repair, leading to the formation of  

non-crossover (NCO) or CO products, respectively [11] (Figure 1). The formation of at least one 

“obligatory” CO between each homolog pair is required for proper reductional segregation. Therefore, 

mechanisms involved in the regulation of DSB formation and repair may, by and large, govern CO 

formation. How this regulation controls the precise number of COs is not yet understood [12].  

One major open challenge concerning the initiation of meiotic recombination is to understand the 

biochemical mechanisms involved in DSB formation and the function of the proteins that act in 

concert with SPO11 to promote DSB formation. A second equally important issue is to figure out how 

initiation sites are selected. In this review, we will focus on the recent discoveries that have provided 

new insights into our understanding of meiotic recombination initiation in mammals and we will 

discuss the possible mechanisms of how initiation sites are chosen in the genome.  

2. Initiation of Meiotic Recombination by DSB in Mammals 

Meiotic recombination is initiated by the induction of DSBs soon after the meiotic S phase, at 

leptonema, the beginning of prophase I. DSB repair takes place during the following stages (zygonema 

and pachynema) and is completed before diplonema and diakinesis, when homologs are connected by 

chiasmata (Figure 1). These steps occur at different developmental stages in male and female germ 

cells in mammals [13]. In females, the entire pool of oogonial cells enters meiosis synchronously 

during embryonic development. All recombination steps are completed before birth and oocytes are 

arrested at the dictyate stage. By contrast, in males, a first pool of spermatogonia enters meiosis after 

birth and proceeds to prophase I, from day 10 (leptonema) to day 19 (diplonema) in mice. Then, they 

differentiate into haploid cells during the second meiotic division and during spermiogenesis to 
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produce mature sperm. Additional waves of meiotic differentiation of spermatogonia occur during the 

whole reproductive life.  

Figure 1. The molecular mechanism of crossovers (COs) and non-crossovers (NCOs) 

formation by double-strand breaks (DSB) repair: DSB formation occurs at the leptotene 

stage and requires SPO11, MEI4 and MEI1. DSB repair proceeds until the end of 

pachytene when recombinant products, either CO or NCO are formed. Black and white 

spheres represent polymorphisms. Meiotic stages reproduced from [14] with permission. 

 

 

Direct molecular evidence of the initiation of meiotic recombination by DSB was first obtained in 

S. cerevisiae [15] and various approaches in S. cerevisiae and S. pombe have provided a genome-wide 

map of meiotic DSBs [16–18], although it remains to be understood how the DSB sites are selected in 

the genome. The direct evidence of meiosis-specific DSBs in mammals is technically more 

challenging than in yeast because of the heterogeneity of cells in gonads and the greater genome 

complexity. DNA breaks, but not necessarily only meiotic DSBs, were detected in mouse 

spermatocytes by PCR assay or in situ labeling of testis sections [19,20]. Indirect evidence of DSB 

formation is suggested by the high level of phosphorylation at serine 139 of the histone variant H2AX 

(referred as H2AX) that is known to mark DSBs and also some other DNA lesions [21]. H2AX is 



Genes 2010, 1              

 

 

524 

detected at leptonema and less strongly at the zygotene stage of prophase I in oocytes and 

spermatocytes. In mice, H2AX phosphorylation is SPO11-dependent and therefore is a convincing 

mark of meiotic DSB formation [22]. Furthermore, Scott Keeney’s lab showed the presence of SPO11 

protein-DNA covalent complexes in mouse spermatocytes [8] and further consolidated the evidence 

for the conserved role of SPO11 in DSB formation.  

3. Proteins Required for Initiation 

3.1. SPO11: A Universal Catalytic Inducer of Meiotic DSBs 

SPO11 is an evolutionarily conserved meiotic protein present in most eukaryotic genomes [23]. The 

catalytic role of SPO11 in meiotic DSB was recognized because of the significant homology detected 

between Spo11 and the A subunit of Topoisomerase VI (Topo VI) ([6] reviewed in [24]) and from the 

identification of Spo11-DNA covalent complexes in S. cerevisiae [7]. Indeed, mechanistic models 

driven from structural studies of Topo VI have been instrumental in outlining the basic mechanisms of 

the DNA cleavage activity of SPO11 [25–28]. SPO11 has a catalytic tyrosine-containing domain, 

which is called the winged-helix DNA-binding domain (WHD), and a Topoisomerase/Primase 

(TOPRIM) domain, which harbors acidic residues needed to coordinate the binding of a magnesium 

ion. Although in vitro biochemical evidence for SPO11 catalytic activity is still lacking, a model of the 

mechanism of DNA cleavage by SPO11 has been proposed and reviewed in details elsewhere [29].  

Figure 2. Spo11/TopoVI A orthologs: Alignment of the N-terminal region of TopoVIA 

and Spo11 orthologs, up to the conserved catalytic tyrosine. The two helixes of the 

TopoVIA subunit at the A-B subunit interface are underlined. Alignment provided by 

J. Berger, UC Berkeley.  
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Mammalian SPO11 orthologs were identified about a decade ago based on significant homology 

between mouse EST cDNAs and S. cerevisiae Spo11 (Figure 2). Northern blot analysis revealed that 

mouse and human SPO11 are highly expressed in testis [30–33]. These results were confirmed by 

extensive RT-PCR assays in which the full-length open reading frame of Spo11 was amplified from 

mouse and human testes [30,32]. In addition, transcripts that corresponded to SPO11 ESTs of the 

TOPRIM domain could be detected in mouse and human thymus [32]; however, the SPO11 protein, if 

present, is not involved in the specialized recombination events occurring in these cells since Spo11
−/−

 

mice have normal immunoglobulin class switching and somatic hypermutation [34]. RT-PCR products 

for the incomplete sequence of human SPO11 were also observed in several types of cancer cells from 
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prostate, colon and ovarian carcinomas [32] and SPO11 is a known cancer testis antigen [35]. The 

temporal variation of Spo11 expression was examined in the mouse during the first wave of 

spermatogenesis. Spo11 was detected as early as day 7 after birth by RT-PCR analysis [30]. By 

Northern blotting, weak Spo11 expression was observed at day 12 when DSBs are formed and 

increased levels of expression were recorded from day 17 onwards at pachytene/diplotene stage [33]. 

