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Abstract

Entheseal changes have been widely studied with regard to their correlation to biomechanical stress and their usefulness for
biocultural reconstructions. However, anthropological and medical studies have demonstrated the marked influence of
both age and sex on the development of these features. Studies of entheseal changes are mostly aimed in testing functional
hypotheses and are mostly focused on modern humans, with few data available for non-human primates. The lack of
comparative studies on the effect of age and sex on entheseal changes represent a gap in our understanding of the
evolutionary basis of both development and degeneration of the human musculoskeletal system. The aim of the present
work is to compare age trajectories and patterns of sexual dimorphism in entheseal changes between modern humans and
African great apes. To this end we analyzed 23 postcranial entheses in a human contemporary identified skeletal collection
(N = 484) and compared the results with those obtained from the analysis of Pan (N = 50) and Gorilla (N = 47) skeletal
specimens. Results highlight taxon-specific age trajectories possibly linked to differences in life history schedules and
phyletic relationships. Robusticity trajectories separate Pan and modern humans from Gorilla, whereas enthesopathic
patterns are unique in modern humans and possibly linked to their extended potential lifespan. Comparisons between
sexes evidence a decreasing dimorphism in robusticity from Gorilla, to modern humans to Pan, which is likely linked to the
role played by size, lifespan and physical activity on robusticity development. The present study confirms previous
hypotheses on the possible relevance of EC in the study of life history, pointing moreover to their usefulness in evolutionary
studies.
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Introduction

Due to their supposed link with physical activity, morphological

changes at the level of the entheses (skeletal attachment sites of

muscles, ligaments and joint capsules), or entheseal changes (EC)

[1] have been widely adopted as proxies of in vivo biomechanical

stress in bioarchaeological studies [2,3–8]. EC have indeed been

used to test biocultural hypotheses about differences between

contrasting socio-economic systems, possible presence of sexual

subdivision of labour in past societies [9–14], and performance of

specific daily physical activities [8,15,16]. Nonetheless, recent

analyses of identified skeletal collections highlighted the multifac-

torial etiology of EC [17–23]. Sexual dimorphism [19,22],

anatomy of the attachment sites [21,22], and, especially, age

[17–24] appear strongly correlated with the expression of EC.

Differences in the expression of EC in males and females has been

observed in both archaeological and contemporary skeletal

samples [14,16,19,22,23,25–29], a pattern attributed to different

activities performed by sexes and/or to the effect of physiological

factors (e.g. hormones) on the expression of EC. About the

relationship between the type of tissue of the attachment sites and

EC, medical and anthropological studies pointed to substantial

differences in terms of morphological variability between fibrous

and fibrocartilaginous entheses (characterized, respectively, by the

presence of dense fibrous connective tissue and fibrocartilage at

the interface between bone and tendon [30,31]) [21,30,32]. Such

distinction has been recently adopted in anthropology, and

considerations on the anatomy of entheses have been fully

integrated in both the stages of data collection and discussion of

results [20,22,32,33]. Concerning age, both medical and anthro-

pological studies agree on the strong role played by this variable on

the expression of EC [17,19–21,23,24,34,35], a complex phe-

nomenon likely related to several causes, including the response of

bone to continuous microtraumatic stress related to daily

biomechanical stimuli, ontogenetic processes of the musculoskel-

etal system, and degenerative processes associated with aging.

Such results, besides suggesting a revision of previous functional

hypotheses, allow placing EC in a wider perspective, establishing a

link between these features and biological processes such as the

evolution and development of the musculoskeletal system as well as

shared and derived patterns in the life history of primates [19,36].

Geometric properties of long bones [37–44], trabecular

architecture of various skeletal regions [45–49], organization of
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postcranial muscles [50–52] and patterns of joint diseases, trauma

and various pathological conditions [53–56] represent some of the

main topics of anthropological research on the musculoskeletal

system of primates and are mainly framed in a functional

perspective. On the other hand, despite the wide array of studies

on EC in modern humans, few data are available on EC in non-

human primates, with only one publication [57] focusing on

interspecific patterns of bilateral asymmetry and forelimb-

hindlimb ratios, also in this case investigated in order to test their

reliability in reflecting intertaxa behavioral patterns.

