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ABSTRACT Poor metabolic health, characterized by insulin resistance and dyslipide-
mia, is higher in people living with HIV and has been linked with inflammation, anti-
retroviral therapy (ART) drugs, and ART-associated lipodystrophy (LD). Metabolic
disease is associated with gut microbiome composition outside the context of HIV
but has not been deeply explored in HIV infection or in high-risk men who have sex
with men (HR-MSM), who have a highly altered gut microbiome composition.
Furthermore, the contribution of increased bacterial translocation and associated
systemic inflammation that has been described in HIV-positive and HR-MSM individu-
als has not been explored. We used a multiomic approach to explore relationships
between impaired metabolic health, defined using fasting blood markers, gut
microbes, immune phenotypes, and diet. Our cohort included ART-treated HIV-posi-
tive MSM with or without LD, untreated HIV-positive MSM, and HR-MSM. For
HIV-positive MSM on ART, we further explored associations with the plasma metabo-
lome. We found that elevated plasma lipopolysaccharide binding protein (LBP)
was the most important predictor of impaired metabolic health and network analysis
showed that LBP formed a hub joining correlated microbial and immune predictors
of metabolic disease. Taken together, our results suggest the role of inflammatory
processes linked with bacterial translocation and interaction with the gut micro-
biome in metabolic disease among HIV-positive and -negative MSM.

IMPORTANCE The gut microbiome in people living with HIV (PLWH) is of interest since
chronic infection often results in long-term comorbidities. Metabolic disease is preva-
lent in PLWH even in well-controlled infection and has been linked with the gut micro-
biome in previous studies, but little attention has been given to PLWH. Furthermore,
integrated analyses that consider gut microbiome, together with diet, systemic immune
activation, metabolites, and demographics, have been lacking. In a systems-level analy-
sis of predictors of metabolic disease in PLWH and men who are at high risk of acquir-
ing HIV, we found that increased lipopolysaccharide-binding protein, an inflammatory
marker indicative of compromised intestinal barrier function, was associated with worse
metabolic health. We also found impaired metabolic health associated with specific die-
tary components, gut microbes, and host and microbial metabolites. This study lays
the framework for mechanistic studies aimed at targeting the microbiome to prevent
or treat metabolic endotoxemia in HIV-infected individuals.
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Poor metabolic health characterized by insulin resistance and dyslipidemia is com-
mon in people living with HIV (PLWH) (1–3) and has been linked with chronic

inflammation (4–7) and several antiretroviral therapy (ART) drugs (8). Metabolic disease
is particularly prevalent in HIV-positive individuals with lipodystrophy (LD), a disease
linked with early ART drugs that is manifested by lipoatrophy in the face, extremities,
and buttocks with or without visceral fat accumulation. Delineating pathophysiological
mechanisms of impaired metabolic health is crucial for tailoring strategies for prophy-
laxis and treatment to PLWH.

Metabolic disease has been linked with gut microbiome structure and function out-
side the context of HIV infection (9–13), but this relationship has not been explored
deeply in PLWH. We and others have found an altered gut microbiome composition in
both PLWH (14–16) and men who have sex with men at high risk of contracting HIV
(HR-MSM) (15, 17). Furthermore, we have demonstrated that the altered microbiome in
HIV-infected individuals (14) and HR-MSM (14, 18) are proinflammatory in vitro and/or
in gnotobiotic mice (14, 18). This is of interest since peripheral inflammatory signals
have been implicated in both cardiovascular disease risk (7, 19) and insulin sensitivity
(4, 5, 20–22) in PLWH. A recent study conducted in PLWH found that HIV-associated
microbiome differences correlated with risk of metabolic syndrome, particularly in indi-
viduals with a history of severe immunodeficiency (23).

One mechanism by which the gut microbiome may impact metabolic disease in
PLWH is through effects on intestinal barrier function. Impaired intestinal barrier, meas-
ured by increased bacterial products such as lipopolysaccharide (LPS; endotoxin) in
blood, has been linked with metabolic syndrome and particular metabolic derange-
ments (e.g., dyslipidemia and insulin resistance). This “metabolic endotoxemia” has
been described in chronic kidney disease/hemodialysis patients (24), and there are
mixed data regarding a role in obesity (25–27). Murine studies have further supported
that an altered gut microbiome and translocation of LPS could trigger insulin resist-
ance, diabetes, and atherosclerosis (28–31). This is of interest for PLWH because bacte-
rial translocation, indicated by higher levels of LPS or LPS-binding protein (LBP) in
blood, is well known to occur in HIV-infected populations, to be not completely ame-
liorated by ART (32, 33), and to positively correlate with HIV-associated gut microbiome
differences (23). Increased plasma LPS levels have also been observed in MSM and
linked with recent sexual behavior (34).

We hypothesized that PLWH and HR-MSM with poor metabolic health would harbor
a distinct gut microbial signature that was in turn also associated with elevated periph-
eral immune activation. We evaluated this relationship while considering other factors
known to influence the microbiome, immunity, and metabolic health. This analysis
included typical diet; the HIV, ART, and LD status; and other demographic characteris-
tics such as age and body mass index (BMI). For HIV-positive individuals on ART with or
without LD, we further explored associations with the plasma metabolome (Fig. 1). Our
results suggest a central role of inflammatory processes linked with bacterial transloca-
tion, as measured by LBP and correlated intestinal microbes, and dietary and demo-
graphic attributes in metabolic disease risk.