Specifically, high steady-state levels of Spo11 were observed in pachytene spermatocytes and low 

levels in leptotene/zygotene spermatocytes as well as in round spermatids [33]. The developmentally 

regulated expression of Spo11in mouse testis was confirmed by in situ hybridization experiments in 

which Spo11 transcripts were strongly detected in pachytene/diplotene spermatocytes and a weaker 

signal was detected in zygotene cells, secondary spermatocytes and round spermatids [30]. Spo11 

mRNA was also detected in female germ cells by in situ hybridization [30] and in embryonic ovaries 

by RT-PCR [32]. Finally, immunofluorescence studies on surface-spread spermatocyte nuclei 

localized SPO11 as chromatin foci in leptotene and in a discontinuous pattern in the region of 

homologous synapsis during zygotene and pachytene [36]. This localization of SPO11 on the synapsed 

chromosome axis could not be reproduced with other antibodies [37] and thus needs to be confirmed.  

Human and mouse Spo11 cover 14.0 Kb of DNA, contain 13 exons and encode several alternative 

splice variants. Variation of 38 amino acids in exon 2 (isoforms with or without this exon are called 

beta and alpha respectively) and of four amino acids in exon 8 in both mouse and human  

Spo11 [30,32] as well as a 13 amino acid insertion before exon 5 in mouse Spo11 [31] and an 11 amino 

acid insertion at exon 8 in human Spo11 have been described to produce several isoforms [32]. The 

functions of these isoforms are yet unknown, however, expression of Spo11β and Spo11α have been 

compared by quantitative PCR amplification in different types of testicular cells and in juvenile mice 

testes, where spermatocytes enter meiosis synchronously [38]. Spo11β is predominantly expressed in 

early spermatocytes, while Spo11α transcripts accumulate during late prophase I from mid-pachynema. 

The relatively late expression of Spo11α has been confirmed by the quantitative analysis of mouse 

mutants (Atm
−/−

, Hop2
−/−

 and Dmc1
−/−

) that show spermatogenesis arrest at the mid-pachytene 

checkpoint and in which Spo11α is barely detectable [38]. Since SPO11 is present at low levels in 

mouse in testes, it can only be detected after immunoprecipitation followed by western blotting. Using 

such assays, the differential expression of SPO11α and β is consistent with the kinetics of Spo11 

isoforms transcripts in either wild type or mutant mice testes where spermatogenesis arrests at 

different stages [8,38]. SPO11 can be found covalently linked to 5' ends of DNA with a free 3' 

hydroxyl end in extracts from mouse testis [8]. In these complexes the DNA fragment linked to SPO11 

is a short oligonucleotide, a feature that has important implications for the mechanism of SPO11 

removal and the maturation of the DSB ends. Interestingly, these SPO11-oligonucleotide complexes 

appear to have a molecular weight compatible with the presence of Spo11β and are readily detected in 

Dmc1
−/−

 testes where SPO11α is significantly reduced [8]. These observations support the hypothesis 

of distinct roles for these two SPO11 variants during meiosis and favor a role for SPO11β in 

generating DSBs, whereas SPO11α may have some other unknown function at mid-pachytene. 

Alternatively, SPO11α may have no specific function by itself or be a negative regulator of SPO11β. 

For instance, SPO11α could suppress SPO11 catalytic activity by dimerizing with SPO11β. It is 

interesting to note that exon 2, which is present only in SPO11β, overlaps with the predicted region of 
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interaction between the TopoVI A and B subunits (Figure 2) [25,27]. However, no ortholog of the 

TopoVI B subunit has been identified in mammals.  

Disruption of Spo11 by removal of exon 4 to 6 (including the predicted catalytic tyrosine in exon 5) 

in the mouse causes male and female infertility [36,39]. Testes from Spo11
−/−

 mice are smaller and 

histological analysis (see Figure 3 for a similar phenotype) reveals that spermatogenesis is arrested at a 

stage corresponding to mid-pachynema [40] and spermatocytes are eliminated by apoptosis. No 

haploid cells are formed. In Spo11
−/−

 females, a reduced (about 2-fold lower) number of oocytes 

complete prophase I by progressing to diplotene/dictate stage, but these mice display premature 

ovarian failure because of massive elimination of oocytes after birth. Comparison of oocyte loss in 

mutant mice that are deficient in either DSB formation (Spo11
−/−

) or repair (e.g., Dmc1
−/−

, Atm
−/−

) 

indicates that a significant fraction of Spo11
−/−

 oocytes can survive after diplotene, whereas oocytes in 

which DSB repair is defective are aborted before or at dictyate arrest [41]. Hence, phenotypic 

differences can occur in the DNA damage-independent and -dependent responses to meiotic 

recombination defects in females.  

The molecular defects due to Spo11 inactivation in mice were assessed on surface-spread 

chromosomes of meiocytes by immunostaining with antibodies against proteins that are specific for 

DNA damage (γH2AX), DSB repair (RAD51, DMC1), axis structure (SYCP3) and synapsis (SYCP1) 

(see Figure 4 for a similar phenotype). In wild type mice, during meiosis, SPO11-generated DSBs 

trigger ATM-dependent phosphorylation of H2AX at leptonema. Once DSBs sites are processed, 

RAD51 and DMC1 are loaded to repair DSBs and to initiate synapsis formation between homologous 

chromosomes. The total number of DSBs is estimated at 250–500 based on the number of RAD51 and 

DMC1 foci. A lack of meiotic DSBs in Spo11
−/−

 spermatocytes was deduced from the absence or the 

severely reduced level of γH2AX that marks chromatin during leptotene [22,42]. The residual γH2AX 

in leptotene Spo11
−/−

 spermatocytes is thought to derive from DNA lesions that occur in a  

SPO11-independent fashion at or before leptonema. Conversely, some zygotene-like Spo11
−/−

 

spermatocytes accumulate γH2AX in sub-nuclear regions to form a structure called pseudo-sex  

body [40]. The precise mechanism of pseudo-sex body formation is unknown, but it shares some 

similarity with that of the sex body that normally covers the X and Y chromosomes in wild type mice, 

as it involves the presence of BRCA1 and ATR on unsynapsed chromosome axes [43]. The absence of 

RAD51/DMC1 foci in Spo11
−/−

 meiocytes further indicates a defect in meiotic DSB formation. 