As far as life history is concerned, observations on the skeleton

have been normally focused on early ontogenetic stages through

the analysis of dental data [58–60] as well as cranial [61–64] and

postcranial [64–68] developmental schedules. Topics of such

studies include analyses of interspecific comparisons of skeletal

growth patterns [64], differences in skeletal growth between

captive and wild specimens [67], timing of first permanent molar

emergence between wild great apes [58] and patterns of

evolutionary developmental reorganization of the hominin skull

[61]. Literature on skeletal changes associated to life history

variables in the adult is, on the other hand, quite scanty, being

represented by few studies mostly focused on aging patterns in

single taxa or isolated skeletal samples [69–75]. Life history

variables in the adult such as gestation length, interbirth interval,

post-reproductive survivorship and differential longevity have been

mostly studied on living specimens [76,77], and rarely used in the

discussion of skeletal data. However, clinical research has

demonstrated the mutual physiological continuity between the

muscular and skeletal systems and their sensibility to both

endocrinal and metabolic factors [78]. Accordingly, it is expected

that entheses, representing the interface between those systems,

can be a good candidate for the study of skeletal changes related to

life history variables in the adult. This was preliminary confirmed

by the recent analysis of a large identified skeletal collection, which

highlighted complex age- and sex-specific patterns in EC [19].

Starting from these premises, the aim of the present work is to

contribute to the actual knowledge on EC across hominid taxa, by

explicitly avoiding a functional perspective, and to explore their

usefulness in the study of life history of primates and, more

generally, in the analyses of evolutionary processes underlying

both growth and aging of the musculosketal system. To this aim,

we analyzed patterns of EC in a skeletal sample of modern humans

and African great apes, testing the following hypotheses:

(1) Due to interspecific differences in developmental schedules,

interbirth interval and mean potential lifespan [61,77,79–82],

we expect modern humans to exhibit diverging age

trajectories of EC when compared with African great apes.

Specifically, we expect a delayed development of entheseal

structures in modern humans due to their delayed somatic

growth when compared with African great apes [81,83,84].

(2) Due to different levels of sexual dimorphism with regard to

body mass and body size [85–87], we expect higher

differences between sexes in entheseal development in Gorilla
when compared with both modern humans and Pan.

Materials and Methods

Our sample includes 484 modern humans, 50 Pan, and 47

Gorilla (Table 1). All specimens were selected on the basis of the

absence of pathologies possibly affecting EC (Diffuse Idiopathic

Skeletal Hyperostosis - DISH, and spondyloarthropathies) or the

normal biomechanics of the body (fractures, dislocations, and

dysplasias). DISH and spondyloarthropathies were diagnosed

according Rogers & Waldron [88] and Martin-Dupont et al.

[89]. Fractures, dislocations and dysplasias were diagnosed

according to Lovell [90] and Ortner & Putschar [91]. The

modern humans sample was selected from the identified skeletal

collection Frassetto of Sassari [92], housed at the Museum of

anthropology of the University of Bologna (Italy). It includes 274

male and 210 female subjects with documented age at death, sex,

and profession from the beginning of the 20th century. Only

subjects with age at death equal to or greater than twenty years old

[19] were used in this study. Data on African great apes were

collected at the Anthropological Institute of the University of

Zurich (Switzerland) and the Royal Central African Museum of

Tervuren (Belgium). The curators of the collections allowed access

to the specimens and use of the relative datasets. Numbers of

specimens, together with details on their age and sex can be found

in Appendices S1–S2. The Zurich dataset includes 26 Gorilla (N

males = 14, N females = 12) and 24 Pan (N males = 7, N

females = 17), while the Tervuren dataset includes 21 Gorilla (N

males = 9, N females = 12) and 26 Pan (N males = 15, N

females = 11). The resulting sample includes both juvenile (erupted

M2) and adult (erupted M3) individuals of both sexes (Table 1).