RESULTS
Study population. This study examined a cohort of 113 men, including men who

have sex with women (MSW; n=22, 19.5%) and MSM (n=91, 80.5%) (Table 1). Of the
MSM, 32 were HIV negative (35.2%), 14 were HIV positive and not on ART (15.4%), and
45 were HIV positive and on ART (49.4%). The HIV-positive, treated group included
those with lipodystrophy (LD; n=25, 55.6%) and those without (n=20, 44.4%). The
HIV-negative MSM participated in activities that put them at high risk of contracting
HIV including: (i) a history of unprotected anal intercourse with one or more male or
male-to-female transgender partners; (ii) anal intercourse with two or more male or
male-to-female transgender partners; or (iii) being in a sexual relationship with a per-
son who has been diagnosed with HIV (35). In order to focus on HIV-associated
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metabolic disease, obese individuals (BMI .30) were excluded. There was no signifi-
cant difference in BMI between the cohorts (Kruskal-Wallis test, P = 0.085; see Table S1
in the supplemental material). Individuals in the HIV-positive, treated cohorts were sig-
nificantly older than HIV-negative and HIV-positive, untreated MSM (Kruskal-Wallis test,
P, 0.001). Age matching across all cohorts was not feasible in part because LD is asso-
ciated with early generation ART drugs and thus most common in older HIV-positive
individuals, and HR-MSM behavior and new HIV infections are predominantly in
younger individuals. However, age is carefully considered in downstream analyses. All
treated, HIV-positive individuals were on successful ART with suppressed viral loads
(Table 1).

Metabolic disease score as a marker for metabolic health. We measured seven
common clinical markers of metabolic health from fasting blood: triglycerides, glucose,
insulin, low-density lipoprotein (LDL), high-density lipoprotein (HDL), leptin, and adipo-
nectin. Since these markers are often correlated with each other, we used principal-
component analysis (PCA) to define a single continuous measure of overall metabolic
health, as has been done previously (Fig. 2A) (36, 37). Individuals with high values
along the first principal component (PC1) generally had high triglycerides and low
HDL, indicating dyslipidemia, and higher levels of fasting blood glucose and insulin,
indicating insulin resistance (Fig. 2A; see also Fig. S1). PC1 values were shifted to a min-
imum of 1 and log transformed to define the metabolic disease score, which ranged
from 0 as healthy to 2.5 as impaired. We used regression analysis to determine how
this score related to clinically defined cutoffs for normal levels of the markers (see
Fig. S1). For example, triglycerides positively correlated with metabolic disease score,
and almost all individuals with a score above 1.45 had triglyceride levels in the unheal-
thy range of .200mg/dl. Similar patterns and cutoffs were true for HDL, LDL, and glu-
cose (see Fig. S1). The intersection of the regression with these cutoffs were all

FIG 1 Study design schematic. (A) Measures were collected from four compartments: gut microbiome,
peripheral immune, diet questionnaire, and plasma metabolome. These separate compartments can
all influence each other and can be influenced by other clinical and demographic characteristics
such as HIV and treatment status. (B) Analysis pipeline for the study. First, a metabolic health
outcome was determined. Second, informative variables were selected using random forest
analysis. Lastly, the relationships between these informative variables and the metabolic health
outcome were examined.

Microbiome and Metabolic Disease in HIV1 Populations

May/June 2021 Volume 6 Issue 3 e01178-20 msystems.asm.org 3

https://msystems.asm.org


averaged to a single number of 1.4. Individuals below the cutoff were categorized as
metabolically normal, and those above were categorized as metabolically impaired.

When comparing the metabolic disease score across cohorts, we found that ART-
treated, HIV-positive individuals with LD trended higher in both the average metabolic
disease score and the proportion of individuals with scores in the metabolically
impaired group, but intergroup significance was lost after multiple test corrections
(Fig. 2B). Furthermore, because our HIV-positive, treated cohorts were significantly
older than our HIV-negative MSM and HIV-positive, untreated MSM, we used a linear
model to explore differences in the metabolic disease score across cohorts while
accounting for age (Fig. 2C). This score was positively associated with age only in HIV-
negative MSM and HIV-positive, untreated MSM (Fig. 2C; linear model; P , 0.001 and
P = 0.036, respectively), and only HIV-negative MSM had significantly higher metabolic
disease scores compared to HIV-negative MSW when accounting for age (linear model;
P, 0.001).

Selection of features that predict the metabolic disease score and interactions
between selected features. We next explored the complex relationships of the gut
microbiome, peripheral immune activation, and diet to the metabolic disease score
and to each other using only data from the HIV-positive and HR-MSM cohorts. We first
selected features that were important predictors of the metabolic disease score using
the VSURF (Variable Selection Using Random Forest) tool (38). VSURF is optimized for
feature selection, returning all features that are highly predictive of the response vari-
able, even when a smaller subset of highly predictive variables with redundant features
removed could be just as accurate for prediction (38). We input the following features
into the VSURF tool: (i) 130 microbial features. 99% identity operational taxonomic
units (OTUs) with highly co-correlated OTUs were binned into modules as described in
the methods (detailed in Table S2). Only OTUs present in .20% of samples were
included. (ii) A total of 21 immune features were measured in plasma using multiplex
enzyme-linked immunosorbent assays (ELISAs; detailed in Table S2). These immune
measures were selected based on a literature search for those previously shown to be
altered in HIV infection and/or metabolic disease. (iii) A total of 21 clinical/demo-
graphic features, such as age, BMI, HIV infection, and treatment status, and typical gas-
trointestinal symptoms, including constipation, diarrhea, and bloating, were taken into
consideration (detailed in Table S2). (iv) A total of 29 dietary features were collected
using a food frequency questionnaire of typical dietary intake over the prior year, as
detailed in Materials and Methods. Highly co-correlated diet features were also binned
into modules (detailed in Table S2).