Moreover, a molecular assay to detect recombinant molecules at Psmb9, a mouse recombination 

hotspot, showed that in Spo11
−/−

 ovaries COs and NCOs are not formed [44]. The absence of SPO11 

also results in synapsis defects with the presence of univalents (i.e., unpaired chromosomes) or 

partially synapsed non-homologous chromosomes [36,39]. These synapsis defects make it difficult to 

estimate the exact stage of meiotic arrest in Spo11
−/−

 spermatocytes. Therefore, the expression of H1t, 

a testis-specific histone H1 variant, and of XMR, a member of the X-linked multigene family, has been  

used to determine meiotic progression in Spo11
−/−

 spermatocytes. H1t replaces somatic H1 at  

mid-pachytene [45], while XMR shows dispersed staining at leptotene and later becomes associated 

with unsynapsed regions of the X and Y chromosomes in sex bodies [46]. H1t and XMR expression 

indicate that mutant spermatocytes reach a developmental stage similar to mid-pachytene [40]. 

Another interesting phenotype observed in Spo11
−/−

 mice is the enrichment in cells at the bouquet 

stage, when telomeres cluster in a region of the nuclear periphery at the leptotene/zygotene transition, 
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suggesting that the absence of meiotic DSBs may affect chromosome dynamics [47]. Defective DSB 

formation and lack of synapsis are partially rescued by treatment with cisplatin, a drug that generates 

DNA lesions in the genome [36]. The catalytic role of the conserved tyrosine in mouse Spo11 was 

demonstrated by the observation that the defects in DSB formation and synapsis in Spo11
Y138F/Y138F

 

mice are similar to those of Spo11
−/− 

mutants [48]. SPO11 activity seems also to be important for 

ATM-mediated functions, as Spo11
+/−

Atm
−/−

 spermatocytes overcome the mid-prophase arrest due to 

ATM deficiency [49] and progress to metaphase I. This rescue, which may be due to a lower level of 

meiotic DSBs in Spo11
+/−

 compared to Spo11
+/+

, is milder in females [50]. Altogether, evidence 

presented here strongly corroborates the conserved catalytic role of mouse SPO11 in meiotic 

DSB formation.  

Figure 3. Gametogenesis arrest due to the absence of meiotic DSBs. Similar phenotypes 

are observed in Spo11
−/−

, Mei4
−/−

 and Mei1
−/−

: Spermatogenesis in wild-type (A) and 

Mei4
−/−

 (B) mice at 8 weeks after birth. Oogenesis in wild-type (C, E) and in Mei
−/−

 (D, F) 

mice at 2 and 8 weeks after birth. Paraffin sections of paraformaldehyde-fixed tissues were 

stained with hematoxylin and eosin. *: Empty tubules; Ap-S: Apoptotic spermatocytes; 

PF: Primordial follicles. 
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Figure 4. Monitoring DSB formation in spermatocyte spreads: Chromosome axes are 

visualized by the detection of SYCP3 (green) and DSBs by H2AX (blue) either in wild 

type
(+/+)

 leptotene (A) and pachytene (B) or Mei
−/−

 leptotene (C) and zygotene-like  

(D) cells. Similar phenotypes are observed in Spo11
−/−

 and Mei1
−/−

. 

  

 

3.2. MEI4 and REC114: Two Proteins That Are Evolutionary Conserved from Yeast to Mouse 

MEI4 and REC114 were isolated in genetic screens that identified at least ten genes required for the 

formation of meiotic DSBs in S. cerevisiae [51,52]. Biochemical and cytological studies revealed that 

yeast Mei4 and Rec114 strongly interact and partially co-localize on meiotic chromosomes to form a 

complex that is distinct from the Spo11-complex [53,54]; see [29] for review. The precise functions of 

Mei4 and Rec114 are unknown. Moreover, because of the high degree of sequence divergence no clear 

ortholog of Mei4 and Rec114 could be identified outside closely related budding yeast species, except 

for Rec7, which is thought to be the functional ortholog of Rec114 in S. pombe [55]. Recently, Mei4 

and Rec114 orthologs in the mouse and other higher eukaryotes have been identified by focusing on 

short stretches of conserved sequences [56]. Primary structural alignments of all the orthologs revealed 

several short regions called signature sequence motifs (SSMs) with highly conserved sequence except 

in a few species such as S. macrospora, D. melanogaster and C. elegans. 



Genes 2010, 1              

 

 

529 

The putative orthologs of Mei4 and Rec114 in the mouse are 4930486G11RIK and 2410076I21RIK, 

two proteins with unknown functions. The overall amino acid identity between the mouse orthologs 

and S. cerevisiae Mei4 and Rec114 is very low (8% and 6%, respectively). Altogether, SSMs only 

represent about one fifth of the whole sequence in both orthologs. Six SSMs at the N- and C-terminus 

are present in the z ortholog and may play a role in protein interaction because of the annotated  

alpha-helical or coiled-coil structures. Conversely, the Rec114 ortholog has six SSMs (1 to 6) at the  

N-terminus that are predicted to adopt a beta-sheet structure and one SSM (SSM7) at the C-terminus 

that may acquire an alpha-helical form. The significance of the SSMs was recognized from the 

analysis of the interaction between mouse MEI4 and REC114. Indeed, like in yeast, MEI4 and 

REC114 strongly interact. Deletion analysis showed that this interaction requires the N-terminal motif 

(SSM1) but not the C-terminal region of MEI4 and both N- and C-terminal regions of REC114. 

Human MEI4 and REC114 also interact as monitored in a yeast two hybrid assays [57]. 