While the Gorilla dataset includes mostly wild-shot specimens

(only two captive individuals), 16 out of 50 Pan skeletal specimens

are of captive individuals, mostly distributed in the first four age

classes (Appendix S2). The choice to include in our dataset also

captive animals was primarily dictated by the need to maximize

the African great apes sample size. However, considering the

different life history characterizing wild vs. captive individuals

[65,93], we decided to control for such possible source of bias in

our analyses (see Methods section).

The modern humans sample was separated into classes of ten

years each, for a total of seven age classes, while for African great

apes we used seven stages of tooth wear (employing the first seven

stages of Molnar [94] as a proxy for adult age, adding an eighth

class – class ‘‘0’’- for the juveniles, in order to distinguish them

from the rest of the sample). We analyzed 23 postcranial entheses

(Table 2) with regard to their development in robusticity (surface

roughness) as well as proliferative (enthesophytes - EF) and

resorptive (osteolytic - OL) entheseal changes (enthesopathies),

according to the scoring schemes proposed by Mariotti et al.

[17,18]. Note that these methods, unlike others [32,95] do not take

into account the type of enthesis (i.e. fibrous vs. fibrocartilaginous),

a factor often considered in studies on EC [2,20–22,96].

Nonetheless, it was chosen for: (a) the previous experience of the

author with this method [19,36,97,98]; (b) the site-specificity of the

method for scoring robusticity (therefore indirectly taking into

account the anatomy of each enthesis), and (c) the chance to

consider separately different variables (robusticity and enthesopa-

thies). We considered only the entheseal sites originally included in

the method of Mariotti and colleagues [17]. This choice was

driven (1) by the scoring criteria for robusticity, which are specific

for each site, (2) by the need to analyze different sites in order to

check for the expression of EC in the overall postcranial skeleton

(3) by the need to compare data collected in different time frames.

EF and OL were scored according to a four-degree scale [17–

19]. In EF, this corresponds to a range from absence of

proliferative patterns to the presence of obvious bony spurs. In

OL, the scale ranges from absence of resorptive patterns to

marked erosive areas at the level of entheses. In analyzing our

data, we followed the protocol detailed in Milella et al. [19]

although applying some minor changes. In regression analyses (see

below) we used the original four-degree scale for each feature. On

the other hand, in pairwise comparison we considered for EF only

the presence of obvious proliferative patterns (degrees 2 and 3)

Entheseal Changes in Modern Humans and African Great Apes
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while, for OL, the complexity of these features suggested to

consider their absence (0), the presence of fine porosities (‘‘pitting’’

- degree 1) and the presence of extensive osteolytic areas

(‘‘erosions’’ - degrees 2 and 3) [19]. Robusticity was scored

according to a five-degree scale (from 0 – extremely weak

development– to 4 – marked development). In analysing

robusticity, we assumed that each degree represents an underlying

continuous variable. Accordingly, in order to explore general

patterns of robusticity we grouped the attachment sites into eight

functional complexes (Table 2) and calculated a mean robusticity

score (MRS) for each complex (see for details Mariotti et al. [17]

and Milella et al. [19], and, for a similar approach, Niinimäki

[96]). Qualitative scores like the one used in this study are typically

affected by varying degrees of intra- and interobserver error. The

Table 1. Sample size, sex and age distribution of Gorilla, Pan, and Homo.

Gorilla Pan Homo

Age class F M F M F M

0 8 2 9 1 0 0

1 1 0 2 1 61 64

2 4 0 7 4 42 39

3 8 8 3 9 37 56

4 0 5 1 0 24 50

5 0 6 5 5 11 32

6 3 1 1 2 22 22

7 0 1 0 0 13 11

Total 24 23 28 22 210 274

F = females; M=males.
doi:10.1371/journal.pone.0107963.t001

Table 2. Entheses considered in the present study: anatomical location and relative functional complex.