From the initial 201 measures, VSURF identified 69 important variables (4 clinical data
measures, 6 diet measures, 14 immune measures, and 45 microbes) and a subset of 10

TABLE 1 Description of full study cohort

Parameter
HIV-negative
MSW

HIV-negative
MSM HIV-positive MSM, untreated

HIV-positive MSM,
treated

HIV-positive
MSM, treated,
with LD Pb

No. of subjects 22 32 14 20 25

Median (IQR)a

Age, yr 33 (27.3–38.5) 34 (29.8–44.5) 34 (26.5–40.3) 46 (42.8–50.5) 60 (54–64) ***
BMI, kg/m2 25.2 (23.0–27.0) 25.5 (20.2–28.0) 21.4 (20.2–25.6) 23.9 (22.6–26.2) 25.8 (23.0–

28.0)
NS

CD4 cell count NA NA 538 (406–732) 586 (420–878) 659 (550–908) NS
CD4 nadir count NA NA 496 (409–612) 256 (118–416) 152 (70–350) ***
Viral load (copies/ml) NA NA 101,400 (20,300–292,514) 20 (0–20) 0 (0–20) ***

Cholesterol drugs/statins, n (%) 2 (9.1) 3 (9.4) 1 (7.1) 4 (20) 14 (56) 111
aNumbers are reported as medians and interquartile ranges (IQR).
bP values were determined using the Kruskal-Wallis test (***, P, 0.001; NS, P. 0.05) and Fisher exact test (111, P, 0.001). See Table S1 for pairwise comparisons
between groups.
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highly predictive variables (see Table S3). These 69 features could predict the metabolic dis-
ease score using traditional random forest with an r2 of 31.05%, which is significantly better
than a null model where the outcome was randomly permuted (P = 0.036; see Fig. S2).

We found that 21 of the 69 selected variables were positively or negatively correlated
with the metabolic disease score (Spearman rank correlation, false discovery rate [FDR],
P , 0.1; see Table S3). Since random forest can detect nonlinear relationships and/or fea-
tures that are only important when also considering another feature, it is not surprising
that all features were not correlated linearly with the metabolic disease score. All VSURF-
selected clinical measures were positively correlated with metabolic disease score and
included age, BMI, lipodystrophy, and bloating (see Table S3). None of the six selected
diet measures correlated with metabolic disease score (see Table S3). VSURF selected
immune markers that were positively correlated with the metabolic disease score
included LBP, intercellular adhesion molecule 1 (ICAM-1), interleukin-16 (IL-16), IL-12, and
granulocyte-macrophage colony-stimulating factor (GM-CSF) (see Table S3). The feature
with the highest random forest importance score was LBP.

Diet, the microbiome, and immune phenotypes can all influence each other and
can also relate to clinical/demographic factors such as BMI and age (Fig. 1). For this

FIG 2 Calculation of the metabolic disease score. (A) PCA of metabolic markers in fasting blood of 164 men and women, including 113 participants
described in this report, along with 51 individuals recruited at the same time and under the same exclusion criteria as study participants. The metabolic
disease score is calculated as the PC1 coordinates shifted to a minimum of 1 and log transformed. (B) Metabolic disease scores broken up by cohort. The
percentages noted above the groups are the percentages of individuals with a score above our metabolic impairment cutoff (see Fig. S1). There is no
significant difference between the proportions in each group (Fisher exact test, P = 0.11) or between mean ranks in each group (Kruskal-Wallis test, P =
0.13). (C) Relationships between metabolic disease score and age stratified by cohort. Statistical significances of slopes are indicated and were calculated
according to the following linear model: score ; age 1 cohort 1 age � cohort. **, P , 0.01; *, P , 0.05.
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reason, we also investigated the relationship between the 69 important factors using
pairwise Spearman rank correlation and network visualization (Fig. 3; see also Fig. S3
and Table S3).

The selected important microbes included many that were highly correlated with
each other and with dietary, clinical/demographic, and inflammatory phenotypes (see
Fig. S3A and Table S3). For example, a module of bacteria identified within the
Prevotella genus and the Paraprevotellaceae family, negatively associated with meta-
bolic disease score and positively associated with dietary fiber (see Fig. S3B).

Because bacterial translocation is known to occur at increased levels in both HIV-
positive individuals (39) and HR-MSM (34), we were specifically interested in investigat-
ing which of the selected features correlated with LBP. LBP was negatively correlated
with several putative butyrate producing bacterium/bacterial modules such as OTUs in
the genera Coprococcus (40, 41) (Fig. 3B). LBP was also positively correlated with Dorea
species (Fig. 3B; see also Table S3). In addition to correlations, we evaluated interac-
tions between selected variables using the tool iRF (iterative Random Forest) (42).
These interactions represent variables that are in adjacent nodes in a random forest
tree in which the value of one influences the predictability of the other. This analysis
also identified that LBP interacted with age, BMI, an OTU in the Lachnospiraceae family,
and microbiome module 24 (Coprococcus and Blautia spp.) in predictions of the meta-
bolic disease score (Fig. 3C; see also Table S3).

Because of the recognized role of inflammation in an increased risk of age-associ-
ated non-AIDS-related morbidity and mortality in PLWH (43–46), we were also

FIG 3 Networks of selected measures reveal several strong associations with metabolic disease score
and between measures. (A and B) Correlation subnetworks of all the non-microbe-selected measures
(A) and the nearest neighbors of LBP (B). All Spearman rank correlations with an FDR P , 0.25 are
shown. Subnetworks were pulled from a larger network of all VSURF selected measures (see Fig. S3
and Table S2). (C) Network of interactions between measures calculated using iRF. All edges
represent an interaction (i.e., proximity in a decision tree) that occurred in 30% or more of the
decision trees.
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specifically interested in investigating which of the selected features correlated with
age. Age had the strongest positive association with lipodystrophy and also positively
correlated with several inflammatory markers, including LBP, CRP, IL-6, ICAM-1, and se-
rum amyloid A (SAA; see Fig. S3C and Table S2). Age was also correlated with several
different gut microbes, including a negative correlation with OTUs assigned to
Bifidobacterium adolescentis, Eubacterium dolichum, Coprobacillus sp., and Oscillospira
sp. (see Fig. S3C).