Mei4 and Rec114 are expressed in testes and embryonic ovaries. Analysis of the steady-state levels 

of Rec114 and Mei4 transcripts during the first wave of spermatogenesis by quantitative PCR showed 

that their expression peaks between day 10 and 14 after birth, around the time of DSB formation and 

decreases thereafter. Mei4 expression is about 100-fold higher than that of Rec114, but several-fold 

lower than that of Spo11. The mechanisms that regulate Mei4 and Rec114 expression are not known; 

however, the presence of an E2F6-binding element (TCCGC) upstream of the Mei4 promoter suggests 

that, like other germ cell specific genes, transcription of Mei4 may be repressed via E2F6 in somatic 

cells [58,59]. MEI4 has not been detected so far in testis extracts by western blotting, presumably due 

to its low abundance. However, the results of immunofluorescence studies in meiotic cells correlates 

well with the expression of Mei4 at early prophase I. During leptotene and zygotene stages of male and 

female meiosis, MEI4 forms numerous foci that largely co-localize on chromosome axes and are 

excluded from regions of synapsis. On average the number of MEI4 foci per nucleus at leptotene is  

~300, some nuclei having more than 500 foci. This number declines to ~120 foci per nucleus at 

zygotene and is further reduced at subsequent stages of prophase I. The number of MEI4 foci is in 

good agreement with the number of DSBs estimated in mouse leptotene nuclei by other means [60].  

Co-labeling with antibodies against MEI4 and DMC1 and RPA (DSB repair factors) revealed that 

MEI4 foci do not co-localize with DMC1 and RPA, which are present at DSB sites. MEI4 localizes on 

chromosome axes independently of SPO11 since MEI4 foci also accumulate on unsynapsed regions of 

Spo11
−/−

 spermatocytes (Figure 5). What determines MEI4 foci localization is not known. 

The conservation of Mei4 function in DSB formation was demonstrated by analyzing Mei4
−/−

 mice 

in which exon 2, which harbors the translation initiation codon and the two conserved SSM1 and 

SSM2 motifs, was deleted [56]. Mei4
−/−

 male gonads are smaller and lighter; spermatogenesis is 

arrested at mid-prophase I and spermatocytes are eliminated by apoptosis. Mei4
−/−

 ovaries have a 

normal number of growing follicles at two weeks after birth, but they are all lost in adulthood 

(Figure 3). These phenotypes strongly resemble the ones described in Spo11
−/−

 mice. Cytological 

analysis of Mei4
−/−

 spermatocytes and oocytes revealed strong reduction of γH2AX (Figure 4) and 

lack of RAD51, DMC1 and RPA foci, indicating that meiotic DSBs do not form in Mei4
−/−

 mice. 

Immuno-staining to investigate synaptonemal complex formation in Mei4
−/−

 meiocytes showed nuclei 

with either unsynapsed chromosomes or partially synapsed non-homologous chromosomes, like in 

Spo11
−/−

 meiotic cells. Formation of pseudo-sex bodies due to the absence of meiotic DSBs was also 
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observed in a large fraction of Mei4
−/−

 zygotene-like spermatocytes. Mei4
−/−

 spermatocytes appear to 

progress to mid-pachytene before being eliminated by apotosis as suggested by the detection of the 

H1t variant. MEI4 may activate SPO11 directly or through other partners, thus ensuring that DSBs are 

formed on chromosome axes. MEI4 displacement from chromosome axes after DSB formation may 

provide a means to down-regulate DSB formation. Although the functional role of mouse REC114 in 

DSB formation remains to be elucidated, the interaction between mouse REC114 and MEI4 suggests 

that REC114 may also be required for meiotic DSB formation. 

Figure 5. MEI4 (red) localizes as discrete foci along unsynapsed chromosome axes 

(labeled with SYCP3, green) at leptonema (A) and zygotene-like stage (B) in 

Spo11
−/− 

spermatocytes. 

 

 

3.3. MEI1: A Protein of Unknown Function 

Mouse Mei1 (Meiosis Defective 1) was identified in a forward genetic screen that was performed 

with chemically mutagenized mouse embryonic cells to isolate genes involved in mouse fertility [61]. 

Mei1
−/−

 mice, which harbor a frame-shift mutation that produces a truncated Mei1 mRNA, show 

hypogonadism with decreased gonad weight. Male meiosis is arrested at mid-prophase I, whereas a 

small fraction of Mei1
−/−

 oocytes complete the first meiotic division, but achiasmatic chromosomes do 

not congress to the metaphase spindle equator, thus, leading to abnormal oogenesis due to unequal 

chromosomal segregation [62]. The requirement of MEI1 for the initiation of meiotic recombination 

was demonstrated by cytological analysis of Mei4
−/−

 meiocytes that revealed drastically reduced 

γH2AX at leptotene, lack of RAD51 foci and defective synapsis with small stretches of 

non-homologous synapses. These phenotypes are similar to those of Spo11
−/−

 and Mei4
−/−

 mice and 

are partially rescued by cisplatin-induced DNA damage, indicating that MEI1 is essential for meiotic 

DSB formation [62,63]. Disruption of Mei1 causes significant enrichment in cells at the bouquet stage, 

similarly to Spo11
−/−

, suggesting a possible role of meiotic DSB in chromosome dynamics during 

prophase I [47]. Several single nucleotide polymorphisms (SNPs) in the coding region of human MEI1 

have been identified, but no clear association with azoospermia in humans could be detected [64].  
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Mouse Mei1 is thought to comprise 31 exons spanning ~55 Kb [63]. By northern blotting and 

RT-PCR amplification Mei1 transcripts were detected in mouse testes as early as five days after birth 

and in embryonic ovaries at E17, but not in adult ovaries, indicating that in females expression is 

restricted to the time of initiation of meiotic recombination [63]. Mouse Mei1 codes for a protein 

predicted to be 1268 aa long. MEI1 has no apparent homolog in yeast, flies and worms, but orthologs 

of MEI1 have been found in mammals, chicken, zebrafish and recently in plants [63,65]. Mutations in 

AtPRD1 (the Arabidopsis thaliana homolog of Mei1) cause similar defects in meiotic DSB formation 

to the ones observed in mouse (i.e., absence of early recombination markers such as DMC1 foci) [65]. 

Furthermore, interaction between AtPRD1 and AtSPO11-1 was revealed by yeast two-hybrid 

assays [65]. MEI1 orthologs contain putative ARM (Armadillo) domains with predicted similarities 

with Importin. Nonetheless, the biochemical function of MEI1 during meiotic DSB formation remains 

to be determined.  