Enthesis Site Functional complex

Costoclavicular lig. clavicle Shoulder

Conoid lig. clavicle

Trapezoid lig. clavicle

M. pectoralis major clavicle (o)

M. deltoideus clavicle (o)

M. pectoralis major humerus (i)

M. latissimus dorsi/teres major humerus (i)

M. deltoideus humerus (i)

M. triceps brachii scapula (o) Elbow (flexion/extension)

M. brachioradialis humerus (o)

M. biceps brachii radius (i)

M. triceps brachii ulna (i)

M. brachialis ulna (i)

M pronator teres radius (i) Forearm (pronation/supination)

Interosseous membrane radius

M. supinator ulna (o)

Enthesis Site Functional complex

M. gluteus maximus femur (i) Hip

M. iliopsoas femur (i)

M. vastus medialis femur (o) Knee

Quadriceps tendon tibia

Quadriceps tendon patella

M. soleus tibia (o) Foot

Achilles tendon calcaneus

M. =muscle; lig. = ligament; o = origin; i = insertion.
doi:10.1371/journal.pone.0107963.t002
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method of Mariotti and colleagues for the scoring of EF and OL is

reported to be associated with a good (less than 5 percent) intra-

and interobserver error for both EF and OL [18]. About

robusticity, Mariotti and colleagues report intraobserver and

interobserver error percentages of, respectively, 20 and 28 after

lumping the first three degrees of robusticity. In this study, we

decided to check the intraobserver error for both enthesopathies

(EF and OL) and mean robusticity scores (MRS). For the

interobserver error, we will discuss the values published by

Mariotti and colleagues [17,18] on the basis of our results.

Since a study of bilateral asymmetry is beyond the scope of this

work, all analyses were performed only for the left side (chosen in

order to maximize the sample size).

Our analyses included:

1) A correlation test between age and EC (EF, OL and MRS)

through the Spearman rank sum test.

2) A test of sexual differences in EC through intra-group pairwise

comparison of MRS (Wilcoxon test) and frequencies of EF

and OL (chi squared test).

Given the small size of the African great apes sample, step 1)

was computed by pooling together the sexes, while in step 2) we

grouped together the age classes 1–7, excluding the juvenile

specimens.

In order to calculate the intraobserver error in the scoring of

EF, OL, and MRS, we collected EC data on 58 specimens (20

modern humans, 20 Pan, and 18 Gorilla) twice, in two

independent sessions. The percentage of disagreement between

the two sessions and the relative Cohen’s weighted kappa was used

for calculating the intraobserver error in the scoring of EF and

OL. Intraobserver error in the scoring of MRS was calculated for

each complex by comparing the scores from the two sessions with

the Wilcoxon test.

Finally, due to the possible bias introduced on the correlation

between EC and age by the presence in the Pan sample of a

relatively large proportion of captive individuals, we decided to

compare the results obtained by analyzing separately captive and

wild-shot individuals. A similar comparison was not considered

necessary for the Gorilla sample, given the small percentage of

captive individuals in this group (2/47: 4.3%).

All statistical analyses were performed with JMP 10.0.0 (SAS

Institute Inc. 2012) setting alpha to 95%. Cohen’s weighted kappa

was calculated with the package psych (version 1.4.5) [99] in R

3.0.3 [100].

Results

Intraobserver error
The intraobserver error for EF and OL is acceptable, with error

frequencies of, respectively, seven and six percent. The Wilcoxon

test performed on the MRS data of the two scoring session reflect

overall a negligible disagreement for all the functional complexes

(Table S1).

Age
Tables S2–S4 show the summary statistics for EF, OL, and

MRS in our sample. Original data for each variable can be found

in Appendices S3–S5.

In testing interspecific differences in EC age trajectories, we first

analyzed only adult individuals, and in a second phase, we

included African great apes juvenile specimens.

In Pan, correlation tests between EC and age in captive and

wild-shot Pan evidence a general lack of differences between these

two groups (Tables S5–S7), justifying their inclusion in a single

sample.

When considering only adult specimens, modern humans are

characterized by a positive correlation between EF and age, which

is significant for a large number of sites. On the other hand, no

significant correlation was found in African great apes between EF

and age (Table S8; see also Figure 1). Regarding OL, both positive

and negative correlations with age are seen in modern humans

(Table S9), a pattern that is consistent with earlier analyses [19]

showing a complex pattern of OL, with some sites characterized

by different age trajectories of degree 1 and degrees 2 and 3.