Random Forest analyses do not allow for gaps in data, as a result, HIV-specific varia-
bles were omitted from these analyses. We thus performed Spearman’s rank correla-
tions to investigate a relationship between variables only measured in our HIV positive
cohorts and the metabolic disease score and found no correlation with the CD4 nadir
(P = 0.28) and CD41 T-cell count (P = 0.076). We also found no significant correlation
between viral load and metabolic disease score among individuals with untreated HIV
infection (P = 0.68).

Lastly, because many gut microbes were associated with metabolic disease score,
we also investigated associations with overall microbiome composition measures.
Microbiome evenness, as measured by Pielou’s Evenness and Shannon Index, were
both weakly negatively correlated (Spearman rank correlation, rho = –0.09 [P = 0.047]
and rho = –0.09 [P = 0.045], respectively), and there was no significant relationship in
measures of microbiome richness (Faith’s PD and observed features). In addition, there
was no significant relationship between weighted and unweighted UniFrac distances
and metabolic disease score differences between individuals (Mantel test, P = 0.7 and
P = 0.4, respectively).

Relationship between the plasma metabolome and the metabolic disease
score in ART-treated HIV-positive individuals with or without LD. To pursue a fur-
ther mechanistic understanding of how the gut microbiome may influence the metabolic
disease score in PLWH, we performed untargeted metabolomics (liquid chromatography-
mass spectrometry [LC-MS]) on plasma from our cohort of ART-treated, HIV-positive
individuals with or without LD (n=44). Metabolite identities were then validated using
untargeted tandem MS (MS/MS). We used two approaches to determine which plasma
metabolites were either directly produced or indirectly influenced by the gut microbiome.
First, metabolites were run through the computational tool AMON (47), which uses the
KEGG database (48) and inferred metagenomes (calculated using PICRUSt2 [49]) to deter-
mine which could have been produced by the microbiome. Second, LC-MS was run on
plasma from both germfree (GF) and humanized mice to determine metabolites that had
significantly altered levels upon colonization with human microbiomes. Specifically, GF
mice were gavaged using fecal samples from eight men from the study cohort (human-
ized mice), while two mice were gavaged using phosphate-buffered saline (PBS) as a con-
trol (see Table S4). Plasma was collected before and after gavage. All mice were fed a
high-fat Western diet.

We found that 820 metabolites were different in abundance between GF and
humanized mice after multiple test corrections (Student t test, FDR, P , 0.05), 493 of
which were also present in the human plasma samples (Fig. 4). From the full set of
5,332 metabolites identified in the human plasma, 416 could be annotated with KEGG
IDs. These were further analyzed using AMON. A total of 146 microbiome-associated
metabolites were identified that are putatively produced by the gut microbiome; how-
ever, many of these could also be produced by the host. Of the 146 microbiome-asso-
ciated metabolites identified by AMON, 26 also differed in colonized versus GF mice
(Fig. 4; see also Table S5).

Of the 5,332 total measured metabolites in the human samples, 150 correlated with
the metabolic disease score (Spearman rank correlation, FDR, P , 0.05; see Table S5).
The correlated compounds were enriched in a number of different metabolic pathways
with both the Phospholipid and the Glycerolipid pathways of the Small Molecule
Pathway Database (SMDPH) (50) highly enriched (see Table S5). Consistent with the
metabolic disease score being defined in part by dyslipidemia, 17 of the significant
compounds were annotated as triglycerides. Seven of the significant compounds were
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associated with the microbiome as determined by the process outlined above. We con-
firmed the identity of 5 of the 7 of these with MS/MS (see Table S5). Of these seven
microbiome-associated metabolites, two could exclusively be explained by direct pro-
duction by the microbiome. Specifically, dehydroalanine, identified as a microbial
product by AMON, negatively correlated with the metabolic disease score, and bacter-
iohopane-32,33,34,35-tetrol positively correlated with the metabolic disease score (see
Table S5). Two additional microbiome-associated compounds were triglycerides [TG
(54:6) and TG(16:0/18:2/20:4)] that were positively correlated with metabolic disease
score and elevated in humanized mice compared to GF mice. Another of these
metabolites, 1-linleoyl-2-oleoyl-rac-glycerol, is a 1,2-diglyceride in the triglyceride bio-
synthesis pathway. Finally, phosphatidylcholine [PC(17:0/18:2)] and phosphatidyletha-
nolamine [PE(20:3/18:0)] compounds were identified as microbiome associated and
positively and negatively correlated with the metabolic disease score, respectively (51).

Since age was significantly associated with metabolic disease score in the full
cohort and thus could present a potential confounding factor in the metabolite rela-
tionships, we constructed a model that included age using a rank-based estimation for
linear models using the R package Rfit (52). Because of the statistical differences
between linear regression and spearman correlation, we looked at Rfit with and with-
out age. Both analyses identified 60 metabolites significant after FDR correction (see
Table S5), and 45 of the 60 metabolites were identified with both Rfit models, indicat-
ing that age was not very influential on the results (see Fig. S4).

DISCUSSION

In this study, we identified gut microbes, dietary components, demographic and
immune measures that predicted impaired metabolic health in a cohort of MSM with
or without HIV, ART, and LD. Notably, we identified a strong relationship with circulat-
ing LBP, which in turn correlated with other markers of systemic inflammation, a loss
of beneficial microbes such as butyrate-producing bacteria, and a higher BMI, indicat-
ing that diverse modifiable factors may influence LPS/inflammation-driven metabolic
disease in this population.