3.4. WDR61 (Ski8) and MRE11/RAD50/NBS1 Are Involved in DSB Formation in S. cerevisiae, but 

Possibly not in Mammals 

In budding yeast, Ski8 localizes to the nucleus during meiosis, associates with meiotic 

chromosomes and promotes meiotic DSB formation by directly interacting with Spo11 [66]. The role 

of Ski8 in Spo11 activity is conserved in several fungi [67,68], but does not seem to be universal as a 

mutation in the Arabidopsis thaliana Ski8 ortholog does not cause defects in meiotic 

recombination [69]. In mice, WDR61 is the homolog of yeast Ski8, but no interaction between 

WDR61 and SPO11 has been reported and its role in meiotic DSB formation has not yet been tested. 

MRE11/RAD50/NBS1 (the MRN complex also known as Mre11/Rad50/Xrs2 in S. cerevisiae) is an 

evolutionary conserved complex that is essential for DSB repair but its role in meiotic DSB formation 

has only been shown in budding yeast [29]. In the mouse, the MRN genes are highly expressed in  

testis [70,71] and the MRN complex is localized in spermatocyte nuclei from the pre-leptotene to 

diplotene stages of prophase I [40,72]. Since the MRN complex is essential for viability in the mouse, 

inactivation of any of the MRN genes causes embryonic lethality, thus preventing further study of 

these mutant mice [73]. Therefore, mice that harbor MRN hypomorphic alleles have been used to 

partly delineate the function of the MRN complex during meiosis and have been reviewed in [74]. 

Hypomorphic Mre11 and Nbs1 mice show delayed meiotic progression during prophase I, incomplete 

and aberrant synapsis of homologous chromosomes, persistence of RAD51 foci and alterations in the 

frequency and localization of MLH1 foci, a marker of CO formation [75]. Overall, these studies 

suggest an essential role of the MRN complex in the repair of meiotic DSBs, but not in the generation 

of SPO11-dependent DSBs. 

4. Sites Where Initiation Occurs 

As already mentioned, direct molecular mapping of initiation sites has not been performed in 

mammals. The location and frequency of initiation of meiotic recombination is therefore indirectly 

deduced from the analysis of CO products. Upon DSB repair, exchange points are located next to the 

DSB site and at variable distance depending on how far the recombination intermediate extends. Thus, 

CO mapping provides a good estimate of the localization of initiation sites. CO frequency, even when 
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measured at Kbp resolution, gives only an approximate idea of initiation frequency because DSB 

repair can yield alternative products, such as NCOs or inter-sister recombinants, in proportions that 

may vary in the genome [11] (Figure 1). 

4.1. The Anatomy of a Hotspot 

CO events can be detected by different methods (such as direct molecular assays, pedigree or 

population diversity analysis) and have been shown to take place in discrete regions of the genome 

where initiation occurs preferentially (hotspots) [76–78]. Several hotspots in humans and mice were 

mapped at high resolution by PCR-based assays to detect recombinant molecules or through the 

mapping of recombination events by pedigree analysis. In a few cases, the detection of NCOs 

confirmed the region of initiation both in humans [79–81] and mice [44,82–84]. CO frequency is 

highly variable, ranging from 0.0005 cM to 2 cM. The shape of the best-fit distribution of CO at most 

hotspots is a narrow bell-shaped curve that is best explained by a narrow zone of initiation and limited 

spreading of recombination intermediates from the site of initiation over 1–2 Kb (Figure 6). In a few 

cases, a transmission bias of markers located near the center of the hotspot can be observed and 

inferred to result from differential initiation activities on each homolog both in humans [81,85,86] and 

mice [82,84,87–90]. In such context, the distance between the exchange points of reciprocal CO 

products can be measured and provides an estimate of the average size (between 220 and 540 bp) of 

gene conversion tracts involved in DSB repair. In contrast, NCO gene conversion tracts are much 

shorter, between 20 to 290 bp [80,91]. These data are consistent with the idea that COs and NCOs 

result from two distinct DSB repair pathways, a property largely documented in yeast [4]. In mice, 

functional analysis at one hotspot (Psmb9) indicates that NCO and CO formation occurs through 

different pathways that rely on Spo11 (both NCOs and COs) and MLH1/MLH3 (only COs) 

activity [44].  

4.2. General Hotspot Properties 

Human diversity data based on linkage disequilibrium (LD) analysis [92] has provided a 

genome-wide high resolution map of the predicted historical, sex averaged CO activity [93,94]. 

Several of the features of individual hotspots determined by direct analysis can be applied  

genome-wide. About 25000 LD-based hotspots have been mapped at high resolution (at intervals 

smaller than 5 Kb) in the human genome [94,95] using data from the Phase 2 Hapmap [96] which 

includes genotypes from geographically diverse populations. Overall, hotspots map at 1–2 Kb 

intervals, with variable estimated activities, are spaced by 50–100 Kb (Figure 7) and lie preferentially 

outside genes [94]. This last feature has been reported also for CO events detected by pedigree analysis 

in humans, supporting the conclusion that the findings derived from population diversity data reflect 

the property of recombination to occur outside genes rather than being the consequence of a  

selection effect [97].  
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Figure 6. CO and NCO frequency and distribution at the mouse A3 hotspot. At this 

hotspot, most COs occur in a 1.5 Kb region with the highest density (cM/Mb) in the center 

around position 1.7 Kb (upper panel), which corresponds to the zone with the highest NCO 

frequency (lower panel). NCO frequencies differ on each homolog (A and D) suggesting a 

difference in initiation activity. Reprinted from Cole et al. [90] with permission.  