African great apes are characterized overall by a negative

correlation between OL and age. OL correlation with age

characterizes a limited suite of sites, only partially overlapping

between taxa (Table S9). Interestingly, no differences in age

trajectories between OL degrees are present in both Pan and

Gorilla. The addition of juvenile specimens does not alter the age

patterns in both types of enthesopathic changes (see also Figure 1).

As far as robusticity is concerned, results show a significant

positive correlation between age and MRS in both Gorilla and

Homo, whereas in Pan a similar trend is shown only by complexes

of the upper limb and by the foot (Table S10). When comparing

the hindlimb and forelimb correlation with age, African great apes

show on average higher correlation values for the latter, whereas

in modern humans no clear difference is evident between the

upper and lower limbs.

MRS age trajectories and rates of MRS increase by age class are

specific among taxa (Figure 2). These include: (a) a fast increase

until the fourth age stage in Gorilla followed by a sudden decrease;

(b) a similar increase in Pan until the third age phase, starting from

which, both the upper and lower limbs show a less pronounced

increase of MRS with advancing age and (c) an increase of MRS

in modern humans during the first two age phases (until forty years

old) followed by a further growth that reaches a peak around the

fifth age phase (between sixty and sixty nine years old) and, starting

from the sixth age phase, a slight decrease. When adding the

juvenile specimens to the African great apes sample results in a

more marked correlation between age and MRS, a pattern that is

particularly evident in Pan and, overall, represented by steeper

age trajectories in both taxa. Comparing such trajectories with

those characterizing modern humans, the latter show similar

trends, but shifted by about a decade. When excluding from the

Pan sample the captive specimens, results show a more complex

age trajectory of MRS, with an increase of MRS along the first two

age phases followed by a stasis and a further increase starting from

the fourth age class (Figure 3).

Sexual dimorphism
Given the observed correlation between age and EC we did a

preliminary check for age differences among taxa (only adult

specimens were considered in testing for EC sexual dimorphism).

Intersex comparison for mean age in modern humans (by a

Student t test) and sample size of each age class in Pan (by a Chi

square test) resulted in no significant differences. In Gorilla, the

age classes 2, 4, and 5 have different sample sizes between sexes,

resulting in males being on average older than females, and,

therefore, analyses of sexual dimorphism in this taxon are more

prone to be biased by the effect of age. Despite this issue, we

preferred to compare sexes without subdividing the sample into

age classes for all taxa, and to consider the possible effect of age on

Gorilla sexual dimorphism when discussing our results. In modern

humans significant differences between the sexes in EF are limited

to the lower limb, with males showing higher frequencies at the

mm. quadriceps femoris (patellar site) and soleus. In the African

Entheseal Changes in Modern Humans and African Great Apes
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great apes sample, a test of differences between the sexes for EF

was possible only for the ulnar enthesis of the m. tricipes brachii
(Gorilla and Pan) and for the quadriceps tendon on the patella

(Gorilla), which overall show a lack of differences between sexes

(Table S11). For OL, these are more present in males for the

costoclavicular ligament, the m. biceps brachii, and for the m.

pectoralis major (humeral site). The same pattern is present in

Gorilla for the costoclavicular ligament, while no sexual differ-

ences were found in Pan (Table S12). Analysis of sexual

dimorphism in MRS reveals higher development in modern

human males for the elbow, forearm, hip, and for the overall

upper limb. In Gorilla, males show higher development at the

elbow, knee, and for the overall upper and lower limbs, while no

sexual dimorphism was observed in Pan (Table S13).

Discussion

Intraobserver error
Intraobserver error for the scoring of EF, OL, and MRS reflect

a good consistency among our data. Interobserver errors for EF

and OL have been reported to correspond to less than 5% [18],

whereas for robusticity the same error (but considering only three

robusticity degrees) has shown to reach 20% [17]. In our case no

significant intraobserver disagreement was found for MRS. At the

same time a calculation of intraobserver error of robusticity scores

for single sites gives a value of 41%, but with a root mean squared

error of only 0.9. In fact, most disagreements are due to differences

in scoring of just one degree of robusticity, as already noted by

Mariotti and colleagues [17]. Such results stress the advantage of

using functional mean robusticity scores (MRS) instead of raw data

from single sites, and, at the same time, suggest that the

interobserver reported in the literature [17] for this variable

would be markedly lower when using MRS.