FIG 4 Microbiome-associated metabolite workflow. A two-pronged approach for identifying microbiome-
associated metabolites is depicted. Numbers in boldface indicate metabolite counts.
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There was a positive association between impaired metabolic health and age, as
has been reported previously for both HIV-positive (53) and HIV-negative (54) popula-
tions, but linear modeling suggested that this relationship was driven by an association
in HIV-negative MSM and HIV-positive untreated MSM in our study, revealing a possi-
bly larger effect size than in our other cohorts. Also, when controlling for age, HIV-neg-
ative MSM had the highest metabolic disease score, even compared to HIV-positive
individuals on ART with LD, a population that has previously been reported to have
higher incidence (55). This result is intriguing given prior research linking increased lev-
els of LPS in blood with high-risk behavior in MSM (34). Larger cohorts and more
detailed behavior information are required, however, to make any definitive claims on
impaired metabolic health in aging in HR-MSM.

Our finding that age was a significant predictor of impaired metabolic health in this
cohort is consistent with previous studies showing an increased risk of age-associated
non-AIDS-related morbidity and mortality in PLWH (44–46, 56). Consistent with the
previously reported role of inflammation in this relationship, age was positively corre-
lated with 5 of the 14 immune measures that VSURF selected as important predictors
of the metabolic disease score, including LBP, CRP, IL-6, ICAM-1, and SAA. Consistent
with age being associated with changes in the microbiome previously (57–59), we also
found age to be correlated with several different predictive microbes (see Fig. S3C and
Table S2). These included a negative association with B. adolescentis, whose loss has
previously been mechanistically linked with health deficits that occur with aging
(60–63). B. adolescentis has been shown to prevent immunosenescence when fed pro-
biotically to aged rats (62) and to have beneficial effects on barrier function in a murine
model (64).

Consistent with prior studies that have associated high BMI with dyslipidemia, insu-
lin resistance, and/or metabolic syndrome (65–67), BMI was a positive predictor of
impaired metabolic health in our cohort even though our study excluded obese indi-
viduals but did include overweight individuals. This suggests the importance of weight
management even among overweight, nonobese individuals as a strategy for reducing
metabolic health impairment in this population.

We did not find a positive association between ART status and the metabolic dis-
ease score, but this may be because study participants were on a wide variety of drug
combinations with the potential to have varied/contrasting effects. For instance, both
integrase stand transfer inhibitors (68) and regimens, including the nucleoside reverse
transcriptase inhibitor tenofovir, have been shown to increase the risk of weight gain
(69). Conversely, the CCR5 antagonist, maraviroc, may confer a benefit to cardiovascu-
lar function and body weight maintenance, and evidence in mice suggests that these
beneficial effects may be linked to gut microbiome composition changes (20, 70).
Thus, future studies will be required to understand factors important in particular drug
contexts. Other HIV-specific measures, such as CD4 nadir, viral load, and CD41 T cell
count, also did not have a significant association with metabolic disease score. A low
CD41 T-cell count (71) and a low CD4/CD8 T-cell ratio (72) have previously been linked
to poor metabolic health in individuals on ART. Furthermore, a low CD4 nadir has been
linked with gut microbiome dysbiosis in HIV-infected individuals (71), and an associa-
tion between HIV-associated gut microbiome dysbiosis and metabolic syndrome was
significantly stronger in individuals with past severe immunodeficiency compared to
those without (23). Our negative results may be a result of small sample size and also a
lack of individuals included in the study with severely compromised CD41 T-cell counts
(Table 1).

Several dietary components that we identified have been previously associated
with metabolic health, including dietary carotenoid, lycopene, and fiber (73–77).
Fiber’s benefit in glucose response has been linked with the activity of Prevotella copri.
Specifically, individuals who had improved glucose response after 3 days of high-fiber
consumption had a greater increase in P. copri, and these beneficial effects were con-
firmed in a mouse model (76). However, another study found that P. copri actually
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promoted a poor glucose response in the context of a Western diet low in fiber
through the production of branched-chain amino acids (11). Interactions between
Prevotella, dietary fiber, and metabolic health are of particular interest in this cohort
since HIV-positive and -negative MSM have much higher levels of Prevotella, including
P. copri, than do non-MSM (15, 17). In addition, our prior study using in vitro stimula-
tions of human immune cells with fecal bacteria of HIV-positive and -negative MSM
indicated that the Prevotella-rich microbiomes of MSM could drive systemic inflamma-
tion (14). Interestingly, in our data, a module of three OTUs, two in the genus Prevotella
and one in the family Paraprevotellaceae, negatively associated with metabolic disease
score and positively associated with dietary fiber (see Fig. S3B), supporting a relation-
ship between Prevotella and dietary fiber in improving metabolic health and not sup-
porting deleterious effects. Further work will be needed to decompose the complex
relationship between dietary fiber, particular Prevotella strains, and metabolic health in
HIV-positive and -negative MSM with unique Prevotella-dominated communities.

LBP was the most important feature in the random forest analysis and also a highly
interactive measure in the iRF analysis. LBP binds to both microbial LPS and lipotei-
choic acid (78), and the presence of elevated LBP in blood is indicative of increased in-
testinal barrier permeability (79). LBP was correlated with age and BMI, a relationship
that was previously observed in a cohort of HIV-negative men of African ancestry, with
this trio being further associated with adiposity and prediabetes (80). LBP levels were
also correlated with other inflammatory markers that have been linked with worse
metabolic health, suggesting a role as a central mediator of metabolic-disease associ-
ated immune phenotypes. These included (i) ICAM-1, whose expression in adipose
tissue has been associated with diet-induced obesity in mice (81) and metabolic syn-
drome in humans (82); (ii) IL-6, a proinflammatory cytokine that has been shown to
play a direct role in insulin resistance (83); and (iii) SAA, which is regulated in part by
IL-6 and plays a role in cholesterol metabolism (82); SSA3 specifically has been shown
to be produced in response to gut bacteria in obesity in mice (84). We observed a posi-
tive association between the metabolic disease score and frequency of abdominal
bloating (see Table S3 and Fig. S3A), further supporting a role of intestinal dysfunction
in this population. Taken together, these associations suggest that inflammation origi-
nating from an impaired intestinal barrier is promoting worse metabolic health.