 

Figure 7. Distribution of LD-based hotspots: The estimated sex-averaged recombination 

rates in a 2.5 Mb region on human chromosome 21 are shown. Statistically significant 

hotspots are identified by vertical bars and the 7-mer motif, (CCTCCCT) which is a shorter 

version [94] of the 13-mer motif (see below section 4.3), by triangles. The genes in both 

orientations are shown [98]. 
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4.3. Sequence Motifs at Hotspots 

The large number of hotspots identified in the human genome allowed searching for motifs that are 

particularly frequent at hotspots. The most common motif is a degenerate13-mer sequence 

(CCNCCNTNNCCNC, hereafter called the 13-mer motif) estimated to be present in 41% of 

hotspots [95] and identified in some experimentally characterized hotspots such as DNA3, DMB2, 

DNA2 and MS32. A direct role for this motif has been proposed with the discovery that it corresponds 

to a high affinity binding site for the human PRDM9 protein (see below). The presence of a less 

degenerate motif (CCTCCCTNNCCAC, the core motif) in unique DNA leads to hotspot activity in 

10% of the cases; however, this frequency increases to 73% when the core motif is associated with the 

LTR of the retrotransposon THE1A. Ten percent of hotspots have a core motif (perfect match) in the 

context of a repeat element (including those from the THE1 family, which are the most common, and 

also L2, AluY, AluSg and AlusX), but only 1.3% of hotspots in unique DNA have this core motif. 

Other motifs, such as the 9-mer CCCCACCCC, have been found to be significantly enriched at 

hotspots, but whether they contribute to hotspot activity is unknown [94]. Although this analysis points 

towards a contribution of the primary DNA sequence to hotspot activity, several experiments indicate 

that other factors, besides the local DNA sequence, also play an important role. For instance, the 

detailed study of the MSTM1a and 1b hotspots showed variations in their activities that could not be 

explained by polymorphisms within 100 Kb around these hotspots [86]. 

4.4. Chromatin Structure at Hotspots 

The analysis of the chromatin structure and of its modifications at two mouse hotspots (Psmb9 and 

Hlx1) has provided new clues about the specific features that may define the substrate for the initiation 

machinery [99]. Psmb9 and Hlx1 have similar activities (about 1 and 2cM respectively) but they are 

active only in some specific genetic backgrounds [82,84,100,101]. Analysis of chromatin 

modifications, particularly H3K4Me3 (trimethylation of histone H3 at lysine 4), revealed some 

properties shared by both hotspots and correlated with their activity [99]. H3K4Me3 enrichment is 

detected at the center of the hotspots, specifically in strains where the hotspots are active (Figure 8) 

and from chromatin extracted from whole testis or from fractions enriched for spermatocytes at the 

pachytene stage of meiotic prophase (when DSB are being repaired). The implication of H3K4Me3 in 

DSB formation is further supported by the finding that, in strains that show initiation activity at Psmb9 

on only one of the two homologs, H3K4Me3 is enriched only on the active chromosome. In addition, 

H3K4Me3 enrichment can be already detected on chromatin from testis of pre-puberal mice at 9 days 

post partum, when the first wave of meiotic DSB is induced [102], and it is still seen on chromatin 

from Spo11
−/−

 spermatocytes where DSB are not formed. These observations indicate that H3K4Me3 

marks these initiation sites before or at the time of meiotic recombination initiation and subsists during 

prophase progression, whereas bulk H3K4Me3 strongly decreases during prophase [99]. H4Ac5 

(acetylation of H4 at lysine 5) also is enriched at the Psmb9 and Hlx1 hotspots. This mark may be 

linked to DSB repair, since H4Ac5 enrichment at the Psmb9 hotspot is significantly reduced in 

Spo11
−/−

 compared to wild type mice. Interestingly, H3K27Me3 and H3K9Me3, two modifications 

known to be associated with repressed chromatin status, and that have only been tested at the Psmb9 

hotspot, are depleted at the active hotspot. Conversely, the global nucleosome occupancy and 



Genes 2010, 1              

 

 

535 

chromatin accessibility at the Psmb9 hotspot are not influenced by the activity (or non-activity) of this 

hotspot, as measured by H3 density and micrococcal nuclease sensitivity. This hotspot also does not 

contain a DNAse I hypersensitive site [103]. Complementary studies, to assess nucleosome positioning 

at four other mouse hotspots on chromosome 19, show that, at these hotspots, nucleosomes are well 

positioned and occasionally some domains are depleted in nucleosomes near the center of the hotspots. 

Interestingly this pattern is stable during spermatogenesis from spermatogonia to pachytene [104].  

Figure 8. H3K4Me3 enrichment and PRDM9 binding sites at the mouse Psmb9 hotspot: 

At the Psmb9 hotspot, which is active in the M. m. molossinus strain R209 but not in the 

M. m. domesticus strain C57BL/6 (B6), COs are clustered in a 1.5 Kb interval as shown by 

the CO frequencies (cM per Kb) in this region. H3K4Me3 (measured at nine positions 

along the hotspot) is enriched in R209 spermatocytes in the center of the hotspot as shown 

by the R209/B6 ratio. A sequence with a partial match to the predicted binding site of the 

mouse PRDM9
wm7

 variant, which is present in the R209 strain, is found in the region with 

the highest CO density and with the highest H3K4Me3 enrichment. Bases matching the 

highest score bases from the PRDM9
wm7

 predicted motif are underlined. The PRDM9
b
 

variant from B6 is predicted to recognize a distinct DNA motif (adapted from [99,105]). 
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4.5. The Role of Prdm9 in Hotspot Specification 

In a number of cases it has been reported that a given hotspot can show variations in its 

recombination activity among individuals in humans and strains in mice 

[81,82,85,86,89,97,100,106,107]. The conclusion, that at least some of these effects could not be 

accounted for by local differences in DNA sequences, raised the possibility that long distance effects 

or trans-acting factors might be involved in the regulation of hotspot activity. Genetic studies in mice 

showed that a trans-acting factor was indeed involved [100,108] and the gene responsible for this 

effect was proposed to be Prdm9 [99]. The PRDM9 protein (also called MEISETZ) contains a PR/SET 

domain (PRD1-BF1-RIZ/Suvar-Enhancer of Zeste-Trithorax) with histone transferase activity that can 

catalyze the formation of H3K4Me3 on a H3K4Me2 substrate [109] and a DNA binding domain that 

includes a tandem array of C2H2 zinc fingers (Figure 9). Several approaches have provided strong 

evidence that PRDM9 is directly involved in hotspot activity both in mice and humans [105,110,111]. 