Age
Our first hypothesis postulated taxon-specific age trajectories of

EC, and, specifically, a delayed increase of EC with age in modern

humans when compared with African great apes.

This hypothesis was partially confirmed by our results, which

show: (a) a linear increase of MRS with age in Gorilla, (b) a more

complex and, starting from the third age phase, more moderate

increase in Pan and modern humans, and, (c) a delayed increase of

MRS growth as a function of absolute age in modern humans.

Such results are consistent with interspecific differences in growth

rate [77,81,84,101,102]. In Gorilla, the high rate of MRS increase

in this taxon and its delayed decrease when compared with Pan
can be traced back to Gorillas’ fast somatic growth [77] and, at

least in males, a later slowing of growth when compared with Pan
[101]. Age trajectories of Pan and modern humans are more

complex. The high rate of MRS increase in Pan during early age

overlaps that observed in Gorilla and is consistent with the faster

somatic growth of this taxon compared to modern humans [77].

In both Pan and modern humans the MRS trajectories are similar

and characterized by an increase until the second age phase, a

stasis until the third, and a further increase. Such results are

further strengthened when considering only wild Pan specimens.

The resulting trajectories are indeed more complex and similar to

Figure 1. Box plots of mean EF vs. age. Note the clear increase with age of EF in modern humans, and the lack of clear patterns in African great
apes.
doi:10.1371/journal.pone.0107963.g001
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those of modern humans, with the presence of a marked stasis in

MRS increase starting from the second age phase. Such pattern

can be linked to the exclusion of captive specimens, which, due to

their faster somatic growth [65,93], are likely to bias the MRS

patterns when added to the full dataset. Beside the possible

biomechanical factors influencing the observed MRS trajectories,

the closeness of the MRS age trajectories of Pan and modern

humans, and their specificity when compared with those of Gorilla
raise questions about the possible evolutionary meaning of this

pattern. More specifically, it mirrors previous arguments about

derived vs. shared life history traits in modern humans compared

with African great apes in the literature [81]. Overall, our results

are not consistent with a unique pattern of development and aging

in modern humans. On the other hand, the possibility of parallel

evolution of these traits in modern humans and Pan seems difficult

to accept considering the different types of biomechanical stress

(i.e. locomotory patterns) experienced by these taxa as well as the

dissimilarity of other variables possibly affecting MRS develop-

ment (e.g. body size, diet). Accordingly, it is plausible to postulate

between modern humans and Pan a suite of synapomorphic

patterns in the development of their musculoskeletal system in

common with their last common ancestor.

Results on enthesopathies show: (a) an increase of EF with age

only in modern humans, (b) different trajectories of OL in modern

humans and African great apes, but a partial overlap between taxa

of the sites showing correlation between OL and age. The lower

frequencies of EF in African great apes can be compared with

previous works [53,103] which showed low frequencies of

degenerative joint disease in great apes. Such results, besides

being possibly correlated to interspecific differences in locomotory

patterns (e.g. the marked development of EF at the level of the

Achilles tendon in modern humans and not in African great apes),

should be considered as a function of age. The positive correlation

of EF with age in modern humans and their higher frequency in

elderly subjects [19,97] indeed points to interspecific differences in

maximum potential lifespan [82] as the main factor underlying the

observed patterns. This seems further confirmed by clinical

research showing a degenerative origin of these EC

[24,104,105]. Accordingly, the lack of correlation between EF

and age in African great apes could be linked to a shorter lifespan

accompanied by a similar (or even slower) rate of degenerative

processes when compared with modern humans. Results on OL

are consistent with the presence in African great apes of

remodeling patterns at the level of entheses similar to what has

already been observed during growth in modern humans

[18,19,106–108]. On the other hand, the increase of porosities

with age in modern humans and its lack in African great apes is, as

for EF, consistent with degenerative processes (see [18,19,109])

specific to modern humans and mostly related to their longer

lifespan.