The importance of microbiota-driven intestinal barrier dysfunction in HIV-associated
metabolic syndrome was suggested in a recent study of Gelpi et al. (23), which found
that metabolic syndrome in HIV-infected individuals was correlated with an HIV-associ-
ated gut microbiota. This microbiota was characterized in part by a decrease in butyr-
ate-producing bacteria, including Coprococcus and Butyrivibrio. Consistent with this
finding, we found that multiple Coprococcus OTUs were selected as important predic-
tors of the metabolic disease score and that they also negatively correlated with LBP.
Butyrate is well known to have beneficial effects on intestinal barrier function (85–94),
and low levels of intestinal butyrate producers have been previously associated with
microbial translocation and immune activation in PLWH (95). The study of Gelpi et al.
(23) also found increased levels of bacteria in the Desulfovibrionaceae family to be
linked with HIV-associated metabolic syndrome. These bacteria produce hydrogen sul-
fide, a compound that can compromise the intestinal mucus layer by reducing disul-
fide bonds (96). Further supporting that microbes that may compromise the mucus
layer can impact barrier function in this context, we found Dorea sp., which encodes
the genes required to utilize the canonical sialic acid Neu5Ac as a carbon source (97),
to be an important predictor of the metabolic disease score and to positively correlate
with LBP. Hyposialylated intestinal glycans have previously been linked with higher
abundance of glycan-degrading species and higher levels of microbial translocation in
HIV-infected individuals (98). Taken together, these results suggest that impaired meta-
bolic health in HIV-positive and -negative MSM may be influenced by impaired intesti-
nal barrier linked with both protective and detrimental metabolic activity of intestinal
bacteria.
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In our metabolomic analysis, we identified 150 metabolites in blood that correlated
with the metabolic disease score. To identify compounds whose prevalence may be
related to the gut microbiome, we used two complementary approaches. First, we
used the bioinformatics tool AMON (47), which allows us to specifically evaluate which
compounds could have been directly produced by the gut microbiome but is limited
by a lack of KEGG annotations for many compounds. Second, we measured which
compounds changed in relative abundance in GF versus mice colonized with feces
from our study cohort, which can identify microbial influence in unannotated
compounds but cannot differentiate between direct production/consumption by
microbes versus indirect influence. These results will also be influenced by physiologi-
cal differences between mice and humans and incomplete colonization. Although
these weaknesses may have led us to underestimate which of the 150 metabolic dis-
ease associated compounds may have been related to the microbiome, it still identi-
fied compounds that supported a mechanistic link between gut microbes, metabolites,
and metabolic disease in HIV-infected individuals on ART.

First, we found a negative correlation between the microbially produced noncanon-
ical amino acid, dehydroalanine, and metabolic disease score. Dehydroalanine is a
component of lantibiotics that are active against Gram-positive bacteria. Second, we
found a positive correlation with bacteriohopane-32,33,34,35-tetrol. This compound is
a lipoxygenase inhibitor that prevents the formation of hydroxyicosatetraenoic acid
and various leukotrienes from arachidonic acid (99), which have been linked with the
development of cardiovascular disease and metabolic syndrome (100). This association
of a potentially protective metabolite with an increase in metabolic impairment seems
counterintuitive; however, it may be indicative of larger systemic changes in arachi-
donic acid metabolism. Third, we identified a PC and a PE associated with both the
microbiome and the metabolic disease score. Changes in PCs and/or PEs have been
previously implicated in atherosclerosis, insulin resistance, and obesity (51). AMON
analysis indicated that both PCs and PEs can be synthesized by intestinal bacteria;
however, these compounds can also be synthesized in the host and may be found in
the diet. In our analysis, however, PE(18:1/20:1) levels were higher in colonized com-
pared to GF mice indicating that intestinal bacteria do influence overall levels despite
diverse potential sources. Finally, we observed increased levels of several plasma tri-
glycerides in the humanized compared to GF mice, including two plasma triglycerides
that were significantly associated with metabolic disease score. This confirms the influ-
ence of the gut microbiome on host plasma triglycerides (101–103). However, we did
not find any strong associations between these triglycerides and specific microbes
within our data set, indicating a potential need for studies conducted in larger cohorts
or with shotgun metagenomics to look for functional correlates.

In conclusion, we observed a relationship between diet, gut microbiome, plasma
metabolome, and peripheral immune markers of inflammation and metabolic disease
in HIV-positive MSM and HR-MSM. Our results suggest a central role of inflammatory
processes linked with bacterial translocation and interaction with the gut microbiome,
age, and BMI in metabolic disease among HIV-positive and -negative MSM. Our results
also suggest contributions of low fiber, key vitamins, and microbially produced metab-
olites. These results illuminate potential microbiome-targeted therapies and personal-
ized diet recommendation given an interacting set of gut microbes and other host
factors. Understanding these relationships further may provide novel treatments to
improve the metabolic disease and inflammatory outcomes of MSM living with HIV.

MATERIALS ANDMETHODS
Subject recruitment. Participants were residents of the Denver, Colorado, metropolitan area, and

the study was conducted at the Clinical Translational Research Center of the University of Colorado
Hospital. The study was reviewed and approved by the Colorado Multiple Institutional Review Board,
and informed consent was obtained from all participants. For detailed criteria on the recruitment of our
five cohorts (HIV-negative MSW; HIV-negative MSM; HIV-positive, ART-naive MSM; HIV-positive ART-
treated MSM with LD; and HIV-positive ART-treated MSM without LD), see the supplemental material.

Feces, a fasting blood sample, and clinical surveys were collected from participants in order to obtain
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analytes for the study design outlined in Fig. 3 (see Table S2). Additional information about relevant clin-
ical measures, such as probiotic use, was collected via a questionnaire, and study participants also filled
out information on typical frequency of high-risk sexual practices and on typical levels of gastrointestinal
issues such as bloating, constipation, nausea, and diarrhea.