In mice, the M. musculus domesticus and M. musculus molossinus strains, which have different Prdm9 

alleles, characterized by polymorphisms at positions encoding residues of the zinc finger array 

involved in interaction with the DNA (zinc finger coordinates −1, +2, +3 and +6), present major 

genome-wide differences in hotspot and recombination activity [105,108]. Using a zinc finger  

database [112], the binding sites for M. m. domesticus and M. m. molossinus PRDM9 can be predicted 

and were found to be markedly different. The binding site for M. m. molossinus PRDM9 is localized at 

the Psmb9 and Hlx1 hotspots (Figure 8) that are active specifically in the presence of this allele. 

Strikingly, the predicted DNA binding sites for the two major alleles of human PRDM9 (A and B) 

found in the European population match the 13-mer motif that is enriched at LD-based hotspots [95]. 

The link between Prdm9 genotype and CO position was tested by an association study in Hutterites, a 

population of European ancestry. In this population, a minor Prdm9 allele (allele I, 2%) encodes a 

variant predicted to bind to a sequence that is distinct from the one of the A and B variants and that 

does not match the 13-mer motif. In AA individuals, about 60% of COs fall within LD-based hotspots, 

whereas in AI individuals only about 18% of COs do so. This dramatic change in CO distribution 

(without modification of the genetic map length) indicates that the I allele activates a set of hotspots 

that have left no footprint on genetic diversity. This prediction on binding specificities has been 

validated by in vitro binding assays: the major PRDM9 allele binds with high affinity to a DNA 

sequence containing the 13-mer motif and the conserved bases in this motif are important  

for binding [105]. 

Furthermore, at the DNA2 hotspot, where an imperfect match of the 13-mer motif is found, a 

polymorphism at one degenerated base is correlated with a variation of hotspot activity [85]. Direct 

assays at several hotspots in different individuals showed a strong effect of Prdm9 variations on 

hotspot activity [113]. Significant effects were observed even at hotspots where consensus binding 

sites for PRDM9 could not be identified. On the other hand, some PRDM9 variants with little 

predicted differences in DNA specificity also are associated with significant variations in hotspot 

activity. Some of these effects could be due to additional trans regulators that act (in)dependently from 

PRDM9, or could result from limitations of the predictability of the DNA binding specificity of 

PRDM9 zinc fingers. Indeed, although zinc fingers that recognize most of NNN tri-nucleotides have 

been designed, the prediction of DNA binding for any given zinc finger and, more importantly, for an 
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array of zinc fingers is complex. Changes at positions other than −1 to 6 (i.e., the helix residues that 

interact with the DNA) that may influence affinity as well as cooperation between zinc fingers are not 

well understood. Indeed, although modular assembly can be used to generate candidate zinc fingers for 

a given DNA sequence [114], a tool that has been intensely and successfully exploited for genome 

editing [115], “unknowns” about interactions between zinc fingers complicate the accurate predictions 

of DNA recognition, particularly in zinc fingers arrays [116]. Furthermore, additional factors could 

constrain PRDM9 access to its binding site in the genome (DNA methylation, chromatin structure, 

chromosomal organization).  

Figure 9. The PRDM9 protein: (A) PRDM9 contains several known protein domains: 

KRAB, SSXRD, PR/SET and C2-H2 Zinc fingers. The residue G278 in mouse PRDM9 is 

essential for its methyltransferase activity [109]. The zinc finger array is part of a single 

exon; (B) In each zinc finger, three residues (−1, 3 and 6) are in contact with the DNA 

(residue 2 plays a minor role and is in contact with the opposite strand). The sequence 

predicted to be recognized by the major variant of human PRDM9 is shown and overlaps 

with the 13-mer motif [95]. 

 

 

4.6. What Fraction of Hotspots Depends on Prdm9? 

The magnitude of the effect of the Prdm9 genotype on CO distribution observed in the Hutterite 

population suggests that Prdm9 plays a major role in hotspot localization and is also compatible with 

the presence of a fraction of Prdm9-independent hotspots [105]. The important difference in LD-based 

hotspot usage (60% to 18%) between homozygous (AA) and heterozygous (AI) individuals suggests 

that PRDM9 plays a role in more than the 40% of LD-based hotspots in which the 13-mer motif has 
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been identified. As discussed above, due to the potentially complex PRDM9 binding specificity, this 

percentage is likely to be an underestimation of the number of PRDM9-dependent hotspots in humans. 

However, this does not exclude the possibility that, in a minority of hotspots, PRDM9 zinc finger 

specificity or PRDM9 itself is not involved. Indeed, a few hotspots with comparable activities were 

detected in two mouse hybrids that carry different Prdm9 alleles [100]. Additional support for this idea 

comes from the analysis of Prdm9
−/−

 spermatocytes and oocytes where a significant level of  H2AX 

is detected, indicating that DSBs are formed [109]. In addition,  H2AX appears to accumulate and the 

number of DMC1 foci is reduced suggesting a DSB repair defect in Prdm9
−/−

. This could either imply 

that Prdm9 has a (direct or indirect) role in DSB repair, or that this phenotype is an indirect 

consequence of an alteration of initiation events. The comparative analysis of gene expression in 

Prdm9
−/−

 and wild type mice suggests that Prdm9 may be required for the expression of genes 

involved in DSB repair [117]. However one cannot exclude that the observed effects on gene 

expression could be due to differences in cell composition in Prdm9
−/−

 and wild type mice. In the 

absence of PRDM9 a fraction of initiation events may not occur at their correct locations and/or at the 

proper frequency, thus leading to altered homologous interactions, DSB repair and/or synapsis.  

4.7. From PRDM9 Binding to DSB Formation: The Model 

PRDM9 molecular role in hotspot specification should thus involve binding of the PRDM9 zinc 

finger domain to a specific DNA sequence. In the context of chromatin marked by H3K4Me2, PRDM9 

then induces H3K4Me3 at adjacent nucleosomes. H2B ubiquitination at K123 may or may not be 

required, depending on the similarities between the modifications mediated by PRDM9 and by 

methyltransferases that are part of the Compass complex which is active at transcription 

promoters [118]. Additional proteins may then be recruited through binding affinity for H3K4Me3 

and/or PRDM9. Particularly, PRDM9 contains a KRAB motif known to be involved in protein-protein 

interactions. These modifications eventually allow the recruitment of SPO11 (Figure 10). 