Recent analyses of mountain gorillas [68] evidenced patterns of

long bone strength consistent with ontogenetic changes in

Figure 2. Box plots of mean robusticity score (MRS) vs. age. Note the steep and regular increase of MRS in Gorilla, and the more complex
trajectories shared by Pan and modern humans.
doi:10.1371/journal.pone.0107963.g002

Entheseal Changes in Modern Humans and African Great Apes
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locomotory behavior. In our study, the small sample size led us to

group African great apes only at the level of genus, a fact that

hampers fine-grained analyses of specific ontogenetic patterns.

However, the distinct age trajectories described by MRS, and the

partial correlation showed between EC and long bones geometric

properties [110] make the extension of our study to the

interspecific level a promising line of future research.

Sexual dimorphism
Our second hypothesis postulated higher entheseal changes in

males Gorilla when compared with both modern humans and

Pan. This was only partially confirmed by our results, and

specifically only by sexual differences in MRS (Table S13), which

evidence a scenario where Gorilla and modern humans appear

markedly dimorphic when compared with Pan. Conversely, when

comparing interspecific degrees of MRS sexual dimorphism,

Gorilla shows a more pronounced difference between sexes. Even

recognizing the possible influence on this result of the different age

distribution between sexes in Gorilla (see above and Table 1), our

data are interestingly consistent with previous studies comparing

degrees of sexual dimorphism among great apes [86]. Specifically,

the intermediate position of modern humans between Gorilla and

Pan is consistent with the results of Lovejoy and colleagues

[111,112] on articular dimensions. The higher sexual dimorphism

of modern humans when compared with Pan can be traced back

to a marked dimorphism in body size in the human population

used in this study. EC have been indeed found to correlate with

size [25,26,113]. Note moreover that the type of sexual

dimorphism observed in our dataset is consistent with previous

studies on EC [6,15,22,114]. As an alternative (or possible

complementary) explanation, note that previous analyses on the

same human dataset [19] evidenced a marked sexual dimorphism

starting from fifty years old. It is therefore possible that, as for age

trajectories, the different degree of sexual dimorphism observed in

modern humans and Pan is partially correlated with the longer

lifespan in modern humans. An additional factor could be a

marked subdivision of physical activities between the sexes in the

population of Sassari. This, coupled with a longer lifespan, could

have led to a higher expression of differences between sexes.

Concerning EF and OL, note that intersex comparisons in

Gorilla and Pan are strongly hampered by both the small sample

sizes of these taxa and the general poor expression of EF in our

African great apes sample (see above). It is therefore possible that

different results could be obtained by analyzing a larger dataset of

both taxa. It is moreover possible that the grouping in our intersex

analyses of all age classes masks patterns of sexual dimorphism

more nuanced than the ones observed in MRS. Both EF and OL,

when controlling for age, show complex (though not obvious)

differences between sexes in modern humans [19,97].

Conclusions

In the present study, we compared age trajectories and patterns

of sexual dimorphism in entheseal robusticity and enthesopathic

development between modern humans, Pan and Gorilla.

Intraobserver error for the scoring of enthesopathies and MRS

is overall low, pointing to a good reliability of our data.

Results revealed specific age trajectories among taxa that can be

interpreted both in terms of different life history schedules and

phyletic relationships. Robusticity trajectories separate Pan and

modern humans from Gorilla, whereas modern humans show

Figure 3. Pan: mean robusticity score (MRS) vs. age after excluding the captive specimens (grey line and box plots) compared with
the age trajectories of the complete Pan sample (dotted black line, see also Figure 2). Note the increase in complexity of the age
trajectories characterizing the wild specimens.
doi:10.1371/journal.pone.0107963.g003
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unique patterns of enthesopathic development which are likely the

result of their extended potential lifespan. As far as sexual

dimorphism is concerned, our results suggest the possible

relevance of size, lifespan and physical activity in expressing

differences between sexes, stressing on the other hand the need for

larger samples in order to better check patterns of sexual

dimorphism in enthesopathic development The present study

confirmed previous hypotheses [19] on the possible relevance of

EC in the study of life history, pointing moreover to their

usefulness in evolutionary studies.
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