Diet data FFQ collection. Typical dietary consumption over the prior year was collected using the
Diet History Questionnaire II (104). Diet composition was processed using the Diet*Calc software and
the dhq2.database.092914 database (105). All reported values are based on USDA nutrition guidelines.
Reported dietary levels were normalized per 1,000 kcal. To reduce the number of comparisons within
the diet survey data, we binned highly cocorrelating groups of measures within the data types into
modules (see Table S2). These modules were defined using the tool SCNIC (106).

Immune data collection.Whole blood was collected in sodium heparin vacutainers and centrifuged
at 1,700 rpm for 10 min for plasma collection. Plasma was aliquoted into 1-ml microcentrifuge tubes and
stored at –80°C. For ELISA preparation, plasma was thawed, kept cold, and centrifuged at 2,000� g for
20 min before ELISA plating. Markers for sCD14, sCD163, and FABP-2 were measured from plasma using
standard ELISA kits from R&D Systems (DC140, DC1630, and DFBP20). Positive testing controls for each
ELISA kit were also included (R&D Systems, QC20, QC61, and QC213). LBP was measured by standard
ELISA using a Hycult Biotech kit HK315-02. Markers for IL-6, IL-10, tumor necrosis factor alpha (TNF-a),
monocyte chemoattractant protein 1 (MCP-1), and IL-22 were measured using Meso Scale Discovery’s
U-PLEX Biomarker Group 1 multiplex kit K15067L-1. Markers for SAA, VCAM-1, ICAM-1, and CRP were
measured using Meso Scale Discovery’s V-Plex Plus Vascular Injury Panel 2 multiplex kit K15198G-1. A
Vascular Injury Control Pack 1 C4198-1 was utilized as a positive control for this assay. Markers for GM-
CSF, IL-7, IL-12/23p40, IL-15, IL-16, IL-17A, TNF-b , and VEGF were measured using Meso Scale Discovery’s
V-Plex Plus Cytokine Panel 1 multiplex kit K151A0H-1. A Cytokine Panel 1 Control Pack C4050-1 was uti-
lized as a positive control for this assay. Plasma samples were diluted per manufacturer’s recommenda-
tion for all assays. Standard ELISA kit plates were measured using a Vmax kinetic microplate reader with
Softmax Pro Software from Molecular Devices LLC. Multiplex ELISA kits from Meso Scale Discovery were
measured using the QuickPlex SQ 120 with Discovery Workbench 4.0 software.

Gnotobiotic mouse protocols. Germ-free C57/BL6 mice were purchased from Taconic and bred
and maintained in flexible film isolator bubbles, fed with standard mouse chow. Three days before they
were gavaged, male mice between 5 and 7weeks of age were switched to a Western high-fat diet and
were fed this diet for the remainder of the experiment. Diets were all obtained from Envigo (Indiana):
standard chow, Teklad global soy protein-free extruded (item 2920X [https://www.envigo.com/
resources/data-sheets/2020x-datasheet-0915.pdf]), or Western diet, New Total Western Diet (catalog no.
TD.110919). See Table S4 for detailed diet composition. Mice were gavaged with 200ml of fecal solutions
prepared from 1.5 g of donor feces mixed in 3ml of anaerobic PBS (18). Mice were housed individually
after gavage for 3 weeks in a Tecniplast isopositive caging system, with each cage having HEPA filters
and positive pressurization for bioexclusion. Feces were collected from mice at day 21 for 16S rRNA
gene sequencing. Mice were euthanized at 21 days after gavage using an isoflurane overdose, and all
efforts were made to minimize suffering. Blood from euthanized animals was collected using cardiac
puncture, and cells were pelleted in K2-EDTA tubes; the plasma was then aliquoted and stored at –80°C.

Metabolomics methods. (i) Plasma sample preparation. A modified liquid-liquid extraction proto-
col was used to extract hydrophobic and hydrophilic compounds from the plasma samples (107). Briefly,
50ml of plasma spiked with internal standards underwent a protein crash with 250 ml ice cold methanol.
Portions (750 ml) of methyl tert-butyl ether (MTBE) and 650 ml of 25% methanol in water were added to
extract the hydrophobic and hydrophilic compounds, respectively. Then, 500 ml of the upper hydropho-
bic layer and 400 ml of the lower hydrophilic layer were transferred to separate autosampler vials and
dried under nitrogen. The hydrophobic layer was reconstituted with 100 ml of methanol, and the hydro-
philic layer was reconstituted with 50 ml of 5% acetonitrile in water. Both fractions were stored at –80°C
until LC-MS analysis.

(ii) Liquid chromatography-mass spectrometry. The hydrophobic fractions were analyzed using
reverse-phase chromatography on an Agilent Technologies (Santa Clara, CA) 1290 ultrahigh precision
liquid chromatography (UHPLC) system on an Agilent Zorbax rapid resolution HD SB-C18 analytical col-
umn (1.8 mm; 2.1� 100mm) as previously described (107, 108). The hydrophilic fractions were analyzed
using hydrophilic interaction liquid chromatography (HILIC) on a 1290 UHPLC system using an Agilent
InfinityLab Poroshell 120 HILIC-Z analytical column (2.1� 100mm) with gradient conditions as previ-
ously described (109) with MS modifications as follows: nebulizer pressure, 35 lb/in2; gas flow, 12 liters/
min; sheath gas temperature, 275°C; sheath gas flow, 12 liters/min; nozzle voltage, 250 V; and fragmen-
tor, 100 V. The hydrophobic and hydrophilic fractions were run on Agilent Technologies 6545 quadru-
pole time-of-flight mass spectrometer. Both fractions were run in positive electrospray ionization mode.