4.8. Evolutionary Conservation of the Mechanism of Hotspot Specification 

It is interesting to compare the features of mammalian hotspots to the chromatin accessibility and 

the several chromatin modifications that regulate DSB activity in S. cerevisae (see [119]). In 

S. cerevisiae, most DSBs are located in promoter regions [18,120] at sites that are enriched in 

H3K4Me3 independently of the expression levels of adjacent genes [121]. H3K4Me3 is brought about 

by a unique methyl transferase, Set1, which is recruited by RNApolII. In set1strains, DSB activity is 

strongly reduced and DSBs mostly occur at new sites in the genome that have very low levels of 

H3K4Me3 in wild type cells [121,122]. However, it is not clear whether H3K4me3 enrichment at 

hotspots is an evolutionarily conserved feature as it is not detected at the well characterized hotspot 

ade6-M26 in S. pombe [123]. In this species, the ade6-M26 hotspot is a binding site for the 

transcription factor Atf1-Pcr1, which can recruit chromatin remodelers and modifiers [124–126]. Other 

DNA motifs, which are binding sites for transcription factors, have been shown to stimulate 

recombination activity in the S. pombe genome, suggesting that one or several families of transcription 

factors could specify initiation sites of meiotic recombination [127,128].  
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Figure 10. Hotspot specification by PRDM9: PRDM9 binds to a target sequence through 

its zinc finger domain and brings about H3K4Me3 at adjacent nucleosomes. Additional 

modifications and proteins recruitment may follow either by interaction with H3K4Me3 

and/or with PRDM9, allowing the recruitment of the SPO11 complex and DSB formation.  

 

 

4.9. Evolution of Initiation Sites in Mammals 

A unique feature of the Prdm9-dependent mechanism of hotspot specification in mammals is 

represented by the evolutionary implications that may apply to vertebrates both at the level of hotspot 

DNA sequences and Prdm9 gene. One surprising characteristic of hotspots in primates is their poor 

evolutionary conservation as shown by human/chimpanzees comparisons of LD-based 

hotspots [129,130]. Myers et al. [110] reported that, in chimpanzees, the presence of the 13-mer motif 

in a repeat background, which is mostly associated with hotspot activity in humans, is not correlated 

with increased recombination rates. Furthermore, the 13-mer motif goes through a very different 

evolution in humans and chimpanzees as it is lost at a much higher rate in humans, specifically in the 

THE1 repeat background. This is an expected property for a DNA motif that stimulates DSB formation 

in its close proximity in cis: Due to the mechanism of DSB repair, the initiating chromatid is the 

recipient of genetic information and DNA motifs that enhance hotspot activity should thus be replaced 

by less active alleles during DSB repair. This is known as the hotspot paradox and over generations it 

should lead to loss of hotspot activity. Reciprocally, the stability of the 13-mer motif in chimpanzees is 
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explained by the fact that the predicted DNA binding specificity of the chimpanzees PRDM9 does not 

match the 13-mer motif due to several differences at critical residues of many zinc fingers [110]. 

Whether, the predicted chimpanzees PRDM9 binding motif is enriched at chimpanzees hotspots has 

not yet been determined.  

This analysis highlights how a few changes in PDRM9 can have large consequences on the global 

CO distribution. Amazingly, PDRM9 zinc fingers are located in a single exon, have highly similar 

DNA sequences, and thus constitute a mini-satellite that is highly prone to copy number variations 

(duplications, deletions) and gene conversion by replication slippage and/or recombination. These 

features provide a potential answer as to how, despite the hotspot paradox, high recombination activity 

can be maintained through selection for PRDM9 variants with distinct DNA binding specificity. What 

selective forces act on Prdm9 and, in particular, how a progressive decrease of PRDM9 binding sites 

would affect recombination activity and how this could affect fitness, is yet unclear. In any case, the 

phylogenic analysis of Prdm9 among vertebrates has shown that PRDM9 zinc finger repeats are 

undergoing concerted evolution and that Prdm9 is under strong positive selection [131,132].  

5. Conclusions 

SPO11-dependent meiotic DSBs play an essential role in meiosis by initiating the process that leads 

to CO formation and thus ensuring the proper segregation of chromosomes at meiosis I. However, the 

number of DSBs largely exceeds the number of COs in mammals, with an average of 10–20 times 

more DSBs than COs [11]. Molecular analysis at several hotspots both in humans and mice indicates 

that at least a fraction of the DSBs that do not give rise to COs are repaired on the homolog and 

generate NCOs [79–84,90]. One potential role for DSBs may be to promote homology search and 

pairing between homologs. Interestingly, in C. elegans and D. melanogaster, where homologs can pair 

independently from recombination through alternative pathways, the total number of DSBs is about 

12 [133] and 20–24 respectively [134], thus much lower than the several hundred DSBs observed in 

mammals. This also implies that mammals must therefore deal with a major threat to genome integrity 

during meiosis. Although the meiotic nucleus and chromosomes are organized in such a way as to 

appropriately repair these DSBs, rare unscheduled events may occur. In particular, DSBs can be 

repaired by interaction with a non-allelic sequence, leading to deletion or duplication in the case of 

interaction with an intra-chromosomal sequence, or to translocation in the case of inter-chromosomal 

sequences [135]. Some disorders, due to such genome rearrangements [136], do occur during 

meiosis [137]. More importantly, PRDM9 binding sites have been identified near regions involved in 

these rearrangements, and the Prdm9 genotype influences the occurrence of these events [113].  

Recent progress in the understanding of the mechanism of initiation of meiotic recombination in 

mammals opens many new questions and hypotheses that are expected to provide important clues 

about this phenomenon, and also on how its deregulation could contribute to genomic disorders and 

sterility. The molecular mechanisms of DSB formation is likely to involve complex interactions 

between catalytic activities and proteins that play structural roles to coordinate DNA and chromosome 

events, in order to establish a regulation that could sense a DNA event and operate at the level of the 

chromosome. These features have been described in other organisms with the role of components of 

chromosome axis for DSB formation, such as Hop1 in S. cerevisiae [4] and Condensins in 
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C. elegans [133]. In addition, initiation sites are expected to involve a sophisticated combination of 

epigenetic marks of which most components are waiting to be discovered. 
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