(iii) Mass spectrometry data processing. Compound data were extracted using Agilent Technologies
MassHunter Profinder version 10 software in combination with Agilent Technologies Mass Profiler
Professional version 14.9, as described previously (47). Briefly, batch molecular feature extraction (BMFE)
was used in Profinder to extract compound data from all samples and sample preparation blanks. The
following BMFE parameters were used to group individual molecular features into compounds: charge
state 1 to 2, with 1H, 1Na, 1NH4, and/or 1K charge carriers. To reduce the presence of missing values,
a theoretical mass and retention time database was generated for compounds present in samples only
from a compound exchange format (.cef) file. This .cef file was then used to re-mine the raw sample
data in Profinder using batch targeted feature extraction.

An in-house database containing KEGG, METLIN, Lipid Maps, and HMDB spectral data were used to
putatively annotate metabolites based on accurate mass (#10ppm), isotope ratios, and isotopic
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distribution. This corresponds to a Metabolomics Standards Initiative metabolite identification level
three (110). To improve compound identification, statistically significant compounds underwent tandem
MS using 10, 20, and 40 V. Fragmentation patterns of identified compounds were matched to either to
NIST14 and NIST17 MS/MS libraries or to the in silico libraries MetFrag (111) and Lipid Annotator 1.0
(Agilent) (112).

(iv) Microbiome-associated metabolites. Microbiome-associated metabolites were defined using
metabolites identified as significantly different in abundance between germfree compared to human-
ized gnotobiotic mice and/or metabolites identified as microbially produced by the tool AMON (47).

For the gnotobiotic mouse analysis, aqueous and lipid metabolites were analyzed separately.
Metabolites that were present in ,20% of samples were filtered out before analysis. Significant differ-
ence was determined using a Student t test with FDR P value correction. FDR-corrected P values of
,0.05 were deemed significant. Significant metabolites also present in the human samples were
retained for further analysis.

For the AMON-identified metabolites, the tool used an inferred metagenome, which was calculated
using the PICRUSt2 QIIME2 plugin (49) and default parameters; a list of all identified KEGG IDs from the
metabolite data (see metabolome methods); and KEGG flat files (downloaded 10 June 2019). AMON
determined metabolites observed that could be produced by the given genes list. These metabolites
were kept for analysis in addition to the gnotobiotic mouse identified metabolites. Those without any
putative classification were removed from analysis.

Microbiome methods. (i) Sample collection, extraction, and sequencing. Stool samples were col-
lected by the patient within 24 h of their clinic visit on sterile swabs dipped into a full fecal sample de-
posited into a commode specimen collector. Samples were kept cold or frozen at –20°C during transport
prior to being stored at –80°C. DNA was extracted using the standard DNeasy PowerSoil kit protocol
(Qiagen). Extracted DNA was PCR amplified with barcoded primers targeting the V4 region of 16S rRNA
gene according to the Earth Microbiome Project 16S Illumina Amplicon protocol with the 515F:806R
primer constructs (113). Control sterile swab samples that had undergone the same DNA extraction and
PCR amplification procedures were also processed. Each PCR product was quantified using PicoGreen
(Invitrogen), and equal amounts (ng) of DNA from each sample were pooled and cleaned using the
UltraClean PCR Clean-Up kit (MoBio). Sequences were generated on six runs on a MiSeq sequencing
platform (Illumina, San Diego, CA).

(ii) Microbiome sequence processing and analysis. Microbiome processing was performed using
QIIME2 version 2018.8.0 (114). Data were sequenced across five sequencing runs. Each run was demulti-
plexed and denoised separately using the DADA2 q2 plugin (115). Individual runs were then merged to-
gether and 99% de novo OTUs were defined using vSEARCH (116). Features were classified using the
skLearn classifier in QIIME2 with a classifier that was pretrained on GreenGenes13_8 (117). The phyloge-
netic tree was building using the SEPP plugin (118). Features that did not classify at the phylum level or
were classified as mitochondria or chloroplast were filtered from the analysis. Samples were rarefied at
19,986 reads. To reduce the number of comparisons within the microbiome, we binned highly cocorre-
lating groups of measures within the data types into modules (see Table S2). These modules were
defined using the tool, SCNIC (119). For statistical analysis, features present in ,20% of samples were fil-
tered out.

Bioinformatics. (i) Module definition. Modules were called on microbiome and diet data. Modules
were defined using the tool SCNIC (119). The q2-SCNIC plugin was used with default parameters for the
microbiome data and standalone SCNIC was used for the diet data (https://github.com/shafferm/SCNIC).
Specifically, for each data type SCNIC was used to first identify pairwise correlations between all features.
Pearson correlation was used for diet and SparCC (120), which takes into account compositionality, was
used for microbiome data. Modules were then selected with a shared minimum distance (SMD) algo-
rithm. The SMD method defines modules by first applying complete linkage hierarchical clustering to
correlation coefficients to make a tree of features. Modules are defined as subtrees where all pairwise
correlations between all pairs of tips have an R value greater than defined minimum. The diet modules
were defined using a Pearson r2 cutoff of 0.75. The microbiome modules were defined using a SparCC
minimum R value cutoff of 0.35. To summarize modules, SCNIC uses a simple summation of count data
from all features in a module. Application of SCNIC reduced the number of evaluated features from
6,913 to 6,818 for microbiome and 59 to 29 for diet data.

(ii) Statistical analysis. All statistics were performed in R. For nonparametric tests, Spearman rank
correlation and Kruskal-Wallis test were used. For parametric tests linear models and Student t test were
used.

(iii) Data analysis tools. Metabolic disease score was calculated using PCA in R with prcomp. Data
were scaled using default method within the prcomp library. All random forest analysis tools were used
in R. Standard random forest was performed using the randomForest function. Variable selection was
performed in R using the tool VSURF (38). Interaction analysis was performed in R using the tool iRF (42).

Data availability. Microbiome data are available at EBI/ENA under accession number ERP125300.
Immune and diet data are available along with the microbiome data as associated metadata.
Metabolomics data are available at Metabolomics Workbench under the study ID ST001750.
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